یک روش تنوع جدید برای تقسیم بندی انتخابی تصاویر پزشکی

چکیده مقاله

Selective segmentation aims to separate a subset of target objects or regions of interests in an image. It
is widely used in medical image analysis for some specific tasks such as extracting anatomic organs or
lesions. However, selective segmentation of medical images is usually challenged by their limited imaging
quality. In this paper, we propose a two-phase selective segmentation method. The first phase is a preprocessing step, which aims to reduce influence of noise or cluttered background on segmentation. The
second phase performs selective segmentation on the preprocessed image. For the first phase, we propose
a new image smoothing model which can effectively reduce noise or intensity inhomogeneity inside objects while retain edges of the original image. Moreover, the proposed model has attractive mathematical
and physical properties, in that it has one single optimal solution. For the second phase, we propose a
modified Gout’s active contour method, which can obtain targeted objects more efficiently and accurately.
Our main contribution is the new image smoothing model, which can effectively attenuate complicated
background but preserve edges of targeted object. Extensive experiments on real medical images show
that, our smoothing model can greatly facilitate the second phase, and our method can significantly improve some existing related methods in terms of either visual assessment or quantitative evaluation.

منابع مقاله


[1] I. Oksuz, A. Mukhopadhyay, R. Dharmakumar, et al., Unsupervised myocardial segmentation for cardiac BOLD, IEEE Trans. Med. Imaging 36 (11) (2017)
2228–2238.
[2] A. Makropoulos, I.S. Gousias, C. Ledig, et al., Automatic whole brain MRI segmentation of the developing neonatal brain, IEEE Trans. Med. Imaging 33 (9)
(2014) 1818–1831.
[3] A.A. Farag, R.M. Mohamed, A. El-Baz, A unified framework for map estimation
in remote sensing image segmentation, IEEE Trans. Geosci. Remote Sens. 43 (7)
(2005) 1617–1634.
[4] D. Jolly M-P, S. Lakshmanan, A.K. Jain, Vehicle segmentation and classification using deformable templates, IEEE Trans. Pattern Anal. Mach. Intell. 18 (3)
(1996) 293–308.
[5] M. Seyedhosseini, T. Tasdizen, Semantic image segmentation with contextual hierarchical models, IEEE Trans. Pattern Anal. Mach.Intell. 38 (5) (2015)
951–964.
[6] T. Wu, X. Gu, Y. Wang, et al., Adaptive total variation based image segmentation with semi-proximal alternating minimization, Signal Process. 183 (2021)
108017.
[7] L.C. Chen, G. Papandreou, I. Kokkinos, et al., DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected
CRFs, IEEE Trans. Pattern Anal. Mach. Intell. 40 (4) (2017) 834–848.
[8] K. Ding, L. Xiao, G. Weng, Active contours driven by region-scalable fitting and
optimized Laplacian of gaussian energy for image segmentation, Signal Process. 134 (2017) 224–233.
[9] C. Le Guyader, C. Gout, Geodesic active contour under geometrical conditions:
theory and 3D applications, Numer. Algorithms 48 (1–3) (2008) 105–133.
[10] J. Spencer, K. Chen, A convex and selective variational model for image segmentation, Commun. Math. Sci. 13 (6) (2015) 1453–1472.
[11] Y. Atiq, N. Badshah, A new model for image selective segmentation with prior
information, Sci. Int. 28 (4) (2016) 3500–3507.
[12] J. Zhang, K. Chen, B. Yu, et al., A local information based variational model for
selective image segmentation, Inverse Probl. Imaging 8 (1) (2014) 293–320.
[13] J. Spencer, K. Chen, J. Duan, Parameter-free selective segmentation with convex
variational methods, IEEE Trans. Image Process. 28 (5) (2018) 2163–2172.
[14] M. Roberts, K. Chen, K.L. Irion, Multigrid algorithm based on hybrid smoothers
for variational and selective segmentation models, Int. J. Comput. Math. 96 (8)
(2019) 1623–1647.
[15] J. Song, C. Yang, L. Fan, et al., Lung lesion extraction using a toboggan based
growing automatic segmentation approach, IEEE Trans. Med. Imaging 35 (1)
(2015) 337–353.
[16] T. Brosch, L.Y.W. Tang, Y. Yoo, et al., Deep 3D convolutional encoder networks
with shortcuts for multiscale feature integration applied to multiple sclerosis
lesion segmentation, IEEE Trans. Med. Imaging 35 (5) (2016) 1229–1239.
[17] J. Ma, J. He, X. Yang, Learning geodesic active contours for embedding object global information in segmentation CNNs, IEEE Trans. Med. Imaging 40
(1) (2021) 93–104.
[18] Y. Xie, J. Zhang, H. Lu, et al., SESV: accurate medical image segmentation
by predicting and correcting errors, IEEE Trans. Med. Imaging 40 (1) (2021)
286–296.
[19] Y. Ding, J. Liu, X. Xu, et al., Uncertainty-aware training of neural networks
for selective medical image segmentation, Medical Imaging Deep Learn. PMLR
(2020) 156–173.
[20] H. Wu, J. Pan, Z. Li, et al., Automated skin lesion segmentation via an adaptive
dual attention module, IEEE Trans. Med. Imaging 40 (1) (2021) 357–370.
[21] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int. J. Comput. Vis. 1 (4) (1988) 321–331.
[22] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, Int. J. Comput. Vis.
22 (1) (1997) 61–79.
[23] C. Gout, C. Le Guyader, L. Vese, Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods, Numer.
Algorithms 39 (1–3) (2005) 155–173.
[24] N. Badshah, K. Chen, G. Sapiro, Image selective segmentation under geometrical constraints using an active contour approach, Commun. Comput. Phys. 7
(4) (2010) 759–778.
[25] T.F. Chan, L.A. Vese, Active contours without edges, IEEE Trans. Image Process.
10 (2) (2001) 266–277.
[26] L. Rada, K. Chen, Improved selective segmentation model using one level-set,
J. Algorithms Comput. Technol. 7 (4) (2013) 509–540.
[27] H. Ali, S. Faisal, K. Chen, Image-selective segmentation model for multi-regions
within the object of interest with application to medical disease, Vis. Comput.
6 (2020) 1–17.
[28] L. Rada, K. Chen, A new variational model with dual level set functions for
selective segmentation, Commun. Comput. Phys. 12 (1) (2012) 261–283.
[29] L. Rada, H. Ali, H.N.A. Khan, A selective segmentation model for inhomogeneous images, in: International Symposium on Intelligent Computing Systems,
Springer, Cham., 2018, pp. 123–136.
[30] M. Roberts, K. Chen, K.L. Irion, A convex geodesic selective model for image
segmentation, J. Math. Imaging Vis. 61 (4) (2019) 482–503.
[31] F. Zhao, X. Xie, An overview of interactive medical image segmentation, Ann.
BMVA 2013 (7) (2013) 1–22.
[32] C. Liu, M.K.P. Ng, T. Zeng, Weighted variational model for selective image segmentation with application to medical images, Pattern Recognit. 76 (2018)
367–379.
[33] R. Zhang, X. Feng, L. Yang, et al., Global sparse gradient guided variational
Retinex model for image enhancement, Signal Process. Image Commun. 58
(2017) 270–281.
[34] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, Society for
Industrial & Applied Mathematics, 1999.
[35] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,
Springer, Berlin, 2003.
[36] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1)
(1988) 12–49.
[37] H.H. Chang, A.H. Zhuang, D.J. Valentino, et al., Performance measure characterization for evaluating neuroimage segmentation algorithms, NeuroImage 47
(1) (2009) 122–135.
[38] A.A. Taha, A. Hanbury, Metrics for evaluating 3D medical image segmentation:
analysis, selection, and tool, BMC Med. Imaging 15 (1) (2015) 1–28.
[39] X. Cai, R. Chan, T. Zeng, A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding, SIAM J. Imaging
Sci. 6 (1) (2013) 368–390.
[40] G. David, Singular Sets of Minimizers for the Mumford-  Shah Functional Birkhauser, 2005

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

ورود

آیا عضو نشده اید؟

باشگاه مهندسی پزشکی