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Abstract
Recently, deep learning, especially convolutional neural networks, has achieved the 
remarkable results in natural image classification and segmentation. At the same 
time, in the field of medical image segmentation, researchers use deep learning 
techniques for tasks such as tumor segmentation, cell segmentation, and organ seg-
mentation. Automatic tumor segmentation plays an important role in radiotherapy 
and clinical practice and is the basis for the implementation of follow-up treatment 
programs. This paper reviews the tumor segmentation methods based on deep learn-
ing in recent years. We first introduce the common medical image types and the 
evaluation criteria of segmentation results in tumor segmentation. Then, we review 
the tumor segmentation methods based on deep learning from technique view and 
tumor view, respectively. The technique view reviews the researches from the archi-
tecture of the deep learning and the tumor view reviews from the type of tumors.

Keywords  Tumor segmentation · Deep learning · Medical image · Review

1  Introduction

At present, cancer has become the leading cause of death in China and even in 
the world, posing a huge threat to people’s lives and health. The latest computer 
tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), Positron 
emission tomography (PET) and other multimodal medical imaging technologies 
can achieve high-resolution imaging of tumor disease areas. The segmentation of 
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tumor area from the above image is the basis of radiotherapy and clinical diagno-
sis. Relying on manual segmentation not only requires experienced radiologists, 
but also time-consuming and labor-intensive, so automated tumor segmentation 
is necessary. With the great achievements of deep learning in the field of natural 
image segmentation and the achievements of U-Net [1] in the field of medical 
image segmentation, tumor segmentation based on deep learning has become the 
actual standard of automatic tumor segmentation.

Although the characteristics of different tumors are not the same, the deep 
learning tumor segmentation methods are all based on the fully convolutional net-
works (FCN) [2]. Therefore, it is more important for researchers to understand 
the motivations for these improvements than to know what improvements have 
been made. Based on the understanding of the motivation of method improve-
ment, researchers can better deal with the problem of tumor segmentation. 
Although the segmentation methods of different tumors are not the same, there is 
only one purpose of tumor segmentation, which is precise segmentation of tumor. 
It is consistent with the purpose of natural image segmentation. In addition, there 
is a special problem with tumor segmentation, which is insufficient data, espe-
cially the lack of labeled data. Therefore, all tumor segmentation methods focus 
on precision segmentation and lack of data. Precise segmentation of tumors can 
be achieved by three methods, which are to obtain more information for pixel 
classification, remove irrelevant areas in the image, and segmentation with clear 
boundaries. Based on the above motivation, this article first reviews the general 
methods of tumor segmentation from the perspective of network architecture and 
then reviews from the tumor perspective based on the characteristics of different 
tumors.

This paper reviews and combs the tumor segmentation algorithms based on 
deep learning. The algorithms are reviewed from two views as shown in Fig. 1: 
the technical architecture view and the tumor type view. From the perspective 
of technical architecture, the classic supervised learning architecture includes 
four parts: preprocessing, network structure, loss function and post-processing. 
In addition, there are advanced topics such as multimodal, semi-supervised and 
transfer learning. Compared with previous reviews of segmentation of medical 
and natural images [3–6] and review of segmentation of brain tumors [7–12], the 
main contributions of this paper as follows: 

(1)	 This paper is the first review of tumor segmentation based on deep learning 
methods as we know.

(2)	 This paper first reviews from the perspective of technical architecture and divides 
it into six parts: network structure, loss function, preprocessing, post-processing, 
multimodality and semi-supervising. Then, from the view of tumor type, this 
paper selects brain tumor, breast tumor, colorectal cancer, kidney tumor, liver 
tumor, lung tumor and nasopharyngeal cancer, a total of seven common tumors 
are reviewed, which are convenient for researchers to consult.

(3)	 In addition to reviewing the previously published researches, we also summa-
rized the problems that need to be solved in tumor segmentation based on the 
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difficulties of different tumors. Also, we use this as a motivation to analyze and 
compare the current published results. Finally, based on this, the paper sum-
marizes some problems that have not been solved thoroughly and extends the 
possible research directions in the future.

This paper is organized as shown in Fig.  1. In Sect.  2, we introduce the back-
ground knowledge of tumor segmentation, including common biomedical image 
types, evaluation indicators and some public data set statistics. In Sect.  3, we 
review the method from the architecture view and introduce network structure, 
loss function, preprocessing, post-processing, multimodality and semi-super-
vising. We review the method from seven common tumors in Sect. 4. Section 5 

Fig. 1   Flow of the review. The tumor segmentation algorithms based on deep learning are classified from 
the perspective of deep learning architecture and tumor application, respectively. The detail of architec-
ture view is shown in Fig. 2
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introduces the future research direction of tumor segmentation. In Sect.  6, we 
conclude the whole paper.

2 � Background knowledge of tumor segmentation

2.1 � Medical images type

CT Images CT image is a cross-sectional scanning around a certain part of human 
body by using accurate and collimated X-rays, gamma rays, ultrasound, etc., 
together with highly sensitive detector [14]. Therefore, it has the characteristics of 

Fig. 2   Different types of medial image [13]. a CT image. b PET image. c MR image and d US image
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fast scanning time and clear images. CT images play an important role in the diag-
nosis of neurological diseases, head and neck tumors and chest tumors [15]. The CT 
image of soft tissue sarcoma is shown in Fig. 2a. Low contrast is a hindrance during 
tumor diagnosis when using the CT images.

PET Images PET imaging is a relatively advanced clinical laboratory technol-
ogy in the field of nuclear medicine. The general method is to label the short-lived 
radioactive elements with certain substances, which are generally necessary for 
the metabolism of biological life, such as glucose and protein [16–18]. After being 
injected into the human body, the metabolism of the substance is used to reflect 
the metabolism of life. Therefore, the PET image reflects the metabolic informa-
tion, the position where metabolism is vigorous, and the density value in the PET 
image is large. Because the tumor area is generally rich in metabolism, PET images 
are generally used in combination with CT images to become PET-CT, which is 
mainly used as the standard for tumor diagnosis [19]. Figure 2b shows a PET image 
of soft tissue sarcoma. PET images are characterized by high contrast, but lack in 
low resolution.

MR Images MR image is a kind of tomographic imaging, as shown in Fig. 2c. 
It uses MRI phenomenon to obtain electromagnetic signal from human body and 
reconstruct human body information [20]. Compared with CT image, MR image can 
show the soft tissue structure clearly, and it is better than CT in the examination 
of central nervous system, bladder and rectum. MR images can be divided into T1 
weighted image and T2 weighted image according to different weights [21].

US Images Ultrasound image is the use of ultrasonic beam scanning the human 
body, through the process of reflected signals to obtain an image of the body organs. 
Ultrasound imaging is widely used in ophthalmology, obstetrics, gynecology, car-
diovascular system, digestive system and urinary system to determine the location, 
size and shape of organs, determine the scope and physical properties of lesions, 
provide anatomical maps of some gland tissues and identify the normal and abnor-
mal fetus [22–24]. In tumor diagnosis, generally speaking, benign lesions have uni-
form texture and single interface, so the echo is uniform and regular. While in malig-
nant lesions, the tumor tissue interface is complex and uneven, showing irregular 
echo structure by reason of the rapid growth, hemorrhage and degeneration [25]. 
Ultrasound image is shown in Fig. 2d.

2.2 � Evaluation criterion

Tumor segmentation is actually a pixel-level classification problem. Then define 
image X, for all pixel in image X, we divide them into two classes which one is 
the tumor region and the other is the tissue area. The evaluation criterions include 
classification-based criterion, overlap-based criterion and surface-based criterion. 
Define Vp is the segmentation results of the method we proposed and Vg is the seg-
mentation results from experienced radiologists or the ground-truth.

Classification-based Criterion For classification problems, the frequently used 
recall and precision indicators are also used in tumor segmentation, and their 
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indicator names have become positive predictive value (PPV) and sensitivity (SE) 
[26–28]. The calculation formulas are:

where SE corresponds to the recall in the classification and PPV corresponds to the 
precision in the classification.

Overlap-based Criterion Overlap-based criterion compares the similarity and dif-
ference between the predicted tumor area and the ground-truth. As similarity coeffi-
cient (DSC) and Jaccard similarity coefficient (JSC) [29–31], they are calculated as:

When the prediction result is completely consistent with the ground-truth, the DSC 
and JSC values are both 1. Also, JSC value corresponds to the Intersection Over 
Union (IoU) in the nature image segmentation [32]. Overlap-based criterions are 
widely used in image segmentation, especially medical image segmentation. In par-
ticular, the DCS value has actually become the most important criterion for evaluat-
ing the effect of medical image segmentation.

Surface-based Criterion In tumor segmentation, precise boundaries are also 
important. Therefore, for the prediction of tumor boundaries, surface-based evalu-
ation criterions are generally used. A surface distance error (SDE) will be obtained 
for each pixel in the predicted tumor region Vp to measure the boundary prediction 
[33]. SDE is defined as the Euclidean distance between the pixel in Vp and its pixel 
closest pixel in Vg . Normally we use the average symmetric surface distance (ASSD) 
and it is defined as:

where d(a, b) is the Euclidean distance between a and b. The smaller ASSD value 
indicates the smaller difference between the predicted tumor boundary and the 
ground-truth boundary. The smaller the ASSD value, the better the prediction result.
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Classification-based criterion focuses on the classification of independent pixels 
and cannot well reflect the segmentation of the whole tumor area. Therefore, classi-
fication-based criterion is not generally used as a standard to evaluate the quality of 
the tumor segmentation results. Classification-based evaluation criterion is generally 
used as a supplement to other evaluation criterions. Overlap-based criterion is the 
most widely used evaluation criterion. It has actually become the primary evaluation 
criterion for tumor segmentation methods, and it is also the ranking basis for vari-
ous competitions [34–39]. However, there are two main problems in overlap-based 
criterion. One is that it is not sensitive to the boundary, and the other is that the dice 
value of small objects fluctuates too much. For example, it is possible that the DSC 
value is high, but the tumor boundary of the predicted results is far from the ground-
truth. In small object segmentation, the change of several pixels may cause the huge 
fluctuation of dice. Surface-based criterion circumvents the above two situations 
by establishing an evaluation method for the tumor surface. Therefore, in the task 
of tumor segmentation, if the tumor size is balanced, the overlap-based criterion is 
generally used as the standard to measure the quality of the method. If the tumor is 
small or the tumor fluctuates greatly, the surface-based criterion is better.

2.3 � Public data sets

In the tumor segmentation task, there are also many publicly available data sets, 
which make comparison of some studies possible. In the public data set of tumor 
segmentation, most of the public data sets consist of a specific type of tumor, so this 
paper summarizes some of the more commonly used public data sets as shown in 
Table 1.

Table 1   Partial public data set 
in the field of medical image 
segmentation

Including tumor type, image modality and release year

Data set Tumor type Image modality Year

KiTS19 [34] Kidney tumor CT 2019
BRATS2015 [35] Brain tumor MR 2015
BRATS2016 [36] Brain tumor MR 2016
BRATS2017 [37] Brain tumor MR 2017
BRATS2018 [38] Brain tumor MR 2018
BRATS2019 [39] Brain tumor MR 2019
Warwick-CRCHP [40] Colorectal tumor Histology images 2016
Warwick-CRAG [41] Colorectal tumor Histology images 2019
Warwick-ECCGD [42] Colorectal tumor Histology images 2020
Breast-Data set [13] Breast tumor US 2019
LiTS [43] Liver tumor CT 2019
3DIRCADb [44] Liver tumor CT 2018
LIDC-IDRI [28] Lung tumor CT 2010
TCIA-NSCLC [45] Lung tumor CT 2018
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In addition, researchers can also go to the TCIA official website (https://​wiki.​
cance​rimag​ingar​chive.​net) to search for tumor segmentation data sets published by 
the other researchers according to tumor type.

Fig. 3   Diagram of the review of architecture. The red font indicates that the purpose of this method is 
precise segmentation of tumor and the green indicates the purpose is the solution of lack data (color 
figure online)

Table 2   Comparison of network

The prediction time and parameters size are obtained by using a single 512 × 512 slice on two 11G 
2080Ti machines

Motivation Network Param-
eters 
(MB)

Predic-
tion time 
(s)

Year

Segmentation with clear boundaries U-NET [1] 141 0.05 2015
Boundary-Aware FCN [46] 204 0.07 2017

Remove irrelevant areas in the image Adversarial network [47] 211 0.07 2018
Cascaded Network [48] 280 0.11 2019

Obtain more information for pixel classifica-
tion

3D U-NET [49] 150 0.32 2016
PSPNet [50] 132 0.04 2017
Attention U-Net [51] 110 0.03 2018
H-DenseUnet [52] 180 0.14 2018
Dilated convolution [53] 148 0.05 2019
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3 � Review from architecture view

In this section, we will overview from the architecture view and review it from six 
aspects as shown in Fig. 3.

3.1 � Network

As can be seen from Fig. 3, the purpose of all network structures is precise seg-
mentation. However, each method has a different starting point to improve precise 
segmentation. Precise segmentation of tumors can be achieved by three methods, 
which are to obtain more information for pixel classification, remove irrelevant 
areas in the image, and segmentation with clear boundaries. Table 2 describes the 
comparison of various methods except FCN, because FCN is the backbone of all 
these methods. The table introduces the motivation of each method and compares 
their parameters and prediction time. The prediction time is obtained by using a 
single 512 × 512 slice on two 11G 2080Ti machines.

3.1.1 � Fully convolution network (FCN)

Fully convolutional network (FCN) are first proposed by Shelhamer et  al.  [2], 
transforming convolutional neural networks [53–57] used in the field of image 
classification into image segmentation. The network structure diagram of FCN is 
shown in Fig. 4. The head of FCN is the same as the AlexNet [57], but removes 

(b)

(a)

Fig. 4   Overview of the FCN [2]. FCN transformed the traditional AlexNet into a fully connected con-
volutional network, changing the original last fully connected layer to an upsampling and convolutional 
layer to obtain semantic segmentation results
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the full connection layer of the classification network and replaces it with the 
upper sampling and convolution layer, so that it can get a prediction result for 
each pixel of the image, indicating what kind of image the pixel belongs to. Due 
to the downsampling process such as pooling, the image becomes blurred, espe-
cially the boundaries that are more important for segmentation become blurred. 
Therefore, how to use upsampling to recover the original information of the 
image is the key to the FCN network structure. The FCN uses deconvolution, 
while SegNet [58] saves the pixel index during the downsampling, and recovers 
pixel using index when upsampling. Meanwhile, SegNet proposes to refer to the 
downsampling stage of the full convolutional neural network as the encoder stage, 
the upsampling stage as the decoder stage, and the classical encoder–decoder net-
work architecture. In the tumor segmentation task, some researchers directly use 
the FCN network as the backbone structure for tumor segmentation [59–62].

3.1.2 � U‑NET

The U-NET network, proposed by Ronneberger et  al.  [1], is one of the most suc-
cessful networks based on the FCN structure and has now become a baseline stand-
ard network architecture in medical image segmentation. U-NET network architec-
ture is shown in Fig. 5, which is based on the classic encoder–decoder architecture 
proposed by SegNet. It uses skip-connection to solve the problem of image edge 
information loss caused by downsampling. In the upsampling phase, the feature map 
generated in the corresponding downsampling process and the feature map after 
upsampling are fused, and this method is called skip-connection. Fusion methods 
include direct concatenation and pixel-wise summing. In addition to U-NET, 3D 
U-NET [49] and V-NET [63] adapting U-NET to 3D image environments are also 

Fig. 5   U-NET [1] network architecture
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widely used. U-NET is used as a baseline backbone in tumor segmentation due to its 
powerful effect and few training parameters [64–67].

3.1.3 � Boundary‑Aware FCN

Although U-NET solves the problem of how to restore the original information dur-
ing the upsampling in FCN through skip-connection. But for the boundary, it still 
cannot get a good segmentation result, because the boundary pixels and the internal 
pixels are relatively blurred. The reason for this ambiguity is that even in the first 
convolution layer, convolution operators can cause similar values in the voxel fea-
ture map near the tumor boundary. Shen et al. [46] propose a Boundary-Aware FCN 
network for boundary segmentation, and the network structure is shown in Fig. 6. 
The Boundary-Aware FCN turns the segmentation problem from a single network 
into a multitasking network. The two FCN networks share the downsampling phase 

Fig. 6   Overview of the Boundary-Aware FCN [46]. Boundary-Aware transform the segmentation task 
into a multiple task. One task aiming at segmenting the boundary, called Boundary Task. And the other 
task aiming at segmenting tumor, called Region Task. Finally, the output from the two task are fused 
and pass the convolution layer and output the predicted result. Blue box is the layer shared by two task, 
orange box is the layer belong to Boundary task and green box is the layer belong to Region Task. Lb , Lr , 
Lf  are the loss functions of the two branches and the final segmentation, respectively (color figure online)

Fig. 7   Overview of the cascaded network architecture [48]. The network contains two stage. In the first 
stage, a rough segmentation result is made. In the second stage, the segmentation result of the first stage 
is merged with the original image and sent to the U-NET network
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and have their own upsampling phase. The two upsampling correspond to differ-
ent segmentation tasks, one segments the tumor region and the other segments the 
tumor boundary. The two segmentation results are then fused together, and after sev-
eral convolutional layers, the final segmentation result is outputted.

3.1.4 � Cascaded network

The relationship between tumor segmentation and organ segmentation is that tumor 
segmentation requires the location of tumor on the basis of organ segmentation. 
Based on this, a cascade network is proposed. The first neural network finds out 
the organ of the lesion, called rough segmentation, and second neural networks for 
accurate tumor segmentation. Figure 7 shows a classical two-stage cascaded tumor 
segmentation network proposed by Gruber et al. [48]. The entire network structure 
consists of two U-NET networks. First, the original image passes through the first 
U-NET network to obtain a binary image. Then, the image is multiplied with the 
original image and then sent to the second U-NET network. The output result is the 
final segmentation result [60, 62] all use similar methods for tumor segmentation. 
In the cascade network structure, there are still some studies using three networks 
for cascade, that is, the first two are rough segmentation, and the last one is precise 
segmentation [65, 67, 68] use a three-layer cascade network, and proves that the cas-
cade tumor segmentation framework has a good ability to deal with the situation of 
positive and negative sample imbalance.

3.1.5 � Expand the receptive field

In convolutional neural networks, the purpose of pooling or downsampling is to 
increase the receptive field of a single pixel by reducing the resolution of the image. 
If the receptive field of a single pixel increases, the richer the contextual information 
contained in a single pixel, the more robust the final segmentation result is and the 
better the effect is. Since the task of tumor segmentation is to predict the class of 
each pixel, enlarging the receptive field by adding downsampling will result in the 

Fig. 8   PSPNet architecture [50]
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inability to restore the original information of the image in the process of upsam-
pling, resulting in the loss of information, and ultimately causing unsatisfactory seg-
mentation effect. Gauss pyramid and dilated convolution is two common methods to 
increase the receptive field in image segmentation.

Applying Gauss pyramids in convolutional neural networks is first proposed in 
PSPNet by Zhao et  al.  [50] and PSPNet network architecture is shown in Fig.  8. 
After the original image has undergone convolution operation, the feature maps 
obtained are then subjected to several convolution operations with different convolu-
tion kernels and strides to obtain several feature maps of different sizes. Then, these 
feature maps are converted into the same size by upsampling, connected by pixel 
addition or concatenation and entered into subsequent convolution operations. The 
receptive fields of the feature maps obtained through different convolution kernels 
and stride sizes are different. The feature maps of the smaller receptive fields can 
well retain the original information and the feature maps of the bigger receptive 
fields can contain more information. Yang et  al.  [60] and Sarker et  al.  [69] used 
Gaussian pyramids to expand the receptive field in tumor segmentation.

Dilated convolution is another way to increase the receptive field. Dilated convo-
lution is first proposed by Li et al. [70]. The introduction of dilated convolution is 
shown in Fig. 9. Dilated convolution achieves the effect of obtaining different recep-
tive fields by setting some 0 in the convolution kernel. The feature map after dilated 
convolution is consistent with the original image size, so it will not cause informa-
tion loss. Qin et al. [71] use dilated convolution to expand the receptive field during 
brain tumor segmentation. Hu et al. [59] also use dilated convolution in breast tumor 
segmentation. In addition to Gaussian pyramids and dilated convolutions, Mlynar-
ski et al. [72] use slices from different angles to simultaneously extract features to 
increase the receptive field from the physical level. Jiang et  al.  [73] use multiple 
residual networks ResNet [53] to extract different resolution features to increase the 
receptive field.

(a) (b) (c)

Fig. 9   Dilated convolution [70] diagram. The abc all represent the 2 × 2 convolution kernel. a means the 
dilation rate is 0. b means the dilation rate is 1 and c means the dilation rate is 2. The blue area represents 
the receptive filed of convolution kernel and read point represents the pixel participate in the convolution 
operation
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3.1.6 � Attention mechanism

Attention mechanism is based on human vision, which is first proposed in machine 
translation [74]. Oktay et al. [51] add the Attention mechanism to U-NET and pro-
pose the attention U-NET. At the end of each skip-connection, for the fusion of two 
feature maps, uses the attention gate to replace the original per-pixel summation and 
direct concatenation. The network structure of attention U-NET is shown in Fig. 10, 
where g is the upsampling feature map and xl is the corresponding downsampling 
feature map. The two feature map first go through a 1 × 1 convolution to get Wg and 
Wx . After the ReLU and Sigmod functions, the attention coefficient is obtained, 
and the attention coefficient is then multiplied by xl to obtain the final result. Jiang 
et  al.  [75] apply the attention mechanism to the segmentation of liver tumors and 
proposed the AHCNet network. Xu et al.  [76] apply the attention mechanism to a 
cascaded network structure and propose a DCAN network for brain tumor segmen-
tation. Sabarinathan et al. [77] fuse attention mechanism and coordinated convolu-
tion to process kidney tumor segmentation.

3.1.7 � Adversarial tumor segmentation network

Adversarial learning proposed by Goodfellow et al. [78] is to learn generative net-
works using adversarial learning. The adversarial network generally consists of a 
generator and a discriminator. The purpose of the generator is to generate samples 
from a bunch of initial noise. Then, these generated samples and original samples 
pass through the discriminator and output whether these samples are outputted by 
the generator. Therefore, the purpose of the generator is to fool the discriminator as 
much as possible. The purpose of the discriminator is to identify the samples output-
ted by the generator as much as possible. Finally, the network can get a satisfactory 
generator in the process of adversarial learning. [47, 79–81] introduce adversarial 
networks into tumor segmentation tasks. A typical adversarial tumor segmentation 
network is shown in Fig. 11. The U-NET segmentation network is used as a genera-
tor in the adversarial network, and the segmentation result after U-NET is put into 
a discriminator at the same time as the ground-truth image. The discriminator is a 
common classification network.

Fig. 10   Attention gate diagram [51]. g is the feature map from the upsampling and xl is the correspond-
ing feature map from the downsampling. The attention replaces the direct fusion of the upsampling fea-
ture map and downsampling feature map
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3.1.8 � 3D Tumor segmentation network

A main difference between medical images and natural images is that during a medi-
cal imaging process, the whole body is scanned to generate consecutive slices, espe-
cially in the clinical practice of tumor diagnosis. Therefore, the medical image is 
naturally 3D, and most of the natural image processing methods focus on processing 
a single image, lacking the processing of context information for continuous slices. 
Although 3D U-NET [49], V-NET [63] and DeepMedic [82] directly process con-
secutive 3D slices, 3D convolution has many problems, such as many parameters, 
high computational resources and easy overfitting, so it has not become the first 

Fig. 11   Adversarial network [47]. In the adversarial network, the U-NET is used as a generator to output 
the prediction segmentation result, and then the prediction result and the ground-truth are input into the 
discriminator network. The loss function of the entire network includes two parts, one is the segmenta-
tion loss, and the other is the adversarial loss of the discriminator

Fig. 12   H-DenseUNet [52] architecture. First, the 3D image is cut into 2.5D continuous slices through 
the F operation, and the segmentation results are obtained through 2D U-NET. Second, the segmentation 
results are concatenated with 3D input, and then the features between the slices are extracted through 3D 
U-NET. Finally, the 2D segmentation result and former result pass through the HFF layer, and the final 
segmentation result is output
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choice for researchers to deal with 3D slices. There are two main solutions to deal 
with 3D slices, one is to convert them into 2.5D which contains one image along 
with its front and back images for processing [83], and the other adds a network 
structure to deal with information between slices directly after processing the 2D 
slice [52, 84].

The method of converting 3D slices into 2.5D slices still uses the 2D network struc-
ture, but the slices sent to the network are no longer only the current slice, but include 
several previous and after slices of the current slice, which are added to the channel of 
the current slice to handles the context information between slices. Han [83] uses 2.5D 
method to treat liver tumor segmentation. The typical network of the second processing 
method is the H-DenseUNet [52] network. The network structure is shown in Fig. 12. 
For each 3D input, the 3D volume block is transformed into a 2.5D slice with adjacent 
slices through the transformation processing function F. These 2.5D slices are then sent 
to 2D DenseUNet to extract inner-slice features. The 3D raw input and the predicted 
result after the 2D DenseUNet transformation are concatenated and sent together into 
the 3D network to extract the inter-slice features. Finally, the two features are fused and 
the final result is predicted through the HFF layer. Tseng et al. [84] use LSTM [85] to 
process context information between slices.

3.2 � Loss function

Before summarizing the deep learning-based loss function, we first make some defini-
tions. Let xi ∈ X represent the pixel in image, yi is the class of the pixel xi , pi is the 
predicted class of the pixel xi.

3.2.1 � Cross‑entropy loss

In the field of image segmentation, including natural image segmentation and medical 
image segmentation, cross-entropy loss is the most commonly used loss function. The 
cross-entropy loss of the binary classification is defined as:

Two classifications is that yi have only two values, 0 or 1. Also, P(yi = 1) = pi and 
P(yi = 0) = 1 − pi . For general multi-classification problems, the definition of cross-
entropy loss is as:

where c is the class of the pixel, yc
i
 means that the class of the pixel xi is c and pc

i
 is 

the predict probability value that xi belong to class c.

(6)L
binary

CE
=

N∑

i=1

−
(
yi log pi +

(
1 − yi

)
log

(
1 − pi

))

(7)Lmulti
CE

=

C∑

c=1

N∑

i=1

−yc
i
pc
i
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3.2.2 � Balanced cross‑entropy loss

In the field of medical segmentation, especially tumor segmentation, the proportion of 
tumor area is very low in one image, and most pixels are background or normal tissue, 
that is, the proportion of positive and negative samples is seriously imbalanced. There-
fore, the loss predicting the tumor area into the normal area should be different from 
the loss predicting the normal area into the tumor area, and the loss of predicting the 
tumor area into the normal area should be increased [2]. The balanced cross-entropy is 
defined as:

where � is the loss weight of the misclassification of the tumor area. Extending it 
from two-class to multi-class problems, the loss of balanced cross-entropy is defined 
as follows [86]:

where wc is the loss weight of misclassification of the pixel belong to class c, called 
balanced weight. Wang et al. [87] propose to use the inverse of the class proportion 
as the balance weight value.

3.2.3 � Focal loss

In addition to the problem of sample imbalance, some pixels are easy to be classified 
and some pixels are difficult to be classified in image segmentation. Lin et al. [88] 
propose focal loss to give greater weight to samples that are easy to error. The form 
of focal loss is:

where � is a parameter that controls whether the sample is difficult to distinguish. If 
� = 0 , the focal loss is equal with cross-entropy loss.

3.2.4 � Overlap‑based Loss

Dice loss is overlap-based loss function often used in medical image segmentation. 
The formula (3) defines the Dice criterion in tumor segmentation. The larger the 
Dice criterion, the better the segmentation effect. The Dice value is in [0, 1]. Dice 
loss is defined as 1 minus Dice value, the formula is:

(8)LWCE =

N∑

i=1

−
(
�yi log pi +

(
1 − yi

)
log

(
1 − pi

))

(9)LBCE =

C∑

c=1

N∑

i=1

−wcyc
i
pc
i

(10)LFocal =

N∑

i=1

−
(
�
(
1 − pi

)�
yi log

(
pi
)
+ p

�

i

(
1 − yi

)
log

(
1 − pi

))
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where Vp is the predicted segmentation result and Vg is the ground-truth segmenta-
tion result. In addition to Dice, JSC is often used as an overlap-based evaluation 
criterion. Yuan et al. [89] proposed a loss function based on Jaccard distance, whose 
logic is consistent with Dice loss and also subtracts JSC value with 1. The formula 
is:

Loss function based on overlap criterion will make the prediction result coincide 
with ground-truth higher and effectively reduce the occurrence of isolated false 
positives.

3.2.5 � Combination of multiple loss

The main problem with the loss function in the field of tumor segmentation is the 
extreme imbalance of the sample, that is, the proportion of tumor areas in the entire 
image is much lower than the background and normal tissue areas. This problem 
is called the small target segmentation problem in the field of natural image pro-
cessing. Miletari et  al.  [63] find that the Dice loss is much better than the cross-
entropy loss, or even the balanced cross-entropy loss, in small target segmentation. 
However, Taghanaki et al. [3] conclude after analyzing multiple loss functions that 
overlap-based loss is not stable as cross-entropy loss in both large and small target 
segmentation tasks, making it more difficult to optimize. Therefore, most of the cur-
rent studies use function that combines the two, that is, based on the balanced cross-
entropy loss to ensure the stability of the results, and supplemented by the Dice loss 
to optimize the segmentation results of small targets. The final loss function is:

where � is the balance factor between the two loss. [90–92] all use the above combi-
nation loss for tumor segmentation.

3.3 � Preprocessing

Before the data are sent into the deep learning network, it usually undergoes pre-
processing. There are generally four kinds of preprocessing, which are image attrib-
utes based method, data augmentation, noise elimination and edge enhancement. 
We have basically reached a consensus that if the image is directly sent into the 
deep neural network without preprocessing, the effect will be greatly discounted, 
and even sometimes, good preprocessing is the key to the success of the model [93].

(11)LDice = 1 − 2 ×

||
|
Vp ∩ Vg

|||
||
|
Vp

||
|
+
||
|
Vg

||
|

(12)LJaccard = 1 −

|||
Vp ∩ Vg

|||
||
|
Vp ∪ Vg

||
|

(13)L = LBCE + �LDice
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Image attributes based method Image attributes based method is mostly based 
on the characteristics of the image to do some processing. For example, Zhong 
et al. [94] propose that when processing CT images and PET images, it is necessary 
to truncate the pixel density values, because some too large or too small pixel den-
sity values have no practical significance and will affect our final processing results, 
while increasing the complexity of image information.

Data augmentation Data augmentation, that is increasing the number of training 
sets, aims to increase the data set using graphical transformation, making the model 
more robust and less likely to overfit. Common methods to increase the number of 
data sets including Flip, Rotation, Shift, Shear, Zoom, Brightness and Elastic distor-
tion [26]. [33, 95] find through comparative experiments that using MR images of 
the brain provided by different institutions yields better results than those provided 
by a single institution, validating the urgency of improving data diversity through 
data augmentation. The experimental results of the [90, 92] point out that in the case 
of a small data set, the benefit of using data augmentation is not less than the benefit 
of model updating.

Noise elimination The purpose of noise elimination is to eliminate noise in 
images, making deep learning easier. Wavelet transform is basically used as a pre-
processing method for noise elimination. Before deep learning is applied to tumor 
segmentation, traditional machine learning segmentation generally uses wavelet 
transform as a preprocessing method for tumor segmentation. Median filter with 
large kernel can remove noise well and has less loss for edge. Husham et al. [96] 
extend the median filtering and proposed a wavelet denoising method. The wave-
let denoising algorithm consists of three steps: wavelet transform, threshold filter-
ing and inverse wavelet transform. Mittal et al. [97] use Wiener filter as the basis 
of stationary wavelet transform to do image preprocessing because Wiener filter 
can smooth the boundary and preserve the internal information of the image well. 
Meanwhile, the authors point out that although anisotropic filter [98] can achieve the 
same function, its peak signal-to-noise ratio is too low.

Edge enhancement In the process of tumor segmentation, the blurry edge between 
tumor tissue and normal tissue is an important obstacle to the accuracy of tumor 
segmentation, which is why the edge enhancement preprocessing should be done. 
Histogram equalization uses cumulative distribution function to normalize image 
intensity, so as to improve image brightness. In some cases, histogram equalization 
produces a scour effect by averaging the intensity to the middle [99]. Laplace edge 
enhancement or non-sharp masking technology is to enhance the high-frequency 
components by filtering the image and scaling it into the original image, so as to 
achieve edge enhancement [100]. In the practice of edge enhancement, the trade-off 
between noise enhancement and edge enhancement needs to be considered.

3.4 � Post‑processing

After passing through the deep neural network, the output can be directly used as the 
result of tumor segmentation, but in general, the output of the deep neural network 



	 H. Jiang et al.

1 3

may not directly meet the needs and it is not interpretable. Therefore, some research-
ers do some post-processing operations after the output of deep learning to achieve 
better results.

3.4.1 � Conditional random field (CRF)

Conditional random field (CRF) is a conditional probability distribution model for 
a set of output sequences by given a set of input sequences, which is widely used in 
natural language processing. In the field of image segmentation, the significance of 
the application of CRF is that the class of each pixel is determined by the pixel and 
the surrounding pixels. Krähenbühl et al. [101] extend CRF and the class of each 
pixel is related to all pixels in the whole picture, and propose DenseCRF. The role 
of CRF and its variant DenseCRF in tumor segmentation has been replaced by deep 
learning methods led by FCN. But in post-processing, in order to make the final seg-
mentation effect more reasonable, it is still widely used. The energy function based 
on Gibbs distribution to be optimized by DenseCRF is defined as:

where xi ∈ X is the pixel in image X, �i(xi) is the characteristic function of each 
pixel and �i,j(xi, xj) is the characteristic function of the pixel xi and pixel xj . In the 
method of using DenseCRF as post-processing, the value of �i(xi) is generally modi-
fied to the output of the previous deep convolution neural network [62, 102].

3.4.2 � Machine learning on features using deep learning

In the field of post-processing research, some researchers believe that the advan-
tage of deep networks represented by FCN lies in feature extraction, but it is not as 
good as traditional machine learning methods in subsequent classification problems. 
Therefore, some researchers use FCN as a feature extraction tool. After FCN, they 
use the features extracted by FCN to follow other machine learning methods [103]. 
Qaiser et al. [29] propose that because of the morphological difference between the 
normal nucleus and the nucleus of cancer cells, after deep learning, the method of 
persistent homology is used to deal with it. Persistent homology is an algebraic tool. 
Given a topological space, some algebraic invariants are calculated by using the 
structure of the space [104]. Hu et al. [59] believe that during breast tumor segmen-
tation, the FCN output result is very rough, because the boundaries of the tumor 
area are blurred and diverse, so after FCN, the author added phase-based active con-
tour (PBAC) model. Chlebus et al. [105] propose that using random forest as post-
processing can eliminate false positives. After the deep network is executed, the 
features of the last few layers are used to send them into the random forest model, 
and finally the pixel category is obtained. Chen et al. [106] propose using multilayer 
perceptron for post-processing, the effect is better than CRF and other methods.

(14)E(x) =

N∑

i=1

𝜑i

(
xi
)
+
∑

j<i

𝜓i,j

(
xi, xj

)
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3.5 � Multimodal tumor segmentation

More and more researchers have begun to use multiple modal images for tumor 
segmentation to compensate for shortcomings in single-modal imaging. The main-
stream multimodal joint segmentation mainly includes CT and MR images, T1 and 
T2 weight images of MR, CT and PET images. The main problem of multimodal 
image segmentation is how to effectively use the information of multiple modalities 
to improve the segmentation effect. At present, there are two ways to do multimodal 
tumor segmentation. One is that different modes contain the same information, so 
the same information has the highest confidence and should be used most. Then how 
the features of the two modes supervise each other to extract useful features were 
discussed, which is called feature supervision [107–109]. The second way considers 
that the images of different modalities contain different information, and discusses 
how to effectively use this complementary information, which is called feature 
fusion [84, 90, 92].

A typical network architecture for feature supervision is shown in Fig. 13. The two 
modal images pass through a separate U-NET module. A complete U-NET module 
is divided into encoder and decoder modules, where the role of the encoder module 
is for feature extraction, and the role of the decoder module is for image recovery. 
Feature supervision is based on the assumption that the deep semantic information 
contained in the two modal images is consistent, so after sufficient feature abstrac-
tion, the resulting features should be similar. Therefore, after encoder, two independ-
ent U-Net continue to extract features after several layers of convolution network, 

Fig. 13   Feature supervision [107]. The images of two modes pass through different u-net networks, 
respectively, and then do feature extraction after upsampling, then the features of two different modes 
should be similar, that is contrastive loss
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and finally get semantic features, which should be similar. Using this similarity as a 
loss function to guide the network structure of the encoder layer of both u-net.

The typical network of feature fusion is shown in Fig.  14. The idea of feature 
fusion is based on the use of the complementary information between the two to 
improve the segmentation results. After the two modal images have passed through 
the U-NET encoder, feature fusion will be performed at the decoder stage. In the 
decoder layers of the two modalities, when skip-connection, not only the down-sam-
pled features of the current modal image are concatenated in, but also the down-
sampled features of the corresponding modal image are concatenated in to perform 
feature fusion. Moreover, Jin et al. [91] use the attention mechanism to complete the 
feature fusion of the two modalities.

3.6 � Semi‑supervised tumor segmentation

In tumor segmentation based on medical images, the main problem is insufficient 
labeled samples. For tumor segmentation tasks, it is difficult to obtain enough 
finely labeled training and test images. So researchers started using semi-supervised 
segmentation to solve the problem of lacking labeled samples. Similarly, semi-
supervised segmentation can also be divided into two ways at present. One is that 
although fine pixel-level labels are difficult to obtain, image-level labels, that is, 
whether the image contains tumors, are easier to get. Therefore, this kind of method 
is trained for the part containing pixel-level labels and part containing image-level 
labels [64, 110]. The second kind of method is training for completely missing label 
data [111, 112].

The structure of the first type of semi-supervised segmentation method is shown 
in Fig.  15. Part of the input data of this type of semi-supervised method have 

Fig. 14   Feature fusion [84]. After the two modal images have passed through the U-NET encoder, fea-
ture fusion will be performed at the decoder stage. In the decoder layers of the two modalities, when 
skip-connection, not only the down-sampled features of the current modal image are concatenated in, but 
also the down-sampled features of the corresponding modal image are concatenated in to perform feature 
fusion
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pixel-level labels, and some data have only image-level labels. Therefore, training 
segmentation network uses data with pixel-level label and training classification net-
works uses data only with image-level label. In order to share parameters, all the 
network structures of the segmented network are shared by the classified network. 
Also, on the basis of the segmented network, additional layers of convolution net-
work are added to form a complete classified network.

The second kind of semi-supervised method faces the problem of insufficient 
samples, but all the samples are pixel-level labeled. The method proposed by Wang 
et al. [111] is to use labeled data to train the model, then use unlabeled data to pre-
dict and see the probability of the final result. If the probability values are close to 
1 or 0, that is, the accuracy is high, then the information contained in the image is 
considered to have been learned. If the probability value approaches 0.5, it is consid-
ered that the tumor information contained in the image has not been learned before, 
so the image is manually labeled at the pixel level and then learned. Through the 
above method, the number of the data that should be labeled is reduced. Jiang et al. 
[112] use adversarial learning to generate samples to increase the number of sam-
ples for learning.

4 � Review from tumor view

Although tumor segmentation can extract a general paradigm, different types of 
tumors face some difficulties because of their different characteristics and different 
imaging techniques. Table 3 analyzes the characteristics of each tumor and the dif-
ficulty of segmentation, as well as the current mainstream solutions. The shape of 
the tumor is almost variation. In terms of tumor size, we analyze the public data set. 
If the ratio of the largest tumor to the smallest tumor size in a slice is less than 10, it 
is considered small variation, and if it is between 10 and 100, it is considered varia-
tion, and if it is greater than 100, it is considered big variation.

Fig. 15   First way of semi-supervised segmentation [110]. Train classification network and segmentation 
network at the same time according to different levels of labeling
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4.1 � Brain tumor

Brain tumors are caused by uncontrolled brain conditions, resulting in abnormal 
cells appearing in the brain regions. The emergence of these tumors breaks the nor-
mal work of the brain and has a negative impact on patient health [126]. In medical 
practice of brain tumor segmentation, brain MR images are most commonly used 
in order to separate tumor regions from normal tissue regions, such as gray mat-
ter, white matter and cerebrospinal fluid. Havaei et al. [127] use deep learning for 
the first time to segment brain tumors and validate its results faster than traditional 
CRF and better at dealing with indistinguishable brain tumor segmentation (such as 
glioma and malignant glioma). Although the FCN network was not proposed at the 
time, the paper realized the function of Gaussian pyramid by setting different con-
volution kernels and implemented the skip-connection function by concatenating the 
results after multiple convolution kernels.

With [26, 97, 128, 129] introducing FCN and U-NET into the brain tumor seg-
mentation challenge, the brain tumor segmentation method based on FCN has 
become the backbone of the brain tumor segmentation network. Because the basic 
deep network has too small receptive fields to affect the final segmentation results, 
[71, 114, 115] have adopted dilated convolution to expand receptive fields. Shen 
et  al. [46] aim at the problem that the convolutional neural network is not clear 
for the segmentation of tumor boundary, in addition to the segmentation of tumor 
region, a sub-task with tumor boundary as the ground-truth was added, and both 
are trained simultaneously to improve the accuracy of boundary segmentation. Dong 
et al. [65] use cascaded FCN network for brain tumor segmentation, which improved 
the accuracy, but Zhou et al. [130] believe that the cascaded segmentation network 
would lead to extremely complex system, and ignore the relationship between vari-
ous deep models. In view of this, Zhou et al. [130] divide the cascaded network into 
three independent but interconnected networks, and the three networks are trained 
together to explore their relationship.

In addition to adding a branch structure that is conducive to brain tumor segmen-
tation on the basis of FCN, some researchers have also updated the basic structure 
of FCN. Pereira et al. [131] believe that not all the feature maps generated by convo-
lutional networks are related to the final segmentation results, so they could not be 
simply added up. Therefore, Squeeze-and-Excitation theory in image classification 
theory is introduced into FCN to make the combination of feature maps. Chen et al. 
[106] hold the opinion that existing deep learning frameworks cannot guide models 
to learn high-quality hierarchical features, and proposes a multi-level Deep Medic to 
solve this problem. Chang et al. [102] consider that the widely used maximal pool-
ing lost a lot of context information because it only preserves the maximum value in 
the receptive field. In order to compensate for this, in deep learning, two models are 
trained, using maximal pooling and average pooling, respectively.

Xu et  al. [76] use 3D convolutional neural networks to capture information 
between slices, but 3D U-NET has many parameters, consumes many resources and 
is prone to overfitting. Mlynarski et  al. [72] use a lighter 2D network for feature 
extraction within a single image and 3D network is only used for inter-slice feature 
processing. To solve the problem that 3D U-NET is easy to overfit, Myronenko et al. 
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[132] add a self-coding branch to reconstruct the image in the encoder phase of 3D 
U-NET, trained with segmentation during training, and regularize 3D U-NET by 
this method. [47, 80] introduce an adversarial neural network into the segmentation 
of brain tumors, which is basically the same as introduced in Sect. 3.1.7. [79, 84, 
113] begin to explore the use of multiple modal MR images to improve the effect.

4.2 � Breast tumor

Breast cancer is the most common tumor disease in women and it has now become 
the second leading cause of death [33]. So automatic segmentation for breast tumors 
is especially important. Breast tumor segmentation based on deep learning is mostly 
focused on ultrasound images, and few researchers focus on breast tumor segmenta-
tion from X-ray and MR images. So far, ultrasound images are still the most com-
monly used imaging format for radiologists to diagnose breast tumors. For breast 
tumor segmentation using ultrasound images, the traditional machine learning meth-
ods still occupy the mainstream [133–137]. Even if deep learning is used for tumor 
segmentation based on ultrasound images, unlike brain tumor segmentation that 
directly use FCN or U-NET, most of them have complicated deformations. This is 
because breast tumors in ultrasound images have different morphologies and differ-
ent sizes.

Hu et al. [59] transplant FCN to ultrasound-based breast tumor segmentation. In 
addition to using dilated convolution to expand the receptive field, the phase-based 
active contour (PBAC) model is used for precise segmentation of tumors in the 
post-processing stage. Vakanski et al. [138] and Liang et al. [139] also use dilated 
convolution to expand the receptive field of deep learning networks. Vakanski et al. 
[138] argue that it is necessary and challenging to incorporate prior knowledge into 
FCN because breast tumors exhibit different occurrence locations, boundaries, cur-
vatures and intensities in different patients. The prior knowledge selected by the 
author is a visual saliency image. Visual saliency estimation is an important method 
for automatic detection of tumors in medical images. The purpose is to establish 
a model between the saliency level of the image area and the ability to attract the 
visual attention of the radiologist [140, 141]. The author integrates the information 
expressed by visual saliency into the FCN architecture through the attention mech-
anism. Liang et  al. [139] use instance segmentation network Mask R-CNN [142] 
for breast tumor segmentation in ultrasound images. Due to the high complexity of 
Mask R-CNN model and the large scale of the required training data set, in order 
to solve this problem, a new elastic transformation is proposed for data augmenta-
tion. Singh et al. [81] introduce adversarial learning networks to tumor segmentation 
tasks on ultrasound images.

In addition to ultrasound images, some studies have focused on X-ray and MR 
images, but their difficulty is lower than that of ultrasound images. Hai et al. [32] 
use fully connected DenseNet [143] to process X-ray images, while using dilated 
convolution to improve the receptive field. Zhang et al. [144] train a FCN with ROI 
region as the ground-truth in dealing with breast tumor segmentation from MR 
images, and then, the result passes through a cascaded network. Adoui et al. [66] use 
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two networks, U-NET and SegNet, to perform MR-based breast tumor segmentation 
to improve segmentation accuracy.

4.3 � Colorectal tumor

Colorectal tumors are the second most common tumor in women and the third most 
common tumor in men. Segmentation of colorectal tumors is mainly focused on 
three aspects, one is based on MR image segmentation, the second is based on path-
ological images, do the segmentation of colorectal tumor cells and normal cells, and 
the last is based on CT image of tumor segmentation. The segmentation based on 
MR images and pathological images is more concerned by researchers.

For colorectal tumor segmentation based on CT images, Men et al. [145] first use 
FCN network, meanwhile use dilated convolution to improve the receptive field, and 
use patches of different sizes as input to obtain different resolution features. Liu et al. 
[146] use the adversarial network to segment colorectal tumors from CT images, 
which improves the segmentation effect. Trebeschi et  al. [147] use deep learning 
network for colorectal tumor segmentation based on MR images for the first time. 
Jian et  al. [148] introduce FCN into MR image-based colorectal tumor segmen-
tation, while aiming at the defect that FCN could not obtain multi-level semantic 
information, the segmentation results are output after each workflow ended. Soomro 
et al. [149] propose different solutions to the same problem. In order to obtain dif-
ferent levels of semantic information, different resolution images are input and then 
the segmentation results obtained at different resolutions are integrated. Huang 
et al. [118] propose a mixed loss function based on Dice loss to solve the problem 
of sample imbalance in the segmentation of colorectal tumors. Meanwhile, differ-
ent resolution images are input to eliminate false positives. Different from previous 
sliding window or single training model, Huang et al. [150] propose a joint training 
model based on the encoder–decoder framework, which includes the ROI acquisi-
tion branch and the ROI-based tumor segmentation branch, respectively. The two 
branches share the encoder stage. In the study of tumor segmentation in colorectal 
tissue images, Tang et al. [151] introduce SegNet to the segmentation task for the 
first time and achieve better results than traditional methods. Qaiser et al. [29] do not 
blindly use the deep learning method in tumor segmentation based on tissue images. 
He believes that there were obvious morphological differences between tumor cell 
nuclei and non-tumor cell nuclei. Based on this, a segmentation algorithm combin-
ing continuous coherence method and deep learning is proposed.

About 80%–95% of colorectal tumors develop from colorectal polyps. Therefore, 
the diagnosis of colorectal polyps can prevent the occurrence of colorectal tumors. 
Some researchers focus on the automatic segmentation of colorectal polyps. The 
diagnosis of colorectal polyps is mostly based on images generated by colonoscopy. 
Li et  al. [27] introduce FCN to the segmentation of colorectal polyps for the first 
time. Akbari et al. [116] divide the colorectal segmentation into two stages. The first 
stage is to obtain the ROI region through FCN. The second stage uses the multi-
level Ostu algorithm to segment the tumor region based on the ROI obtained in the 
first stage. Nguyen et  al. [119] introduce the encoder–decoder architecture to the 
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colorectal polyp segmentation task. Kang et al. [117] use Mask R-CNN to segment 
colorectal polyps and a Mask R-CNN network based on two different backbones 
(ResNet-50 and ResNet-101) was integrated.

4.4 � Kidney tumor

Kidney tumors caused approximately 175,000 deaths in 2018 [152] and is expected 
to cause 14,770 deaths across the United States in 2019 [153]. Currently, CT images 
are commonly used in the diagnosis of kidney tumors, and kidney tumor segmenta-
tion based on deep learning is also focused on CT images. Efremova et al. [154], 
Zavala-Romero et al. [155] and Shen et al. [156] introduce U-NET and 3D U-NET 
into the task of kidney tumor segmentation, all of which have achieved far better 
results than traditional methods. Yang et al. [60], Vu et al. [68], Lv et al. [120], Mu 
et al. [121] and Wei et al. [122] all use cascaded network structures to distinguish 
kidney tumors. The difference between the methods is that Yang et  al. [60] uses 
the Gaussian pyramid to expand the receptive field in the network structure of the 
first stage; Vu et al. [68] expand the cascade network to three layers, the first layer 
directly obtains the results, the second layer obtains the tumor and kidney regions, 
the third layer obtains the tumor segmentation results with the input of the second 
layer cascade, and the final results are fused by the first layer cascade results and the 
third layer cascade results. In order to obtain different features in the cascade stage, 
the two cascade frameworks are composed of U-NET and V-NET, respectively, in 
[120]; Mu et  al. [121] re-randomize sampling and regularization when the output 
of the first layer of the cascade is input to the second layer of the cascade. Yu et al. 
[157] process images from two different perspectives and then cross over two net-
works which is connected each other. Myronenko et al. [158] propose a Boundary-
Aware architecture for kidney tumor segmentation, where one task branch segments 
the tumor boundary and the other branch segments the tumor region. Sabarinathan 
et  al. [159] and Zhang et  al. [160] use a multi-level semantic information fusion 
architecture to obtain different levels of semantic information. In addition, Zhang 
et  al. [160] use a cascade architecture to reduce sample imbalance before fusion. 
Chen et al. [161] extend Mask R-CNN to 3D Mask R-CNN and applies it to kidney 
tumor segmentation. Sun et al. [162] introduce attention mechanism to kidney tumor 
segmentation.

4.5 � Liver tumor

According to the WHO report, liver tumors are the fifth most deadly tumor in the 
world [163]. The segmentation of deep learning methods for liver tumors is focused 
on CT images. Chlebus et al. [105, 164] introduce 2D U-NET to liver tumor seg-
mentation for the first time and optimize post-processing to reduce false positives 
by using random forests. Vorontsov et  al. [165] use two different architectures to 
complete the encoder–decoder network structure, in which the encoder phase uses 
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ResNet and the decoder phase uses U-NET, and uses the skip-connection mecha-
nism to connect the high-channel information of ResNet with the low-channel infor-
mation of U-NET.

In addition to 2D U-NET, a large number of researchers have focused on how to 
process 3D CT slices to perform liver tumor segmentation tasks. Because the direct 
use of 3D U-NET has the problems of difficult training, easy overfitting and large 
calculation, researchers focus on how to coordinate the processing of information 
within slices and information between slices. Han et  al. [83] use a 2.5D network 
to process, that is concatenating together several adjacent slices of the current slice 
into a 2D U-NET. Although this method can obtain the connection between adja-
cent slices, there are faults, and the receptive field is not large enough. Li et al. [52] 
use 2D U-NET to process the information within the slices and then selected some 
connected slices to send to the 3D U-NET network. Liu et al. [166] point out that 
the network for processing 3D information between slices such as 3D U-NET and 
LSTM is difficult to learn. Therefore, the authors propose a 3D anisotropic hybrid 
model to convert 2D features into 3D features.

In the segmentation of liver tumors, another widely used network is the cascade 
network, but different researchers have made corresponding updates for the cascade 
network. Gruber et  al. [48] propose a two-stage cascade structure. The first stage 
cuts out the position of the liver, and the second stage does fine tumor segmenta-
tion. Christ et al. [62] add CRF to do post-processing on this basis, which further 
improved the accuracy and interpretability of the final segmentation results. Yuan 
et  al.  [67] extend the cascade structure to three stages. The first stage is used to 
locate liver organs, the second stage is used to segment liver organs, and the third 
stage is used to segment liver tumors. Jin et al. [123] introduce 3D U-NET into cas-
cade network, and in order to solve the computational cost problem of 3D U-NET, 
first use 2D U-NET to segment the ROI area and then put this ROI area into cascade 
3D U-NET network, which reduces the computational cost by reducing the size of 
the 3D input image. Jiang et al. [75] introduce soft and hard attention mechanism 
and long and short skip mechanism into the cascade network. Bai et al. [167] cas-
cade the deep learning method with the traditional method. First, the liver region 
that may contain tumors is obtained using 3D U-NET, then the ROI region in the 
liver was obtained using 3D fractal residual network, and finally the final tumor seg-
mentation is done using active contour model.

In addition, Sun et al. [61] believe that RTCT information acquired at different 
stages has different information and characteristics, so one FCN extraction feature 
is trained for three different stages of RTCT [arterial (ART) phase, portal venous 
(PV) phase, and delayed (DL) phase], and then fused together to make final seg-
mentation. Seo et al. [168] argue that U-NET has three defects when applied to liver 
tumor segmentation. First, although the skip mechanism is useful, it will cause some 
information duplication. Second, although the high-level features have good expres-
sive ability, the boundary information of the input pictures has long been blurred. 
Third, the number of pooling layers is difficult to determine due to the different size 
of the input image. For this reason, the solution given by the author is to use residual 
deconvolution and activation function in the skip to avoid information duplication. 
For the features of small objects, it is not in the residual deconvolution calculation 
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in the skip, while adding additional network in the skip to obtain higher-resolution 
boundary information in the high-level feature stage.

4.6 � Lung tumor

Lung cancer is one of the leading lethal cancers with a 5-year survival rate of only 
18% [169]. Current lung tumor segmentation methods based on deep learning are 
mainly focused on CT images. Wang et al. [170] introduce deep learning into the 
segmentation of lung tumors. Meanwhile, the authors believe that CT images from 
different perspectives represented different information. Therefore, each CNN 
branch is trained for different perspectives. Finally, these results are fused into a full-
connected layer to output the probability that the central pixel point of the branch 
belonged to the tumor area or not. Zhou et al. [30] use deep learning to process both 
2D and 3D images to acquire features separately, and in addition, change the pooling 
into the central pooling which pays more attention to the central pixels. Rocha et al. 
[171] introduce U-NET to lung tumor segmentation and make detailed comparisons 
with traditional methods in various aspects, and conclude that deep learning meth-
ods are far superior to traditional methods. Tong et al. [172] update U-NET, add a 
residual network to speed up model training and use batch normalization to make 
the model more robust. Qin et  al. [124] use adversarial network to generate more 
positive samples in order to solve the problem of data sample imbalance. Jiang et al. 
[73] use multiple ResNet networks to extract features of CT images with different 
resolution. Roy et al. [173] first obtain the rough segmentation results using U-NET, 
then use morphology-driven level set method to do fine segmentation, and the ini-
tial seed points of the level set are provided by the rough segmentation results of 
U-NET. Feng et al. [174], Tang et al. [31] and Wu et al. [175] all use the combined 
framework of classification and segmentation of pulmonary nodules and complete 
the classification and segmentation tasks of pulmonary nodules in one deep learn-
ing process. Among them, Feng et al. [174] use the simple linear iterative clustering 
(SLIC) method [176] for preprocessing. Tang et al. [31] use decoupled feature maps 
to reduce false positives.

4.7 � Nasopharyngeal carcinoma

Nasopharyngeal carcinoma is a neoplasm originating in the nasopharynx and is a 
malignant tumor that occurs frequently in southern China, Southeast Asia, the 
Arctic, the Middle East and North Africa [177]. Most of the current research on 
automated segmentation of nasopharyngeal carcinoma has focused on CT and 
MR images. In the CT based automation methods, Men et al. [178] introduce the 
decoder and encoder architecture to the segmentation of nasopharyngeal carcinoma, 
but the upsampling and downsampling methods are rough. Liang et al. [179] use a 
cascaded network for processing, which includes a total of two layers of networks, 
one layer obtains the ROI area, and the other layer performs segmentation based 
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on ROI. Zhong et al. [180] extend the cascade network structure to three layers. Li 
et  al. [181] introduce U-NET to automated segmentation of nasopharyngeal car-
cinoma. MR image-based segmentation of nasopharyngeal carcinoma has been 
studied slightly more than CT images. Wang et al. [182] introduce CNN into MR 
image-based segmentation of nasopharyngeal carcinoma and use morphological 
methods in post-processing. Ma et  al. [183] believe that MR images from differ-
ent perspectives store different information, so a neural network is trained separately 
for MR images based on different perspectives. Chen et al. [125] similarly process 
the MR images of different modes and achieve better results. Wu et  al. [184] use 
graph segmentation as post-processing, and the output of the neural network is used 
as input for graph segmentation. Li et al. [185] use U-NET as a MR image-based 
nasopharyngeal cancer segmentation framework. Huang et al. [186] add an attention 
mechanism to the U-NET structure, which allows high-level semantic features to 
guide the learning of low-level features.

5 � Discussion and future direction

We review the tumor segmentation algorithms based on deep learning from two per-
spectives, which are the architecture view and the tumor view. But in this section, 
we integrate two perspectives together to summarize. As shown in Table 4, we sum-
marize the research topics of different types of tumors according to the architecture 
view introduced in Sect. 3. Because a large number of research topics are concerned 
about the innovation of network structure, we split the topic of network into specific 
technical details.

Although the tumor segmentation based on deep learning has achieved far better 
results than traditional methods, there are still some problems that have not been 
solved or lack reasonable and widely accepted methods. As shown in Table 2, with 
the improvement in network capabilities, the amount of network parameters has 
become larger and larger, especially the amount of network parameters that process 
information between 3D slices has expanded particularly severely. Therefore, how 
to effectively process 3D slice information, and how to compress the model as the 
amount of network parameters increases, are issues that need to be addressed in the 
future. And, due to the small amount of medical imaging data, how to prevent over-
fitting also requires researchers to think. It can be seen from Table 3 that although 
the characteristics of different tumors are not the same, there are still many com-
monalities between tumors, but there is currently no effective research aimed at uni-
fied segmentation models and transfer learning between different tumors. Based on 
this, we summarize the following four future research directions of tumor segmenta-
tion based on deep learning.

5.1 � Processing of 3D medical images

Although there are currently 3D U-NET [49] and V-NET [63] for 3D image pro-
cessing, the computational complexity of 3D convolutional neural network is an 
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unavoidable problem. Because the number of parameters is extremely inflated and 
the number of trainable images from 2D to 3D is rapidly reduced, overfitting is 
inevitable. However, current studies have proven that 3D U-ET is better than 2D 
U-NET [a20], which also proves that feature extraction between slices is necessary. 
Although some studies have addressed the above problems and used LSTM-like 
methods to deal with feature extraction between slices, the network of such methods 
is extremely complex and difficult to reproduce [52, 84]. Therefore, how to reason-
ably and effectively solve the problem of 3D medical image processing, which not 
only applies the inter-slice features of 3D image, but also has less parameters and 
less computational amount than 3D U-NET, still needs further research.

5.2 � Transfer learning and unified segmentation model

At present, there are few studies on transfer learning in tumor segmentation. Most 
researchers have proposed a new network structure and then verified the effectiveness 
of tumor segmentation on two different data sets to prove the effectiveness of their own 
effects. However, in natural image segmentation or organ cell segmentation in medical 
image processing, there is still a large amount of research on transfer learning. Research 
on transfer learning mainly focuses on unsupervised domain adaptation [187–191], that 
is, the data in the source domain are labeled, and the data in the target domain are unla-
beled. Transforming to tumor segmentation is that the segmentation model trained on 
labeled data of brain tumors is adapted to the segmentation of unlabeled lung tumor 
data. In addition, since each tumor segmentation is trained with an independent model, 
in clinical practice, a unified system or model is required to complete multiple tumor 
segmentation. Huang et al. [192] propose a unified U-NET model for multi-organ seg-
mentation, but research on a unified segmentation model for multi-organ tumors is still 
lacking.

5.3 � Model compression

Current research on model compression has focused on natural image segmentation 
[193–196]. Due to the increasing complexity of natural image segmentation networks 
and the current demand for transplanting natural image classification or segmentation 
models to portable devices such as mobile phones, research on the compression of nat-
ural image segmentation models is in full swing. Although the medical image segmen-
tation model is slightly more complex than the natural image, especially the current 
multimodal, 3D image processing model is not less complex than the natural image. 
It is just less than the training data of natural images, and the training difficulty is a bit 
lower, but the model parameter magnitude is not low. With the future demand for tel-
emedicine technology, the need to run medical tumor segmentation models on mobile 
devices will also exist, so the compression research of medical segmentation models is 
also very meaningful.
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5.4 � Overfitting problem

Overfitting is a fundamental problem in training deep learning. A series of solutions 
have been developed. For example, increase the sample amount, regularization, drop-
out, etc. But the effectiveness of all the above methods is mostly verified based on natu-
ral image classification and natural image segmentation problems. It should be noted 
that the biggest difference between medical image segmentation and natural image 
classification segmentation is that, first, the segmentation of medical images is the seg-
mentation of small targets. Second, the sample number is smaller than that of natural 
images. Therefore, in the medical image segmentation problem, it is more meaningful 
to solve the problem of over-fitting when training with a small amount of data than to 
propose a more complex network architecture.

6 � Conclusion

This paper reviews the methods of tumor segmentation based on deep learning. We 
review from two perspectives, one is from the technical perspective of deep learn-
ing and the other is from the perspective of tumor types. From the technical view of 
deep learning, we review the network architecture, preprocessing, post-processing, 
loss function, multimodal segmentation and semi-supervised segmentation. Based 
on the types of tumors, we review the seven tumors that are the main focus of cur-
rent research, namely brain tumors, breast tumors, colorectal tumors, kidney tumors, 
liver tumors, lung tumors and nasopharyngeal cancer.

The tumor segmentation method based on deep learning is summarized from the 
two perspectives of tumor type and technical architecture. The current methods basi-
cally have two purposes, accurately segmenting tumors and making up for lack of 
training data. Deep learning is good at accurately segmenting tumors based on suf-
ficient training data, and all the methods are basically from the following three per-
spectives: segmentation with clear boundaries, remove infrared areas in the image 
and obtain more information for pixel classification. Based on this, a large num-
ber of networks have been proposed, and detailed comparative introductions can be 
found in the article. However, due to the natural demand of neural network for the 
amount of data, the current methods to make up for the lack of data are relatively 
few, and most of them are based on modifying the training strategy. Based on the 
above situation, we have summarized four possible future research directions, that is 
3D image segmentation, transfer learning, model compression and reasonable solu-
tion to overfitting.

The tumor segmentation method based on deep learning has made remarkable 
achievements so far, and the related research directions and research points are rela-
tively scattered. Based on the motivation of the method, this paper reviews it from 
the perspectives of tumor type and network architecture. For related researchers and 
people who want to quickly understand this field, you can find some helpful content 
through this review.
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