

Numerical Modeling of COVID-19
Neurological Effects

Numerical Modeling of COVID-19
Neurological Effects
ODE/PDE Analysis in R

William E. Schiesser

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 William E. Schiesser

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-
750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used
only for identification and explanation without intent to infringe.

ISBN: 978-1-032-15211-0 (hbk)
ISBN: 978-1-032-15213-4 (pbk)
ISBN: 978-1-003-24305-2 (ebk)

DOI: 10.1201/9781003243052

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

Access the Support Material: http://www.lehigh.edu/∼wes1/cne download

Typeset in Times New Roman
by codeMantra

Contents
Preface...vii

Chapter 1 Source of Neurological Effects One PDE Model............................1

1.1 Introduction...1
1.1.1 One PDE model formulation1
1.1.2 Summary and conclusions ...2

References..3

Chapter 2 Implementation of the One PDE Model..5

2.1 Introduction...5
2.1.1 R routines for the one PDE model5
2.1.2 Summary and conclusions15

References..16

Chapter 3 Two PDE Model ..17

3.1 Introduction...17
3.1.1 Two PDE model formulation17
3.1.2 Summary and conclusions18

Reference ...19

Chapter 4 Implementation of the Two PDE Model..21

4.1 Introduction...21
4.1.1 R routines for the two PDE model...........................21
4.1.2 Summary and conclusions38

References..38

Chapter 5 Three PDE Model..39

5.1 Introduction...39
5.1.1 Three PDE model formulation.................................39
5.1.2 Three PDE model implementation...........................39
5.1.3 Summary and conclusions53

Reference ...53

Chapter 6 Case Studies...55

6.1 Introduction...55
6.1.1 Time variation of the brain O2 concentration55
6.1.2 LHS PDE time derivatives68

v

vi Contents

6.1.3 Analysis of PDE RHS terms90
6.1.4 Summary and conclusions98

Reference ...98

Appendix A: Introduction to PDE Analysis ..99

Index..183

Preface
Covid-19 is primarily a respiratory disease which results in impaired oxygenation
of blood. The O2-deficient blood then moves through the body, and for the study in
this book, the focus is on the blood flowing to the brain. The dynamics of blood flow
along the brain capillaries and tissue is modeled as systems of ordinary and partial
differential equations (ODE/PDEs).

As further background (from [3]):
While fewer people who get COVID are dying, not all of them are recovering. We

don’t know how many people will remain hobbled, long-term. But it is plausible that
tens of thousands in the United States may never be the same again.

Additional background is provided in [1, 2, 4, 5].
The ODE/PDE methodology is presented through a series of examples,

1. A basic one PDE model for O2 concentration in the brain capillary blood.
2. A two PDE model for O2 concentration in the brain capillary blood and in

the brain tissue, with O2 transport across the blood brain barrier (BBB).
3. The two model extended to three PDEs to include the brain functional neu-

ron cell density.

Cognitive impairment could result from reduced neuron cell density in time and
space (in the brain) that follows from lowered O2 concentration (hypoxia).

The computer-based implementation of the example models is presented through
routines coded (programmed) in R, a quality, open-source scientific computing sys-
tem that is readily available from the Internet. Formal mathematics is minimized,
e.g., no theorems and proofs. Rather, the presentation is given through detailed exam-
ples that the reader/researcher/analyst can execute on modest computers. The PDE
analysis is based on the method of lines (MOL), an established general algorithm
for PDEs, implemented with finite differences. Appendix A is a basic introduction to
PDE modeling and computer-based analysis the reader can consult when starting on
Chapters 1–6.

The routines are available from a download link so that the example models can be
executed without having to first study numerical methods and computer coding. The
routines can then be applied to variations and extensions of the blood/brain hypoxia
models, such as changes in the ODE/PDE parameters (constants) and form of the
model equations.

The author would welcome comments/suggestions concerning this approach to
the analysis of brain hypoxia resulting from Covid-19.

W. E. Schiesser
Bethlehem, PA, USA

vii

viii Preface

REFERENCES
1. Bridwell, R., B. Long and M. Gottlieb (2020), Neuorologic complications of COVID-19,

American Journal of Emergency Medicine, 38, pp 1549.e3–1549.e7.
2. Collins, F. (2021), Taking a closer look at COVID-19’s effects on the brain, NIH Director’s

Blog, January 14, 2021.
3. https://www.health.harvard.edu/diseases-and-conditions/what-are-the-long-

lasting-effects-of-covid-19.
4. Nuzzo, D., and P. Picone (2020), Potential neurological effects of severe COVID-19 in-

fection, Neuroscience Research, 158, pp 1–5.
5. Wood, H. (2020), New insights into the neurological effects of COVID-19, Nature Reviews

Neurology, June 26, 2020.

1 Source of Neurological
Effects One PDE Model

1.1 INTRODUCTION

COVID-19 neurological effects are generally described in the following introductory
statement [2]:

While primarily a respiratory disease, COVID-19 can also lead to neurological
problems. The first of these symptoms might be the loss of smell and taste,
while some people also may later battle headaches, debilitating fatigue, and
trouble thinking clearly, sometimes referred to as “brain fog”. All of these
symptoms have researchers wondering how exactly the coronavirus that causes
COVID-19, SARS-CoV-2, affects the human brain.

This book focuses on a mathematical model describing a reduction in oxygen (O2)
to the brain resulting from impaired respiratory function of the lungs. The reduced
brain O2 (hypoxia) decreases the population density of normal (healthy) neuron cells
that then leads to brain cognitive impairment.

Patients who experience diminished O2 in the capillary blood to the brain resulting
from respiratory impairment are sometimes termed “Covid long haulers”, long haul
Covids”, or “long Covids”.

Additional background concerning COVID-19 neurological effects is given in
[1, 3, 4].

1.1.1 ONE PDE MODEL FORMULATION

A mass balance on the O2 concentration in the capillary blood flowing in the brain
follows (the balance is derived in chapter appendix A1):

∂u1 ∂u
=−v 1

z − (2/rl)km1(u1 −u2n) (1.1-1)
∂ t ∂ z

Equation((1.1-1)) states that the time rate of change of the blood O2 concentra-
∂u

tion 1 equals the sum of the rate of convection of O
∂ t 2 along the capillary()

∂u−v 1
z and the rate of transfer of O2 across the BBB (−(2/r

∂ z l)km1(u1 −u2n)).

DOI: 10.1201/9781003243052-1 1

2 Numerical Modeling of COVID-19 Neurological Effects

Table 1.1
PDE model variables, parameters

u1(z, t) oxygen concentration in capillary blood
z distance along the blood capillary and the brain tissue
rl radius of the blood capillary (and inner radius of the

blood brain barrier, (BBB))
t time
vz superficial blood flow velocity

km1 coefficient for mass transfer of O2 across the BBB
u2n normalized brain tissue O2 concentration

Equation (1.1-1) is first order in t so that it requires oneinitial condition (IC).

u1(z, t = 0) = u1n (1.1-2)

u1n is the normalized blood O2 concentration used as an IC.
Equation (1.1-1) is first order in z and requires one boundary condition (BC).

u1(z = zl , t) = u1e(t) (1.1-3)

Equations (1.1) constitute the one PDE model that is implemented in R1 as explained
in Chapter 2.

1.1.2 SUMMARY AND CONCLUSIONS

The one PDE model for O2 entering the brain through capillary blood flow consists of
eqs. (1.1). These equations are a test case with constant O2 concentration in the brain
tissue adjacent to the BBB, u2n. Equations (1.1) are implemented in R in Chapter 2.
Variations in the brain tissue O2 concentration are considered in subsequent chapters
through the addition of PDEs.

APPENDIX A1: DERIVATION OF THE BLOOD O2 BALANCE

A mass balance on the blood with the incremental volume πr2
l ∆z (rl is the radius of

the capillary) gives

πr2 ∂u
∆z 1(z, t)

πr2v t u z t πr2= | − |l
∂ t l z() 1(,) z l vz(t)u1(z, t) z+∆z

−2πrl∆zkm1(u1(z, t)−un2) (A1-1)

The terms in eq. (A1-1) are

1R is a quality, open source scientific programming system that is available for download through an
Internet connection, http://www.r-project.org/, http://cran.fhcrc.org/.

Source of Neurological Effects One PDE Model 3

∂ (
πr2 u

1∆z 1 z, t)
• : accumulation of O in

∂ t 2 the incremental volume πr2
1∆z. If

this term is negative (from the sum of the RHS terms), the O2 concentration
decreases (is depleted) with time.

• πr2
1vz(z, t)u1(z, t)|z: flow (convection) at velocity v 2

z of the O2 transported
into the incremental volume at z (vz > 0).

• −πr2 () (,)|1vz t u1 z t z+∆z: flow (convection) at velocity vz of the O2 trans-
ported out of the incremental volume at z+∆z (vz > 0).

• −2πrl∆zkm1(u1(z, t)− un2): rate of mass transfer of O2 across the BBB.
The transfer area is 2πr1∆z and the mass transfer coefficient (BBB perme-
ability) is km1.

If this term is negative, the transfer is from the blood through the BBB
∂u z

into the brain tissue, which 1(, t)
reduces

∂ t

If eq. (A1-1) is divided by the incremental volume πr2
1∆z (the coefficient of

∂u1(z, t)), after minor rearrangement,
∂ t

∂u1(z, t) vz(t)u1(z, t)|z+∆z − vz(t)u1(z, t)|z
=−

∂ t ∆z
2− k
r m1(u1(z, t)−un2) (A1-2)

1

For ∆z → 0, eq. (A1-2) becomes a PDE

∂u1(z, t) ∂vz(t)u1(z, t) 2
=− − km1(u1(z, t)−u (A1-3)

∂ t ∂ z r n2)
1

Equation (A1-3) is eq. (1.1-1) with vz(t) = vz (a constant).

REFERENCES
1. Bridwell, R., B. Long and M. Gottlieb (2020), Neuorologic complications of COVID-19,

American Journal of Emergency Medicine, 38, pp. 1549.e3–1549.e7.
2. Collins, F. (2021), Taking a closer look at COVID-19’s effects on the brain, NIH Direc-

tor’s Blog, January 14, 2021.
3. Nuzzo, D. and P. Picone (2020), Potential neurological effects of severe COVID-19

infection, Neuroscience Research, 158, pp. 1–5.
4. Wood, H. (2020), New insights into the neurological effects of COVID-19, Nature

Reviews Neurology, June 26, 2020.

2vz is assumed to be uniform (constant) across the capillary. This is an idealization since the velocity
will have a radial profile with zero velocity at the capillary wall (the interface between the blood and the
BBB inner surface) and a maximum velocity at the capillary centerline. vz is termed a superficial velocity
with the property that multiplication by the capillary cross sectional area πr2

1 gives the blood volumetric
flow rate in the capillary.

2 Implementation of the One
PDE Model

2.1 INTRODUCTION
The one PDE model of Chapter 1 for the O2 in the capillary blood (eqs. (1.1)) is
implemented in R routines discussed in this chapter.

2.1.1 R ROUTINES FOR THE ONE PDE MODEL

Equations (1.1) that constitute the PDE model for the O2 concentration in the cap-
illary blood are implemented with the following R routines, starting with a main
program.

Main program for O2 concentration
The main program for eqs. (1.1) follows.

#

One PDE model

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/brain hypoxia/chap2");

source("pde1a.R");

#

Parameters

nz=21;

rl=1;

km1=0;

km1=1;

vz=1;

u1e=0.75;

u1n=1;

u2n=0;

#

Spatial grid in z

DOI: 10.1201/9781003243052-2 5

6 Numerical Modeling of COVID-19 Neurological Effects

zl=0;zu=1;dz=(zu-zl)/(nz-1);

z=seq(from=zl,to=zu,by=dz);

#

Independent variable for ODE integration

t0=0;tf=1;nout=21;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

Initial condition (t=0)

u0=rep(u1n,nz);

ncall=0;

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde1a,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

#

Arrays for plotting numerical solution

u1=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u1[iz,it]=out[it,iz+1];

}

u1[1,it]=u1e;

}

#

Display numerical solution

iv=seq(from=1,to=nout,by=4);

for(it in iv){

cat(sprintf("\n t z u1(z,t)\n"));

iv=seq(from=1,to=nz,by=2);

for(iz in iv){

cat(sprintf("%6.2f%6.2f%12.3e\n",

tout[it],z[iz],u1[iz,it]));

}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

#

Plot PDE solution

#

u1

Implementation of the One PDE Model 7

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",ylab="u1(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u1,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u1(z,t)");

Listing 2.1: Main program for eqs. (1.1)

We can note the following details about Listing 2.1.

• Previous workspaces are deleted.

#

One PDE model

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The R ODE integrator library deSolve is accessed [2].

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/brain hypoxia/chap2");

source("pde1a.R");

Then the directory with the files for the solution of eqs. (1.1) is designated.
Note that setwd (set working directory) uses / rather than the usual \.

• The model parameters are specified numerically.

#

Parameters

nz=21;

rl=1;

km1=0;

km1=1;

vz=1;

u1e=0.75;

u1n=1;

u2n=0;

8 Numerical Modeling of COVID-19 Neurological Effects

where

− nz: number of spatial grid points for eq. (1.1-1).
− rl: radius of the blood capillary (and inner radius of the blood

brain barrier (BBB))
− km1: mass transfer (permeability) coefficient for O2 across the

BBB in eq. (1.1-1). km = 0 was used initially during the develop-
ment of the coding (programming). The mass transfer coefficient
was then changed to km = 1.

− vz: capillary blood flow superficial velocity in eq. (1.1-1).
− u1e: entering blood O2 concentration in BC (1.1-3).
− u1n: normalized blood O2 concentration in IC (1.1-2).
− u2n: normalized brain tissue O2 concentration in eq. (1.1-1).

• A spatial grid for eq. (1.1-1) is defined with 21 points so that z =

0,1/20=0.05,...,1. The BBB length is a normalized value, z = zu = 1.

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);

z=seq(from=zl,to=zu,by=dz);

• An interval in t is defined for 21 output points so that tout=0,1/20=0.05,
...,1. The time scale is normalized with t f = 1 specified as the final time
that is considered appropriate, e.g., day, week, and month.

#

Independent variable for ODE integration

t0=0;tf=1;nout=21;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• IC (1.1-2) is implemented, with u1n = u1n defined previously as a
parameter.

#

Initial condition (t=0)

u0=rep(u1n,nz);

ncall=0;

Also, the counter for the calls to pde1a is initialized.
• The system of nz=21 ODEs is integrated by the library integrator lsodes

(available in deSolve, [2]). As expected, the inputs to lsodes are the ODE
function, pde1a, the IC vector u0, and the vector of output values of t,
tout. The length of u0 (21) informs lsodes how many ODEs are to be
integrated. func,y,times are reserved names.

Implementation of the One PDE Model 9

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde1a,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

nrow,ncol confirm the dimensions of out.
• u1(z, t) is placed in a matrix for subsequent plotting.

#

Arrays for plotting numerical solution

u1=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u1[iz,it]=out[it,iz+1];

}

u1[1,it]=u1e;

}

The offset +1 is required because the first element of the solution vectors
in out is the value of t and the 2 to 22 elements are the 21 values of u1.
These dimensions from the preceding calls to nrow,ncol are confirmed in
the subsequent output.

• The numerical values of u1(z, t) returned by lsodes are displayed. Every
fourth value in t and every second value in z appear from by=4,2.

#

Display numerical solution

iv=seq(from=1,to=nout,by=4);

for(it in iv){

cat(sprintf("\n t z u1(z,t)\n"));

iv=seq(from=1,to=nz,by=2);

for(iz in iv){

cat(sprintf("%6.2f%6.2f%12.3e\n",

tout[it],z[iz],u1[iz,it]));

}

}

• The number of calls to pde1a is displayed at the end of the solution.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

10 Numerical Modeling of COVID-19 Neurological Effects

• u1(z, t) is plotted in 2D against z and parametrically in t with the R utility
matplot and in 3D with R utility persp. par(mfrow=c(1,1)) specifies
a 1×1 matrix of plots, that is, one plot on a page.

#

Plot PDE solution

#

u1

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",

ylab="u1(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

persp(z,tout,u1,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u1(z,t)");

This completes the discussion of the main program for eqs. (1.1). The ODE/MOL
routine pde1a called by lsodes from the main program for the numerical MOL
integration of eqs. (1.1) is next.

ODE/MOL routine
pde1a called in the main program of Listing 2.1 follows.

pde1a=function(t,u,parm){

#

Function pde1a computes the t derivative

of u1(z,t)

#

One vector to one vector

u1=rep(0,nz);

for(iz in 1:nz){

u1[iz]=u[iz];}

#

BC, z=zl

u1[1]=u1e;

#

PDE

u1t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){u1t[iz]=0;}

if(iz>1){

u1t[iz]=-vz*(u1[iz]-u1[iz-1])/dz-

(2/rl)*km1*(u1[iz]-u2n);}

}

Implementation of the One PDE Model 11

#

One vector to one vector

ut=rep(0,nz);

for(iz in 1:nz){

ut[iz]=u1t[iz];}

#

Increment calls to pde1a

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 2.2: ODE/MOL routine for eqs. (1.1)

We can note the following details about Listing 2.2.

• The function is defined.

pde1a=function(t,u,parm){

#

Function pde1a computes the t derivative

of u1(z,t)

t is the current value of t in eqs. (1.1). u is the 21-vector of ODE/PDE
dependent variables. parm is an argument to pass parameters to pde1a (un-
used, but required in the argument list). The arguments must be listed in the
order stated to properly interface with lsodes called in the main program
of Listing 2.1. The derivative vector of the LHS of eq. (1.1-1) is calculated
and returned to lsodes as explained subsequently.

• BC (1.1-3) is programmed.

#

BC, z=zl

u1[1]=u1e;

• Equation (1.1-1) is programmed.

#

PDE

u1t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){u1t[iz]=0;}

if(iz>1){

u1t[iz]=-vz*(u1[iz]-u1[iz-1])/dz-

(2/rl)*km1*(u1[iz]-u2n);}

}

12 Numerical Modeling of COVID-19 Neurological Effects

∂u
The derivative 1 in eq. (1.1-1) is approximated with a two-point upwind

∂ z
finite difference (FD).

∂u1(z, t) u1(z, t)−u1(z−∆z, t)≈ +O(∆z)
∂ z ∆z

programmed as

(u1[iz]-u1[iz-1])/dz

O(∆z) indicates that the error in the FD approximation is first order in ∆z.
The variation in the numerical solution of eq. (1.1-1) can be studied as a
function of the FD increment ∆z by varying nz in Listing 2.1. Alternate

∂u
approximations for the axial derivative 1 are considered in Appendix A

∂ z
and [1].

For z = zl , BC (1.1-3) sets the value of u1(z = zl , t) and therefore the
derivative is set to zero (if(iz==1)u1t[iz]=0;) to ensure the boundary
value is maintained.

The correspondence of the programming with eq. (1.1-1) is an important
feature of the MOL.

• The 21 ODE derivatives are placed in the vector ut for return to lsodes to
take the next in t along the solution.

#

One vector to one vector

ut=rep(0,nz);

for(iz in 1:nz){

ut[iz]=u1t[iz];}

• The counter for the calls to pde1a is incremented and returned to the main
program of Listing 2.1 by <<-.

#

Increment calls to pde1a

ncall <<- ncall+1;

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde1a.

#

Return derivative vector

return(list(c(ut)));

}

This completes the discussion of pde1a. The output from the main program of List-
ing 2.1 and ODE/MOL routine pde1a of Listing 2.2 is considered next.

Implementation of the One PDE Model 13

Numerical, graphical output

The numerical output is given in Table 2.1.

[1] 21

[1] 22

t z u1(z,t)

0.00 0.00 7.500e-01

0.00 0.10 1.000e+00

0.00 0.20 1.000e+00

0.00 0.30 1.000e+00

0.00 0.40 1.000e+00

0.00 0.50 1.000e+00

0.00 0.60 1.000e+00

0.00 0.70 1.000e+00

0.00 0.80 1.000e+00

0.00 0.90 1.000e+00

0.00 1.00 1.000e+00

t z u1(z,t)

0.20 0.00 7.500e-01

0.20 0.10 6.401e-01

0.20 0.20 6.187e-01

0.20 0.30 6.449e-01

0.20 0.40 6.635e-01

0.20 0.50 6.692e-01

0.20 0.60 6.702e-01

0.20 0.70 6.703e-01

0.20 0.80 6.703e-01

0.20 0.90 6.703e-01

0.20 1.00 6.703e-01

. .

. .

. .

Output for t = 0.4, 0.6,

0.8 removed

. .

. .

. .

t z u1(z,t)

1.00 0.00 7.500e-01

1.00 0.10 6.198e-01

1.00 0.20 5.123e-01

14 Numerical Modeling of COVID-19 Neurological Effects

1.00 0.30 4.234e-01

1.00 0.40 3.499e-01

1.00 0.50 2.894e-01

1.00 0.60 2.400e-01

1.00 0.70 2.010e-01

1.00 0.80 1.719e-01

1.00 0.90 1.523e-01

1.00 1.00 1.410e-01

ncall = 113

Table 2.1: Numerical output from Listings 2.1, 2.2

We can note the following details about this output.

• 21 t output points as the first dimension of the solution matrix out

from lsodes as programmed in the main program of Listing 2.1 (with
nout=21).

• The solution matrix out returned by lsodes has 22 elements as a second
dimension. The first element is the value of t. Elements 2 to 22 are u1(z, t)
from eqs. (1.1) (for each of the 21 output points).

• The solution is displayed for t=0,1/20=0.05,...,1 as programmed in
Listing 2.1 (every fourth value of t is displayed as explained previously).

• The solution is displayed for z=0,1/20=0.05,...,1 as programmed in
Listing 2.1 (every second value of z is displayed as explained previously).

• IC (1.1-2) is confirmed (t = 0).
• BC (1.1-3) is confirmed (t = 0,z = zl = 0). There is a discontinuous

change from the IC (t = 0) to the BC (t > 0), which is subsequently
smoothed, e.g., t = 0.2. To improve the appearance of the graphical out-
put (Figure 2.1-1 considered next), the output does not include the solution
at z = zl = 0 (matplot(x=z[2:nz],y=u1[2:nz,],... in Listing 2.1).
Use of Listings 2.1, 2.2 with the solution at z = zl = 0 included is left as an
exercise.

• The computational effort as indicated by ncall = 113 is modest so that
lsodes computed the solution to eqs. (1.1) efficiently.

The graphical output is in Figures 2.1.
The solution u1(z, t) starts from IC (1.1-2), and confirms BC (1.1-3). In general,

u1(z, t) is a front moving left to right (as expected with vz > 0) in response to the
reduced entering O2 concentration, u1(z = zl = 0, t) = u1e = 0.75.

Figure 2.1-2 reflects the decreasing blood O2 concentration with t.
Two special cases can be considered to confirm the model and coding:

• vz = 0: With no blood flood, u1(z, t) remains at IC (1.1-2).
• km1 = 0: With no O2 transfer through the BBB, u1(z, t → ∞) = u1e (t f = 2)

indicates the solution for large t.

These cases are left as exercises.

Implementation of the One PDE Model 15

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
1
(z
,t
)

Figure 2.1-1 u1(z, t) from eqs. (1.1), 2D.

2.1.2 SUMMARY AND CONCLUSIONS

The one PDE model for blood O2 concentration, u1(z, t) defined by eqs. (1.1), is
implemented within the MOL. Parameters in this model are defined numerically in
Listing 2.1 and can be used to investigate dynamic effects, e.g., the blood convection
with vz, mass transfer through the BBB with km1.

16 Numerical Modeling of COVID-19 Neurological Effects

z

t

u
1
(z
,t)

Figure 2.1-2 u1(z, t) from eqs. (1.1), 3D.

For this prototype code, which is intended to explain the computer implementa-
tion with the main program of Listing 2.1 and ODE/MOL routine of Listing 2.2, the
brain tissue O2 concentration is constant (u2n = 0 in eq. (1.1-1)). The model is now
extended to include a second PDE for the brain tissue O2 concentration, u2(z, t).

REFERENCES
1. Schiesser, W.E. (2019), Numerical PDE Analysis of the Blood Brain Barrier, World

Scientific Publishing Co., Singapore.
2. Soetaert, K., J. Cash, and F. Mazzia (2012), Solving Differential Equations in R, Springer-

Verlag, Heidelberg, Germany.

3 Two PDE Model
3.1 INTRODUCTION
The one PDE model of Chapter 1, eqs. (1.1), is extended in this chapter by adding
a PDE for the brain tissue O2 concentration, u2(z, t). Equation (1.1-1) for u1(z, t) is
also modified to include u2(z, t).

3.1.1 TWO PDE MODEL FORMULATION

Equations (1.1) are restated with u2(z, t) included.

∂u1 ∂u
=−v 1

∂ t z − (2/r
∂ z l)km1(u1 −u2) (3.1-1)

u1(z, t = 0) = u1n (3.1-2)

u1(z = zl , t) = u1e(t) (3.1-3)

A mass balance on the O2 concentration in the brain tissue follows (the balance is
derived in chapter appendix A3):

∂u2 ∂ 2u
= D 2 2rl

∂ t 2 + k (
∂ z m1 u1 −u2) (3.2-1)2 (r2 2−u r)l

Equation((3.2-1)) states that the time rate of change of the brain tissue O2 concentra-
∂u

tion 2 equals the sum of the rate of axial diffusion of O along
∂ t 2 the brain tissue() ()

∂ 2u
D 2 2r

2 and the rate of transfer of O2 across the BBB l km1(u1 −u
∂ z 2) .2 (r2 − r2

u)l
D2 is the effective diffusivity (dispersion coefficient) for O2 in the axial (longitu-

dinal z) direction. Radial (transverse to z) variation of O2 has been neglected, which
implies a narrow radial dimension so that the O2 concentration is effectively uniform
in the radial direction1.

Equation (3.2-1) is first order in t so that it requires one initial condition (IC).

u2(z, t = 0) = u2n (3.2-2)

u2n is the normalized brain tissue O2 concentration used as an IC.
Equation (3.2-1) is second order in z and requires two boundary conditions (BCs).

∂u2(z = zl , t) ∂u2(z = zu, t)
= = 0 (3.2-3,4)

∂ z ∂ z

1Radial variation of O2 in the brain tissue can be analyzed by the methodology discussed in [1].

DOI: 10.1201/9781003243052-3 17

18 Numerical Modeling of COVID-19 Neurological Effects

Equations (3.2-3,4) are homogeneous (zero) Neumann BCs for zero flux at the
boundaries of the brain tissue.

Equations (3.1), (3.2) constitute the two PDE model that is implemented in R, as
explained in Chapter 4.

3.1.2 SUMMARY AND CONCLUSIONS

Equations (3.1), (3.2) are the two PDE model for O2 in the capillary blood flow
and brain tissue. The transfer of O2 across the BBB is represented with the terms
±km1(u1 −u2) which can be used to study the effects of reduced O2 from the blood
stream to the brain tissue resulting from pulmonary impairment (through variation
of km1).

The implementation of eqs. (3.1), (3.2) is considered in Chapter 4.

APPENDIX A3: DERIVATION OF THE BRAIN TISSUE O2 BALANCE

A mass balance on the brain tissue with the incremental volume (πr2 2−u πr)l ∆z (rl ,ru
are the inner and outer radial boundaries of the brain tissue, respectively) gives()

2 2 ∂u2(z, t) 2 2 ∂u2(z, t) ∂u (z, t)
(πr −u πr 2

l)∆z = (πr −u πr) −D |
t 2

∂ z z +D |
∂

l 2
∂ z z+∆z

+2πrl∆zkm1(u1(z, t)−u2(z, t)) (A3.1)

The terms in eq. (A3.1) are

∂u2(z,)2(πr −u πr2 t
•)l ∆z : accumulation of O in the incremental volume

∂ t 2

πr2 πr2(−u)l ∆z. If this term is negative (from the sum of the RHS terms),
the O2 concentration(decreases)(is depleted) with time.

• (πr2 −u πr2 ∂u
) −l D 2(z, t)

2 |z : rate of diffusion of O
∂ z 2 in the brain tissue

at z. This term is based on Fick’s first law

∂u (z, t)
q =−D 2

2 (A3.2)
∂ z()

)
• (πr2 −u πr2 ∂u2(z, t

) |l D2 z+∆z : rate of diffusion of O2 in the brain tissue
∂ z

at z+∆z.
• 2πrl∆zkm1(u1(z, t)− u2(z, t)): rate of mass transfer of the O2 transported

between the capillary and the inner surface of the BBB. The transfer area
is 2πr1∆z and the mass transfer coefficient is km1.

Two PDE Model 19

If eq. (A3.1) is divided by the incremental volume (πr2 −u πr2)l ∆z (the coefficient of
∂u2(z, t)

), after minor rearrangement,
∂ t

∂u2(z, t) ∂u)
D 2(z, t

∂u z t 2 |
z z+∆z −D2 |

2(,) ∂ ∂ z z
=

∂ t ∆z
2rl

+ km1(u1(z, t)−u2(z, t)) (A3.3)
r2 2(−u r)l

For ∆z → 0, eq. (A3.3) becomes

∂u2(z, t 2) ∂ u2(z, t) 2r
= D l

2 + km1(u1(z, t)−u2(z, t)) (A3.4)
∂ t ∂ z2 (r2 −u r2)l

Equation (A3.4) is eq. (3.2-1).

REFERENCE
1. Schiesser, W.E. (2019), Numerical PDE Analysis of the Blood Brain Barrier, World Sci-

entific Publishing Co., Singapore.

4 Implementation of the Two
PDE Model

4.1 INTRODUCTION
The two PDE model of Chapter 3 for O2 in the capillary blood (eqs. (3.1)) and the
brain tissue (eqs. (3.2)) is implemented in R routines as discussed in this chapter.

4.1.1 R ROUTINES FOR THE TWO PDE MODEL

Equations (3.1), (3.2) for the O2 concentration in the capillary blood and brain tissue
are implemented with the following R routines, starting with a main program.

Main program
The main program for eqs. (3.1), (3.2) follows:

#

Two PDE model

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/brain hypoxia/chap4");

source("pde2a.R");

#

Parameters

nz=21;

rl=1;

ru=2;

D2=0.1;

km1=0;

km1=10;

vz=1;

u1e=0.75;

u1n=1;

u2n=1;

#

DOI: 10.1201/9781003243052-4 21

22 Numerical Modeling of COVID-19 Neurological Effects

Constants

r1=2/rl;

r2=(2*rl)/(ru^2-rl^2);

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

#

Independent variable for ODE integration

t0=0;tf=1;nout=21;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

Initial condition (t=0)

u0=rep(0,2*nz);

for(iz in 1:nz){

u0[iz] =u1n;

u0[iz+nz]=u2n;

}

ncall=0;

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde2a,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

#

Arrays for plotting numerical solution

u1=matrix(0,nrow=nz,ncol=nout);

u2=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u1[iz,it]=out[it,iz+1];

u2[iz,it]=out[it,iz+1+nz];

}

u1[1,it]=u1e;

}

#

Display numerical solution

iv=seq(from=1,to=nout,by=4);

for(it in iv){

cat(sprintf("\n t z u1(z,t) u2(z,t)\n"));

iv=seq(from=1,to=nz,by=2);

for(iz in iv){

Implementation of the Two PDE Model 23

cat(sprintf("%6.2f %6.2f %12.3e %12.3e\n",

tout[it],z[iz],u1[iz,it],u2[iz,it]));

}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

#

Plot PDE solution

#

u1

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",ylab="u1(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u1,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u1(z,t)");

#

u2

par(mfrow=c(1,1));

matplot(x=z,y=u2,type="l",xlab="z",ylab="u2(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u2,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u2(z,t)");

Listing 4.1: Main program for eqs. (3.1), (3.2)

We can note the following details about Listing 4.1 (with some repetition of the
discussion of Listing 2.1 so that the explanation is self-contained).

• Previous workspaces are deleted.

#

Two PDE model

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The R ODE integrator library deSolve is accessed [3].

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

24 Numerical Modeling of COVID-19 Neurological Effects

setwd("f:/brain hypoxia/chap4");

source("pde2a.R");

Then the directory with the files for the solution of eqs. (3.1), (3.2) is des-
ignated. Note that setwd (set working directory) uses / rather than the
usual \.

• The model parameters are specified numerically.

#

Parameters

nz=21;

rl=1;

ru=2;

D2=0.1;

km1=0;

km1=10;

vz=1;

u1e=0.75;

u1n=1;

u2n=1;

where
− nz: number of spatial grid points for eqs. (3.1-1), (3.2-1).
− rl: radius of the blood capillary and inner radius of the blood

brain barrier (BBB). The wall thickness of the BBB is neglected
so rl = rl also designates the inner boundary of the brain tissue.

− ru: outer boundary of the brain tissue, ru = ru.
− D2: O2 diffusivity of the brain tissue in eq. (3.2-1).
− km1: mass transfer (permeability) coefficient for O2 across the

BBB in eqs. (3.1-1), (3.2-1). For km = 0, O2 is not transferred
from the capillary blood to the brain tissue, so the latter remains
at the IC of eq. (3.2-2), u2(z, t = 0) = u2n.

To further explain this special case, BCs (3.2-3,4) are consis-
tent with the constant solution in z, u2(z, t = 0) = u2n = u2(z, t > 0).

∂ 2u
Also, for a constant solution in z, 2

= 0 in eq. (3.2-1). Thus,
∂ z2

∂u
the RHS terms of eq. (3.2-1) are zero (with km1 = 0) so 2

= 0
∂ t

(from eq. (3.2-1)), and the solution remains at IC eq. (3.2-2).
This special case is an important check since a departure of

u2(z, t) from IC would indicate a coding error (in pde2a of Listing
4.2 that follows). This special case is left as an exercise.

− vz: capillary blood flow superficial velocity in eq. (3.1-1).
− u1e: entering blood O2 concentration in BC (3.1-3).
− u1n: normalized blood O2 concentration in IC (3.1-2).
− u2n: normalized brain tissue O2 concentration in IC (3.2-2).

Implementation of the Two PDE Model 25

2 2r
• The constants r1 = , r l the

r 2 = are computed for use in ordinary
(r2l − r2

u)l
differential equation/method of lines (ODE/MOL) routine pde2a.

#

Constants

r1=2/rl;

r2=(2*rl)/(ru^2-rl^2);

• A spatial grid for eqs. (3.1-1), (3.2-1) is defined with 21 points so that
z = 0,1/20=0.05,...,1. The BBB length is a normalized value, z =
zu = 1.

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

• An interval in t is defined for 21 output points so that tout=0,1/20=0.05,
...,1. The time scale is normalized with t f = 1 specified as the final time
that is considered appropriate, e.g., day, week, or month.

#

Independent variable for ODE integration

t0=0;tf=1;nout=21;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• ICs (3.1-2), (3.2-2) are implemented (u1n,u2n are defined previously as
parameters).

#

Initial condition (t=0)

u0=rep(0,2*nz);

for(iz in 1:nz){

u0[iz] =u1n;

u0[iz+nz]=u2n;

}

ncall=0;

Also, the counter for the calls to ode2a is initialized.
• The system of 2*nz=42 ODEs is integrated by the library integrator

lsodes (available in deSolve, [3]). As expected, the inputs to lsodes

are the ODE function, pde2a, the IC vector u0, and the vector of output
values of t, tout. The length of u0 (42) informs lsodes how many ODEs
are to be integrated. func,y,times are reserved names.

26 Numerical Modeling of COVID-19 Neurological Effects

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde2a,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

nrow,ncol confirm the dimensions of out.
• u1(z, t), u2(z, t) are placed in matrices for subsequent plotting.

#

Arrays for plotting numerical solution

u1=matrix(0,nrow=nz,ncol=nout);

u2=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u1[iz,it]=out[it,iz+1];

u2[iz,it]=out[it,iz+1+nz];

}

u1[1,it]=u1e;

}

The offset +1 is required because the first element of the solution vectors
in out is the value of t and the 2 to 43 elements are the 42 values of u1,u2.
These dimensions from the preceding calls to nrow,ncol are confirmed in
the subsequent output.

• The numerical values of u1(z, t), u2(z, t) returned by lsodes are displayed.
Every fourth value in t and every second value in z appear from by=4,2.

#

Display numerical solution

iv=seq(from=1,to=nout,by=4);

for(it in iv){

cat(sprintf("\n t z u1(z,t) u2(z,t)\n"));

iv=seq(from=1,to=nz,by=2);

for(iz in iv){

cat(sprintf("%6.2f %6.2f %12.3e %12.3e\n",

tout[it],z[iz],u1[iz,it],u2[iz,it]));

}

}

• The number of calls to pde2a is displayed at the end of the solution.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

Implementation of the Two PDE Model 27

• u1(z, t), u2(z, t) are plotted in 2D against z and parametrically in t with the
R utility matplot and in 3D with R utility persp. par(mfrow=c(1,1))
specifies a 1×1 matrix of plots, that is, one plot on a page.

#

Plot PDE solutions

#

u1

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",

ylab="u1(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

persp(z,tout,u1,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u1(z,t)");

#

u2

par(mfrow=c(1,1));

matplot(x=z,y=u2,type="l",xlab="z",ylab="u2(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u2,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u2(z,t)");

The 2D plot of u1(z, t) does not include the discontinuous change from IC
(3.1-2) to BC (3.1-3), x=z[2:nz],y=u1[2:nz,]. This discontinuity is not
included in u2(z, t), so the solution at z = zl is included, x=z,y=u2.

This completes the discussion of the main program for eqs. (3.1), (3.2). The
ODE/MOL routine pde2a called by lsodes from the main program for the numeri-
cal MOL integration of eqs. (3.1), (3.2) is discussed in the following section.

ODE/MOL routine
pde2a called in the main program of Listing 4.1 follows:

pde2a=function(t,u,parm){

#

Function pde2a computes the t derivatives

of u1(z,t),u2(z,t)

#

One vector to two vectors

u1=rep(0,nz);

u2=rep(0,nz);

for(iz in 1:nz){

u1[iz]=u[iz];

28 Numerical Modeling of COVID-19 Neurological Effects

u2[iz]=u[iz+nz];

}

#

BC, z=zl

u1[1]=u1e;

#

PDEs

u1t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){u1t[1]=0;}

if(iz>1){

u1t[iz]=-vz*(u1[iz]-u1[iz-1])/dz-

r1*km1*(u1[iz]-u2[iz]);}

}

u2t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){

u2t[1]=

2*D2*(u2[2]-u2[1])/dzs+

r2*km1*(u1[1]-u2[1]);}

if(iz==nz){

u2t[nz]=

D2*2*(u2[nz-1]-u2[nz])/dzs+

r2*km1*(u1[nz]-u2[nz]);}

if((iz>1)&&(iz<nz)){

u2t[iz]=

D2*(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs+

r2*km1*(u1[iz]-u2[iz]);}

}

#

Two vectors to one vector

ut=rep(0,2*nz);

for(iz in 1:nz){

ut[iz] =u1t[iz];

ut[iz+nz]=u2t[iz];

}

#

Increment calls to pde2a

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 4.2: ODE/MOL routine for eqs. (3.1), (3.2)

Implementation of the Two PDE Model 29

We can note the following details about Listing 4.2.

• The function is defined.

pde2a=function(t,u,parm){

#

Function pde2a computes the t derivatives

of u1(z,t),u2(z,t)

t is the current value of t in eqs. (3.1), (3.2). u is the 42-vector of ODE/PDE
dependent variables. parm is an argument to pass parameters to pde2a (un-
used, but required in the argument list). The arguments must be listed in the
order stated to properly interface with lsodes called in the main program
of Listing 4.1. The derivative vector of the LHS of eqs. (3.1-1), (3.2-1) is
calculated and returned to lsodes

• u is placed in two vectors to facilitate the programming of eqs. (3.1), (3.2).

#

One vector to two vectors

u1=rep(0,nz);

u2=rep(0,nz);

for(iz in 1:nz){

u1[iz]=u[iz];

u2[iz]=u[iz+nz];

}

as explained subsequently.

• BC (3.1-3) is programmed.

#

BC, z=zl

u1[1]=u1e;

• Equation (3.1-1) is programmed.

#

PDEs

u1t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){u1t[1]=0;}

if(iz>1){

u1t[iz]=-vz*(u1[iz]-u1[iz-1])/dz-

r1*km1*(u1[iz]-u2[iz]);}

}

∂u
The derivative 1 in eq. (3.1-1) is approximated with a two point upwind

∂ z
finite difference (FD).

∂u1(z, t) u1(z, t)−u1(z−∆z, t)≈ +O(∆z)
∂ z ∆z

30 Numerical Modeling of COVID-19 Neurological Effects

programmed as

(u1[iz]-u1[iz-1])/dz

O(∆z) indicates that the error in the FD approximation is first order in ∆z.
The variation in the numerical solution of eq. (3.1-1) can be studied as a
function of the FD increment ∆z by varying nz in Listing 4.1. Alternate

∂u
approximations for the axial derivative 1 are considered in [2].

∂ z
For z = zl , BC (3.1-3) sets the value of u1(z = zl , t), and therefore, the
derivative is set to zero (if(iz==1)u1t[1]=0;) to ensure the boundary
value is maintained.

• Equation (3.2-1) is programmed.

u2t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){

u2t[1]=

2*D2*(u2[2]-u2[1])/dzs+

r2*km1*(u1[1]-u2[1]);}

if(iz==nz){

u2t[nz]=

D2*2*(u2[nz-1]-u2[nz])/dzs+

r2*km1*(u1[nz]-u2[nz]);}

if((iz>1)&&(iz<nz)){

u2t[iz]=

D2*(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs+

r2*km1*(u1[iz]-u2[iz]);}

}

This code requires some additional explanation.
∂ 2u− The derivative 2 in eq. (3.2-1) is approximated with a three-
∂ z2

point centered finite difference (FD).

∂ 2u2(z, t) u2(z+∆z, t)−2u2(z, t)+u2(z−∆z, t)≈ +O(
∂ z2 ∆z2 ∆z2)

(4.1-1)
O(∆z2) indicates that the error in the FD approximation is second
order in ∆z1.

− BC (3.2-3) is approximated with a two-point centered FD.

∂u2(z = zl , t) u2(zl +∆z, t)−u2(zl −∆z, t)≈ = 0
∂ z 2∆z

1Higher-order FD approximations, O(∆zp), p = 4,6,8,10, are considered in [1]. As a point of ter-
minology, an error analysis of a numerical solution based on the variation of the FD interval, ∆z = h is
termed h refinement. Variation of the order of the FD approximation, O(hp), is termed p refinement.

Implementation of the Two PDE Model 31

or
u2(zl −∆z, t) = u2(zl +∆z, t) (4.1-2)

− Combination of eqs. (4.1-1,2) gives the FD approximation

∂ 2u2(z = zl , t) u2(zl +∆z, t)−2u2(zl , t)+u2(zl −∆z, t)≈
∂ z2 ∆z2

u
2 2(zl +∆z, t)−u2(zl , t)

= (4.1-3)
∆z2

which is programmed as
2*(u2[2]-u2[1])/dzs

in
if(iz==1){

u2t[1]=

2*D2*(u2[2]-u2[1])/dzs+

r2*km1*(u1[1]-u2[1]);}

− Similarly, BC (3.2-4) is approximated with a two point centered
FD.

∂u2(z = zu, t) u2(zu +∆z, t)−u2(zu −∆z, t)≈ = 0
∂ z 2∆z

or
u2(zu +∆z, t) = u2(zu −∆z, t) (4.1-3)

− Combination of eqs. (4.1-1,3) gives the FD approximation

∂ 2u2(z = zu, t) u2(zu +∆z, t)−2u2(zu, t)+u2(zu −∆z, t)≈
∂ z2 ∆z2

u2(zu −∆z, t)−u
= 2 2(zu, t) (4.1-4)

∆z2

which is programmed as
2*(u2[nz-1]-u2[nz])/dzs

in
if(iz==nz){

u2t[nz]=

D2*2*(u2[nz-1]-u2[nz])/dzs+

r2*km1*(u1[nz]-u2[nz]);}

− For the interior points zl < z < zu, the RHS of eq. (4.1-1) is pro-
grammed as

(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs

in
if((iz>1)&&(iz<nz)){

u2t[iz]=

D2*(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs+

r2*km1*(u1[iz]-u2[iz]);}

32 Numerical Modeling of COVID-19 Neurological Effects

In general, the correspondence of the programming with eqs. (3.1-1), (3.2-
1) is an important feature of the MOL.

• The 42 ODE derivatives are placed in the vector ut for return to lsodes to
take the next in t along the solution.

#

Two vectors to one vector

ut=rep(0,2*nz);

for(iz in 1:nz){

ut[iz] =u1t[iz];

ut[iz+nz]=u2t[iz];

}

• The counter for the calls to pde2a is incremented and returned to the main
program of Listing 4.1 by <<-.

#

Increment calls to pde2a

ncall <<- ncall+1;

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde2a.

#

Return derivative vector

return(list(c(ut)));

}

This completes the discussion of pde2a. The output from the main program of List-
ing 4.1 and ODE/MOL routine pde2a of Listing 4.2 is considered next.

Numerical, graphical output
The numerical output is given in Table 4.1.

[1] 21

[1] 43

t z u1(z,t) u2(z,t)

0.00 0.00 7.500e-01 1.000e+00

0.00 0.10 1.000e+00 1.000e+00

0.00 0.20 1.000e+00 1.000e+00

0.00 0.30 1.000e+00 1.000e+00

0.00 0.40 1.000e+00 1.000e+00

0.00 0.50 1.000e+00 1.000e+00

Implementation of the Two PDE Model 33

0.00 0.60 1.000e+00 1.000e+00

0.00 0.70 1.000e+00 1.000e+00

0.00 0.80 1.000e+00 1.000e+00

0.00 0.90 1.000e+00 1.000e+00

0.00 1.00 1.000e+00 1.000e+00

t z u1(z,t) u2(z,t)

0.20 0.00 7.500e-01 9.087e-01

0.20 0.10 8.927e-01 9.357e-01

0.20 0.20 9.556e-01 9.682e-01

0.20 0.30 9.849e-01 9.880e-01

0.20 0.40 9.960e-01 9.964e-01

0.20 0.50 9.991e-01 9.991e-01

0.20 0.60 9.999e-01 9.998e-01

0.20 0.70 1.000e+00 1.000e+00

0.20 0.80 1.000e+00 1.000e+00

0.20 0.90 1.000e+00 1.000e+00

0.20 1.00 1.000e+00 1.000e+00

. .

. .

. .

Output for t = 0.4, 0.6,

0.8 removed

. .

. .

. .

t z u1(z,t) u2(z,t)

1.00 0.00 7.500e-01 8.212e-01

1.00 0.10 8.140e-01 8.367e-01

1.00 0.20 8.494e-01 8.624e-01

1.00 0.30 8.792e-01 8.895e-01

1.00 0.40 9.063e-01 9.149e-01

1.00 0.50 9.303e-01 9.373e-01

1.00 0.60 9.504e-01 9.558e-01

1.00 0.70 9.663e-01 9.701e-01

1.00 0.80 9.779e-01 9.802e-01

1.00 0.90 9.855e-01 9.864e-01

1.00 1.00 9.892e-01 9.886e-01

ncall = 131

Table 4.1: Numerical output from Listings 4.1, 4.2

34 Numerical Modeling of COVID-19 Neurological Effects

0.0 0.2 0.4 0.6 0.8 1.0

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

z

u
1
(z
,t
)

Figure 4.1-1 u1(z, t) from eqs. (3.1), 2D

We can note the following details about this output.

• 21 t output points as the first dimension of the solution matrix out

from lsodes as programmed in the main program of Listing 4.1 (with
nout=21).

• The solution matrix out returned by lsodes has 43 elements as a second
dimension. The first element is the value of t. Elements 2 to 43 are u1(z, t),
u2(z, t) from eqs. (3.1), (3.2) (for each of the 21 output points).

Implementation of the Two PDE Model 35

z

t

u
1
(z
,t)

Figure 4.1-2 u1(z, t) from eqs. (3.1), 3D

• The solution is displayed for t=0,1/20=0.05,...,1 as programmed in
Listing 4.1 (every fourth value of t is displayed as explained previously).

• The solution is displayed for z=0,1/20=0.05,...,1 as programmed in
Listing 4.1 (every second value of z is displayed as explained previously).

• ICs (3.1-2), (3.2-2) are confirmed (t = 0).
• BC (3.1-3) is confirmed (t = 0,z = zl = 0). There is a discontinuous change

from the IC (t = 0) to the BC (t > 0), which is subsequently smoothed,
e.g., t = 0.2. To improve the appearance of the graphical output (Figure
4.1-1 considered next), the ouput does not include the solution at z = zl = 0
(matplot(x=z[2:nz],y=u1[2:nz,],... in Listing 4.1). Use of List-
ings 4.1, 4.2 with the solution at z = zl = 0 included is left as an exercise.

• The computational effort as indicated by ncall = 131 is modest so that
lsodes computed the solution to eqs. (3.1), (3.2) efficiently.

36 Numerical Modeling of COVID-19 Neurological Effects

0.0 0.2 0.4 0.6 0.8 1.0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

z

u
2
(z
,t
)

Figure 4.2-1 u2(z, t) from eqs. (3.2), 2D

The graphical output is shown in Figures 4.1, 4.2.
The solution u1(z, t) starts from IC (3.1-2) and confirms BC (3.1-3). In general,

u1(z, t) is a front moving left to right (as expected with vz > 0) in response to the
reduced entering blood O2 concentration, u1(z = zl = 0, t) = u1e = 0.75.

Figure 4.1-2 reflects the decreasing blood O2 concentration with t.

Implementation of the Two PDE Model 37

z

t

u
2
(z
,t)

Figure 4.2-2 u2(z, t) from eqs. (3.1), 3D

The solution u2(z, t) starts from IC (3.2-2). In general, u2(z, t) is a front moving
left to right in response to the reduced entering blood O2 concentration, u1(z = zl =
0, t) = u1e = 0.75.

Figure 4.2-2 reflects the decreasing brain tissue O2
Two special cases can be considered to confirm the model and coding:

• vz = 0: With no blood flood, u1(z, t), u2(z, t) depart from ICs (3.1-2), (3.2-2)
as a result of the diffusion in z of eq. (3.2-1).

• km1 = 0: With no O2 transfer through the BBB, u1(z, t) is a front moving
left to right (vz > 0) with the long time solution u1(z, t → ∞) = u1e (t f = 2
indicates the solution for large t). u2(z, t) remains at the IC (3.2-2) since
there is no transfer of O2 between the blood and the brain tissue.

concentration with t.

These cases are left as exercises.

38 Numerical Modeling of COVID-19 Neurological Effects

4.1.2 SUMMARY AND CONCLUSIONS

The two PDE model for blood and brain tissue O2 concentrations, u1(z, t), u2(z, t)
defined by eqs. (3.1), (3.2) is implemented within the MOL. Parameters in this model
are defined numerically in Listing 4.1 and can be used to investigate dynamic effects,
e.g., the blood convection with vz, mass transfer through the BBB with km1.

As the next step in model development, a third PDE is added in Chapter 5 for the
brain neuron cell density as it is affected by the brain tissue O2 concentration, which
could account for Covid cognitive impairment.

REFERENCES
1. Schiesser, W.E. (2016), Method of Lines PDE Analysis in Biomedical Science and Engi-

neering, John Wiley, Hoboken, NJ.
2. Schiesser, W.E. (2019), Numerical PDE Analysis of the Blood Brain Barrier, World Sci-

entific Publishing Co., Singapore.
3. Soetaert, K., J. Cash, and F. Mazzia (2012), Solving Differential Equations in R, Springer-

Verlag, Heidelberg, Germany.

5 Three PDE Model
5.1 INTRODUCTION
The two PDE model of Chapter 3, eqs. (3.1), (3.2), is extended in this chapter by
adding a PDE for the neuron cell density.

5.1.1 THREE PDE MODEL FORMULATION

The neuron cell density, u3(z, t), is modeled as

∂u3
=−k

∂ t r3(u2n −u2) (5.1-1)

Equation (5.1-1) states that the functional neuron cell density decreases, < 0,
∂ t

when the brain tissue O2 concentration drops below the normal level, −kr3(u2n −
u2) < 0. kr3 is a rate constant relating the decrease in neuron cell density to the
deficiency in the brain tissue O2 concentration and is a key parameter in the three
PDE model.

∂u3

Equation (5.1-1) is first order in t and requires one IC.

u3(z, t = 0) = u3n (5.1-2)

Equation (5.1-1) is a PDE (rather than an ODE) since u3(z, t) is a function of z, t (and
not just t), even though it does not explicitly have derivatives in z.

Equations (5.1) are added to eqs. (3.1), (3.2) to constitute the three PDE model
for u1(z, t), u2(z, t), u3(z, t). The implementation of this model in R routines is con-
sidered next.

5.1.2 THREE PDE MODEL IMPLEMENTATION

A main program for eqs. (3.1), (3.2), (5.1) follows.

Main program
#

Three PDE model

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

DOI: 10.1201/9781003243052-5 39

40 Numerical Modeling of COVID-19 Neurological Effects

Access functions for numerical solution

setwd("f:/brain hypoxia/chap5");

source("pde3a.R");

#

Parameters

nz=21;

rl=1;

ru=2;

D2=0.1;

km1=0;

km1=10;

vz=1;

u1e=0.75;

kr3=1;

u1n=1;

u2n=1;

u3n=1;

#

Constants

r1=2/rl;

r2=(2*rl)/(ru^2-rl^2);

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

#

Independent variable for ODE integration

t0=0;tf=1;nout=21;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

Initial condition (t=0)

u0=rep(0,3*nz);

for(iz in 1:nz){

u0[iz] =u1n;

u0[iz+nz] =u2n;

u0[iz+2*nz]=u3n;

}

ncall=0;

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde3a,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

Three PDE Model 41

ncol(out)

#

Arrays for plotting numerical solution

u1=matrix(0,nrow=nz,ncol=nout);

u2=matrix(0,nrow=nz,ncol=nout);

u3=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u1[iz,it]=out[it,iz+1];

u2[iz,it]=out[it,iz+1+nz];

u3[iz,it]=out[it,iz+1+2*nz];

}

u1[1,it]=u1e;

}

#

Display numerical solution

iv=seq(from=1,to=nout,by=4);

for(it in iv){

cat(sprintf("\n t z u1(z,t) u2(z,t)

u3(z,t)\n"));

iv=seq(from=1,to=nz,by=2);

for(iz in iv){

cat(sprintf("%6.2f %6.2f %12.3e %12.3e %12.3e \n",

tout[it],z[iz],u1[iz,it],u2[iz,it],u3[iz,it]));

}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

#

Plot PDE solutions

#

u1

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",ylab="u1(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u1,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u1(z,t)");

#

u2

par(mfrow=c(1,1));

matplot(x=z,y=u2,type="l",xlab="z",ylab="u2(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

42 Numerical Modeling of COVID-19 Neurological Effects

persp(z,tout,u2,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u2(z,t)");

#

u3

par(mfrow=c(1,1));

matplot(x=z,y=u3,type="l",xlab="z",ylab="u3(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u3,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u3(z,t)");

Listing 5.1: Main program for eqs. (3.1), (3.2), (5.1)

We can note the following details about Listing 5.1 (with some repetition of the
discussion of Listings 2.1, 4.1 so that the explanation is self-contained).

• Previous workspaces are deleted.

#

Three PDE model

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The R ODE integrator library deSolve is accessed [1].

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/brain hypoxia/chap5");

source("pde3a.R");

Then the directory with the files for the solution of eqs. (3.1), (3.2), (5.1) is
designated. Note that setwd (set working directory) uses / rather than the
usual \.

• The model parameters are specified numerically.

#

Parameters

nz=21;

rl=1;

ru=2;

D2=0.1;

Three PDE Model 43

km1=0;

km1=10;

vz=1;

u1e=0.75;

kr3=1;

u1n=1;

u2n=1;

u3n=1;

where the additional parameters for eqs. (5.1) are
− kr3=1;: kr3 in eq. (5.1-1) for the rate of change of the functional

neuron cell density, u3(z, t), from hypoxia, −kr3(u2n −u2).
− u3n: normalized neuron cell density in IC (5.1-2).

2 2r
• The constants r1 = , r l the

r 2 = are computed for use in ordinary
(r2l − r2

u)l
differential equation/method of lines (ODE/MOL) routine pde3a.

#

Constants

r1=2/rl;

r2=(2*rl)/(ru^2-rl^2);

• A spatial grid for eqs. (3.1-1), (3.2-1), (5.1-1) is defined with 21 points so
that z = 0,1/20=0.05,...,1. The BBB length is a normalized value,
z = zu = 1.

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

• An interval in t is defined for 21 output points so that tout=0,1/20=0.05,
...,1. The time scale is normalized with t f = 1 specified as the final time
that is considered appropriate, e.g., week, month, year.

#

Independent variable for ODE integration

t0=0;tf=1;nout=21;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• ICs (3.1-2), (3.2-2), (5.1-2) are implemented (u1n,u2n,u3n are defined
previously as parameters).

#

Initial condition (t=0)

u0=rep(0,3*nz);

44 Numerical Modeling of COVID-19 Neurological Effects

for(iz in 1:nz){

u0[iz] =u1n;

u0[iz+nz] =u2n;

u0[iz+2*nz]=u3n;

}

ncall=0;

Also, the counter for the calls to pde3a is initialized.
• The system of 3*nz=63 ODEs is integrated by the library integrator

lsodes (available in deSolve, [1]). As expected, the inputs to lsodes

are the ODE function, pde3a, the IC vector u0, and the vector of output
values of t, tout. The length of u0 (63) informs lsodes how many ODEs
are to be integrated. func,y,times are reserved names.

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde3a,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

nrow,ncol confirm the dimensions of out.
• u1(z, t), u2(z, t), u3(z, t) are placed in matrices for subsequent plotting.

#

Arrays for plotting numerical solution

u1=matrix(0,nrow=nz,ncol=nout);

u2=matrix(0,nrow=nz,ncol=nout);

u3=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u1[iz,it]=out[it,iz+1];

u2[iz,it]=out[it,iz+1+nz];

u3[iz,it]=out[it,iz+1+2*nz];

}

u1[1,it]=u1e;

}

The offset +1 is required because the first element of the solution vectors in
out is the value of t and the 2 to 64 elements are the 63 values of u1,u2,u3.
These dimensions from the preceding calls to nrow,ncol are confirmed in
the subsequent output.

• The numerical values of u1(z, t), u2(z, t), u3(z, t) returned by lsodes are
displayed. Every fourth value in t and every second value in z appear from
by=4,2.

Three PDE Model 45

#

Display numerical solution

iv=seq(from=1,to=nout,by=4);

for(it in iv){

cat(sprintf("\n t z u1(z,t) u2(z,t)

u3(z,t)\n"));

iv=seq(from=1,to=nz,by=2);

for(iz in iv){

cat(sprintf("%6.2f %6.2f %12.3e %12.3e %12.3e \n",

tout[it],z[iz],u1[iz,it],u2[iz,it],u3[iz,it]));

}

}

• The number of calls to pde3a is displayed at the end of the solution.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• u1(z, t), u2(z, t), u3(z, t) are plotted in 2D against z and parametrically
in t with the R utility matplot and in 3D with R utility persp.
par(mfrow=c(1,1)) specifies a 1× 1 matrix of plots, that is, one plot
on a page.

#

Plot PDE solutions

#

u1

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",

ylab="u1(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

persp(z,tout,u1,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u1(z,t)");

#

u2

par(mfrow=c(1,1));

matplot(x=z,y=u2,type="l",xlab="z",ylab="u2(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u2,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u2(z,t)");

#

u3

par(mfrow=c(1,1));

46 Numerical Modeling of COVID-19 Neurological Effects

matplot(x=z,y=u3,type="l",xlab="z",ylab="u3(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u3,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u3(z,t)");

The 2D plot of u1(z, t) does not include the discontinuous change from IC
(3.1-2) to BC (3.1-3), x=z[2:nz],y=u1[2:nz,]. This discontinuity is not
included in u2(z, t), u3(z, t), so the solution at z = zl is included, x=z,y=u2,
x=z,y=u3.

This completes the discussion of the main program for eqs. (3.1), (3.2), (5.1). The
ODE/MOL routine pde3a called by lsodes from the main program for the numeri-
cal MOL integration of eqs. (3.1), (3.2), (5.1) is discussed in the following section.

ODE/MOL routine
pde3a called in the main program of Listing 5.1 follows:

pde3a=function(t,u,parm){

#

Function pde3a computes the t derivatives

of u1(z,t),u2(z,t),u3(z,t)

#

One vector to three vectors

u1=rep(0,nz);

u2=rep(0,nz);

u3=rep(0,nz);

for(iz in 1:nz){

u1[iz]=u[iz];

u2[iz]=u[iz+nz];

u3[iz]=u[iz+2*nz];

}

#

BC, z=zl

u1[1]=u1e;

#

PDEs

u1t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){u1t[1]=0;}

if(iz>1){

u1t[iz]=-vz*(u1[iz]-u1[iz-1])/dz-

r1*km1*(u1[iz]-u2[iz]);}

}

u2t=rep(0,nz);

Three PDE Model 47

for(iz in 1:nz){

if(iz==1){

u2t[1]=

2*D2*(u2[2]-u2[1])/dzs+

r2*km1*(u1[1]-u2[1]);}

if(iz==nz){

u2t[nz]=

D2*2*(u2[nz-1]-u2[nz])/dzs+

r2*km1*(u1[nz]-u2[nz]);}

if((iz>1)&&(iz<nz)){

u2t[iz]=

D2*(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs+

r2*km1*(u1[iz]-u2[iz]);}

}

u3t=rep(0,nz);

for(iz in 1:nz){

u3t[iz]=-kr3*(u2n-u2[iz]);

}

#

Three vectors to one vector

ut=rep(0,3*nz);

for(iz in 1:nz){

ut[iz] =u1t[iz];

ut[iz+nz] =u2t[iz];

ut[iz+2*nz]=u3t[iz];

}

#

Increment calls to pde3a

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing 5.2: ODE/MOL routine for eqs. (3.1), (3.2), (5.1)

We can note the following details about Listing 5.2.

• The function is defined.

pde3a=function(t,u,parm){

#

Function pde3a computes the t derivatives

of u1(z,t),u2(z,t),u3(z,t)

t is the current value of t in eqs. (3.1), (3.2), (5.1). u is the 63-vector of
ODE/PDE dependent variables. parm is an argument to pass parameters

48 Numerical Modeling of COVID-19 Neurological Effects

to pde3a (unused, but required in the argument list). The arguments must
be listed in the order stated to properly interface with lsodes called in
the main program of Listing 5.1. The derivative vector of the LHS of eqs.
(3.1-1), (3.2-1), (5.1-1) is calculated and returned to lsodes, as explained
subsequently.

• u is placed in three vectors to facilitate the programming of eqs. (3.1), (3.2),
(5.1).

#

One vector to three vectors

u1=rep(0,nz);

u2=rep(0,nz);

u3=rep(0,nz);

for(iz in 1:nz){

u1[iz]=u[iz];

u2[iz]=u[iz+nz];

u3[iz]=u[iz+2*nz];

}

• BC (3.1-3) is programmed.

#

BC, z=zl

u1[1]=u1e;

• Equation (3.1-1) is programmed.

#

PDEs

u1t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){u1t[1]=0;}

if(iz>1){

u1t[iz]=-vz*(u1[iz]-u1[iz-1])/dz-

r1*km1*(u1[iz]-u2[iz]);}

}

This code has additional explanation in the discussion of Listing 4.2.
For z= zl , BC (3.1-3) sets the value of u1(z= zl , t) and therefore the deriva-
tive is set to zero (if(iz==1)u1t[1]=0;) to ensure the boundary value is
maintained.

• Equation (3.2-1) is programmed.

u2t=rep(0,nz);

for(iz in 1:nz){

if(iz==1){

u2t[1]=

Three PDE Model 49

2*D2*(u2[2]-u2[1])/dzs+

r2*km1*(u1[1]-u2[1]);}

if(iz==nz){

u2t[nz]=

D2*2*(u2[nz-1]-u2[nz])/dzs+

r2*km1*(u1[nz]-u2[nz]);}

if((iz>1)&&(iz<nz)){

u2t[iz]=

D2*(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs+

r2*km1*(u1[iz]-u2[iz]);}

}

This code has additional explanation in the discussion of Listing 4.2.
• Equation (5.1-1) is programmed.

u3t=rep(0,nz);

for(iz in 1:nz){

u3t[iz]=-kr3*(u2n-u2[iz]);

}

In general, the correspondence of the programming with eqs. (3.1-1),
(3.2-1), (5.1-1) is an important feature of the MOL.

• The 63 ODE derivatives are placed in the vector ut for return to lsodes to
take the next in t along the solution.

#

Three vectors to one vector

ut=rep(0,3*nz);

for(iz in 1:nz){

ut[iz] =u1t[iz];

ut[iz+nz] =u2t[iz];

ut[iz+2*nz]=u3t[iz];

}

• The counter for the calls to pde3a is incremented and returned to the main
program of Listing 5.1 by <<-.

#

Increment calls to pde3a

ncall <<- ncall+1;

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde3a.

50 Numerical Modeling of COVID-19 Neurological Effects

#

Return derivative vector

return(list(c(ut)));

}

This completes the discussion of pde3a. The output from the main program of
Listing 5.1 and ODE/MOL routine pde3a of Listing 5.2 is considered next.

Numerical, graphical output
The numerical output is in Table 5.1.

[1] 21

[1] 64

t z u1(z,t) u2(z,t) u3(z,t)

0.00 0.00 7.500e-01 1.000e+00 1.000e+00

0.00 0.10 1.000e+00 1.000e+00 1.000e+00

0.00 0.20 1.000e+00 1.000e+00 1.000e+00

0.00 0.30 1.000e+00 1.000e+00 1.000e+00

0.00 0.40 1.000e+00 1.000e+00 1.000e+00

0.00 0.50 1.000e+00 1.000e+00 1.000e+00

0.00 0.60 1.000e+00 1.000e+00 1.000e+00

0.00 0.70 1.000e+00 1.000e+00 1.000e+00

0.00 0.80 1.000e+00 1.000e+00 1.000e+00

0.00 0.90 1.000e+00 1.000e+00 1.000e+00

0.00 1.00 1.000e+00 1.000e+00 1.000e+00

t z u1(z,t) u2(z,t) u3(z,t)

0.20 0.00 7.500e-01 9.087e-01 9.888e-01

0.20 0.10 8.927e-01 9.357e-01 9.937e-01

0.20 0.20 9.556e-01 9.682e-01 9.977e-01

0.20 0.30 9.849e-01 9.880e-01 9.993e-01

0.20 0.40 9.960e-01 9.964e-01 9.998e-01

0.20 0.50 9.991e-01 9.991e-01 1.000e+00

0.20 0.60 9.999e-01 9.998e-01 1.000e+00

0.20 0.70 1.000e+00 1.000e+00 1.000e+00

0.20 0.80 1.000e+00 1.000e+00 1.000e+00

0.20 0.90 1.000e+00 1.000e+00 1.000e+00

0.20 1.00 1.000e+00 1.000e+00 1.000e+00

. .

. .

. .

Output for t = 0.4, 0.6, 0.8 removed

Three PDE Model 51

. .

. .

. .

t z u1(z,t) u2(z,t) u3(z,t)

1.00 0.00 7.500e-01 8.212e-01 8.718e-01

1.00 0.10 8.140e-01 8.367e-01 8.933e-01

1.00 0.20 8.494e-01 8.624e-01 9.222e-01

1.00 0.30 8.792e-01 8.895e-01 9.464e-01

1.00 0.40 9.063e-01 9.149e-01 9.646e-01

1.00 0.50 9.303e-01 9.373e-01 9.776e-01

1.00 0.60 9.504e-01 9.558e-01 9.863e-01

1.00 0.70 9.663e-01 9.701e-01 9.920e-01

1.00 0.80 9.779e-01 9.802e-01 9.954e-01

1.00 0.90 9.855e-01 9.864e-01 9.973e-01

1.00 1.00 9.892e-01 9.886e-01 9.979e-01

ncall = 150

Table 5.1: Numerical output from Listings 5.1, 5.2

We can note the following details about this output.

• 21 t output points as the first dimension of the solution matrix out

from lsodes as programmed in the main program of Listing 5.1 (with
nout=21).

• The solution matrix out returned by lsodes has 64 elements as a sec-
ond dimension. The first element is the value of t. Elements 2 to 64 are
u1(z, t), u2(z, t), u3(z, t) from eqs. (3.1), (3.2), (5.1) (for each of the 21 out-
put points).

• The solution is displayed for t=0,1/20=0.05,...,1 as programmed in
Listing 5.1 (every fourth value of t is displayed as explained previously).

• The solution is displayed for z=0,1/20=0.05,...,1 as programmed in
Listing 5.1 (every second value of z is displayed as explained previously).

• ICs (3.1-2), (3.2-2), (5.1-2) are confirmed (t = 0).
• BC (3.1-3) is confirmed (t = 0,z = zl = 0). There is a discontinuous change

from the IC (t = 0) to the BC (t > 0) which is subsequently smoothed, e.g.,
t = 0.2. To improve the appearance of the graphical output (Figure 5.1-1
considered next), the output does not include the solution at z = zl = 0
(matplot(x=z[2:nz],y=u1[2:nz,],... in Listing 5.1). Use of List-
ings 5.1, 5.2 with the solution at z = zl = 0 included is left as an exercise.

• The computational effort as indicated by ncall = 150 is modest so that
lsodes computed the solution to eqs. (3.1), (3.2), (5.1) efficiently.

The graphical output for u1(z, t) is the same as in Figures 4.1, and the output for
u2(z, t) is the same as in Figures 4.2 and is not repeated here.

52 Numerical Modeling of COVID-19 Neurological Effects

0.0 0.2 0.4 0.6 0.8 1.0

0
.8
8

0
.9
0

0
.9
2

0
.9
4

0
.9
6

0
.9
8

1
.0
0

z

u
3
(z
,t
)

Figure 5.3-1 u3(z, t) from eqs. (5.1), 2D

The solution u3(z, t) starts from IC (5.1-2). In general, u3(z, t) is a front moving
left to right (as expected with vz > 0) in response to the reduced entering blood O2
concentration, u1(z = zl = 0, t) = u1e = 0.75. The reduced functional neuron cell
density from hypoxia might explain the cognitive impairment of long Covid.

Figure 5.3-2 reflects the reduced neuron cell density, u3(z, t).

Three PDE Model 53

z

t

u
3
(z
,t)

Figure 5.3-2 u3(z, t) from eqs. (5.1), 3D

5.1.3 SUMMARY AND CONCLUSIONS

Equations (3.1), (3.2), (5.1) are the three PDE model for O2 in the capillary blood
flow, O2 in the brain tissue, and neuron cell density in the brain tissue. The effect of
brain O2 deficiency (hypoxia) can be studied through the rate constant kr3, which has
implications for various neurological effects such as cognitive impairment.

Variation in kr3 that might explain recovery from long Covid, and the RHS terms
of eqs. (3.1), (3.2), (5.1) are considered in Chapter 6.

REFERENCE
1. Soetaert, K., J. Cash, and F. Mazzia (2012), Solving Differential Equations in R, Springer-

Verlag, Heidelberg, Germany.

6 Case Studies
6.1 INTRODUCTION
The three PDE model of eqs. (3.1), (3.2), (5.1) is applied to two case studies in this
concluding chapter.

6.1.1 TIME VARIATION OF THE BRAIN O2 CONCENTRATION

The effect of a time variation of the entering O2 capillary blood concentration, u1(z=
zl , t) = u1e(t) in boundary condition (3.1-3) can be programmed in the ODE/MOL
routine pde3a of Listing 5.2. This variation might, for example, be the result of a
partial recovery of the respiratory/lung function with time, e.g., through the use of
supplemental O2.

Main program
The time variation of the entering blood capillary O2 concentration, u1e(t), is pro-
grammed as minor changes/additions to the main program of Listing 5.1 and the
ODE/MOL routine of Listing 5.2. The changes/additions to the main program are
considered next.

.

.

.

#

Access functions for numerical solution

setwd("f:/hypoxia/chap6");

source("pde3a.R");

#

Set case

ncase=1;

#

Parameters

nz=21;

rl=1;

ru=2;

D2=0.1;

km1=0;

km1=10;

vz=1;

DOI: 10.1201/9781003243052-6 55

56 Numerical Modeling of COVID-19 Neurological Effects

u1e=0.75;

kr3=1;

u1n=1;

u2n=1;

u3n=1;

.

.

.

if(ncase==1){u1[1,it]=u1e;}

if(ncase==2){u1[1,it]=u1n+(u1e-u1n)*sin(pi*tout[it]);}

if(ncase==3){

if(tout[it]<=0.5){u1[1,it]=u1n+(u1e-u1n)*sin(pi*tout[it]);}

if(tout[it]> 0.5){u1[1,it]=u1e;}

.

.

.

#

Plot PDE solutions

#

u1

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",ylab="u1(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u1,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u1(z,t)");

#

u2

par(mfrow=c(1,1));

matplot(x=z,y=u2,type="l",xlab="z",ylab="u2(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u2,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u2(z,t)");

#

u3

par(mfrow=c(1,1));

matplot(x=z,y=u3,type="l",xlab="z",ylab="u3(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u3,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u3(z,t)");

#

u1e(t)=u1(z=z_l,t)

Case Studies 57

par(mfrow=c(1,1));

matplot(x=tout,y=u1[1,],type="l",xlab="t",ylab="u1e(t)",

xlim=c(t0,tf),lty=1,main="",lwd=2,col="black");

Listing 6.1: Changes/additions to the main program for u1(z = zl , t) = u1e(t)

We can note the following details about Listing 6.1 (refer also to Listing 5.1).

• The ODE/MOL routine is again pde3a (considered next).

#

Access functions for numerical solution

setwd("f:/hypoxia/chap6");

source("pde3a.R");

• A case index, ncase, is included, with ncase=1,2,3 as discussed subse-
quently.

#

Set case

ncase=1;

#

Parameters

nz=21;

rl=1;

ru=2;

D2=0.1;

km1=0;

km1=10;

vz=1;

u1e=0.75;

kr3=1;

u1n=1;

u2n=1;

u3n=1;

The parameters have the same numerical values as given in Listing 5.1.
• BC (3.1-3) is programmed for three values of ncase.

if(ncase==1){u1[1,it]=u1e;}

if(ncase==2){u1[1,it]=u1n+(u1e-u1n)*sin(pi*tout[it]);}

if(ncase==3){

if(tout[it]<=0.5){u1[1,it]=u1n+(u1e-u1n)

*sin(pi*tout[it]);}

if(tout[it]> 0.5){u1[1,it]=u1e;}

For ncase=1, the entering blood O2 concentration is the constant u1e = u1e

(the same as in Listing 5.1).

58 Numerical Modeling of COVID-19 Neurological Effects

For ncase=2, the entering blood O2 concentration change is a half sine
wave, as explained subsequently (after the pde3a changes, Listing 6.2).
This could represent an initial impairment (injury, damage) of the respira-
tory/lung function, followed by recovery.
For ncase=3, the entering blood O2 concentration change is a half sine
wave, followed by a permanent decrease, as explained subsequently (after
the pde3a changes, Listing 6.2). This could represent an initial impairment
(injury, damage) of the respiratory/lung function, without recovery.

• The arguments of persp were modified to enhance the appearance of the
3D plots. For example, for the 3D plotting of u1(z, t),

Listing 5.1

persp(z,tout,u1,theta=60,phi=45,

xlim=c(zl,zu),ylim=c(t0,tf),zlim=c(0,1.1),

xlab="z",ylab="t",zlab="u1(z,t)");

Listing 6.1

persp(z,tout,u1,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u1(z,t)");

These changes have the effect of reversing the direction of the z axis in the
3D plots.

• The time variation in u1e(t) is plotted against t at the end of the main pro-
gram to confirm the variation for ncase=1,2,3.

#

u1e(t)=u1(z=z_l,t)

par(mfrow=c(1,1));

matplot(x=tout,y=u1[1,],type="l",xlab="t",ylab="u1e(t)",

xlim=c(t0,tf),lty=1,main="",lwd=2,col="black");

This concludes the discussion of the changes/additions to the main program of
Listing 5.1 for u1e(t) = u1e. The ODE/MOL routine, pde3a, is considered next.

ODE/MOL routine
The additions to pde3a are for BC (3.1-3) with ncase=1,2,3.

.

.

.

#

BC, z=zl

Case Studies 59

if(ncase==1){u1[1]=u1e;}

if(ncase==2){u1[1]=u1n+(u1e-u1n)*sin(pi*t);}

if(ncase==3){

if(t<=0.5){u1[1]=u1n+(u1e-u1n)*sin(pi*t);}

if(t>0.5){u1[1]=u1e;}

}

.

.

.

Listing 6.2: Additions to the ODE/MOL routine of Listing 5.2

We can note the following details about Listing 6.2 (refer also to Listing 5.2).

• For ncase=1, the entering blood O2 concentration is the constant u1e = u1e

(the same as in Listing 5.2).

#

BC, z=zl

if(ncase==1){u1[1]=u1e;}

• For ncase=2, the entering blood O2 concentration u1e(t) is a half sine wave
that passes through the points
(1) u1e(t = t0 = 0) = u1n (u1n is the IC (3.1-2)).
(2) u1e(t = (t f − t0)/2 = 0.5) = u1e
(3) u1e(t = t f = 1) = u1n

if(ncase==2){u1[1]=u1n+(u1e-u1n)*sin(pi*t);}

This variation in u1e(t) = u1(z= zl , t) could result, for example, from initial
impairment of the respiratory/lung system, followed by recovery.

• For ncase=3, the entering blood O2 concentration u1e(t) is a half sine wave
that passes through the points
(1) u1e(t = t0 = 0) = u1n (u1n is the IC (3.1-2)).
(2) u1e(t = (t f − t0)/2 = 0.5) = u1e
(3) u1e(t = t f = 1) = u1e

if(ncase==3){

if(t<=0.5){u1[1]=u1n+(u1e-u1n)*sin(pi*t);}

if(t>0.5){u1[1]=u1e;}

}

This variation in u1e(t) = u1(z= zl , t) could result, for example, from initial
impairment of the respiratory/lung system, without recovery.

The numerical and graphical output from the main program of Listings 5.1, 6.1, and
the ODE/MOL routine, pde3a, of Listings 5.2, 6.2 follows.

60 Numerical Modeling of COVID-19 Neurological Effects

Numerical and graphical output

For ncase=1 in Listing 6.1, the numerical output is the same as given in Table 5.1,
so this solution is not repeated here. The graphical u1e(t) (set as a parameter and
plotted in Listing 6.1) is the constant 0.75 (invariant in t) and is not presented here.

For ncase=2 in Listing 6.1, the numerical output is given as follows:

[1] 21

[1] 64

t z u1(z,t) u2(z,t) u3(z,t)

0.00 0.00 1.000e+00 1.000e+00 1.000e+00

0.00 0.10 1.000e+00 1.000e+00 1.000e+00

0.00 0.20 1.000e+00 1.000e+00 1.000e+00

0.00 0.30 1.000e+00 1.000e+00 1.000e+00

0.00 0.40 1.000e+00 1.000e+00 1.000e+00

0.00 0.50 1.000e+00 1.000e+00 1.000e+00

0.00 0.60 1.000e+00 1.000e+00 1.000e+00

0.00 0.70 1.000e+00 1.000e+00 1.000e+00

0.00 0.80 1.000e+00 1.000e+00 1.000e+00

0.00 0.90 1.000e+00 1.000e+00 1.000e+00

0.00 1.00 1.000e+00 1.000e+00 1.000e+00

t z u1(z,t) u2(z,t) u3(z,t)

0.20 0.00 8.531e-01 9.662e-01 9.974e-01

0.20 0.10 9.600e-01 9.808e-01 9.988e-01

0.20 0.20 9.893e-01 9.929e-01 9.996e-01

0.20 0.30 9.975e-01 9.979e-01 9.999e-01

0.20 0.40 9.995e-01 9.995e-01 1.000e+00

0.20 0.50 9.999e-01 9.999e-01 1.000e+00

0.20 0.60 1.000e+00 1.000e+00 1.000e+00

0.20 0.70 1.000e+00 1.000e+00 1.000e+00

0.20 0.80 1.000e+00 1.000e+00 1.000e+00

0.20 0.90 1.000e+00 1.000e+00 1.000e+00

0.20 1.00 1.000e+00 1.000e+00 1.000e+00

. .

. .

. .

Output for t = 0.4, 0.6, 0.8 removed

. .

. .

. .

t z u1(z,t) u2(z,t) u3(z,t)

1.00 0.00 1.000e+00 9.108e-01 9.144e-01

1.00 0.10 9.139e-01 9.036e-01 9.284e-01

Case Studies 61

1.00 0.20 9.018e-01 9.065e-01 9.484e-01

1.00 0.30 9.126e-01 9.201e-01 9.656e-01

1.00 0.40 9.309e-01 9.381e-01 9.783e-01

1.00 0.50 9.500e-01 9.557e-01 9.870e-01

1.00 0.60 9.663e-01 9.704e-01 9.926e-01

1.00 0.70 9.787e-01 9.813e-01 9.960e-01

1.00 0.80 9.872e-01 9.887e-01 9.979e-01

1.00 0.90 9.923e-01 9.929e-01 9.988e-01

1.00 1.00 9.948e-01 9.943e-01 9.991e-01

ncall = 124

Table 6.2: Numerical output from Listings 5.1, 5.2, 6.1, 6.2, ncase=2

We can note the following details about this output.

• 21 t output points as the first dimension of the solution matrix out

from lsodes as programmed in the main program of Listing 5.1 (with
nout=21).

• The solution matrix out returned by lsodes has 64 elements as a sec-
ond dimension. The first element is the value of t. Elements 2 to 64 are
u1(z, t), u2(z, t), u3(z, t) from eqs. (3.1), (3.2), (5.1) (for each of the 21 out-
put points).

• The solution is displayed for t=0,1/20=0.05,...,1 as programmed in
Listing 5.1 (every fourth value of t is displayed as explained previously).

• The solution is displayed for z=0,1/20=0.05,...,1 as programmed in
Listing 5.1 (every second value of z is displayed as explained previously).

• ICs (3.1-2), (3.2-2), (5.1-2) are confirmed (t = 0).
• BC (3.1-3) is confirmed (u1(z = zl = 0, t) = u1e(t)) according to the half

sine wave as programmed in Listings 6.1, 6.2 for ncase=2.
• The computational effort as indicated by ncall = 124 is modest so that

lsodes computed the solution to eqs. (3.1), (3.2), (5.1) efficiently.

The graphical output is shown in Figures 6.1, 2, 3, 4.
Figure 6.1-1 indicates the transient of u1(z, t) away from IC (3.1-2), u1(z, t = 0) =

u1n = 1 in response to BC (3.1-3), u1(z = zl , t) = u1e(t).
Figure 6.1-2 confirms the response in z, t of Figure 6.1-1. The discontinuity at

z= zl = 0 is not included in Figure 6.1-1, but is included in Figure 6.1-2, as discussed
previously.

Figure 6.2-1 indicates the transient of u2(z, t) away from IC (3.2-2), in response
to the O2 transfer through the BBB. Figure 6.2-2 confirms the response in z, t of
Figure 6.2-1.

Figure 6.3-1 indicates the continuing decrease in the neuron cell density according
to eq. (5.1-1).

Figure 6.3-2 confirms the response in z, t of Figure 6.3-1.
Figure 6.4-1 confirms u1e(t) programmed in Listings 6.1, 6.2 for ncase=2.

In general, the numerical and graphical output indicates modest changes in

62 Numerical Modeling of COVID-19 Neurological Effects

0.0 0.2 0.4 0.6 0.8 1.0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

z

u
1
(z
,t
)

Figure 6.1-1 u1(z, t) from eqs. (3.1), 2D, ncase=2

u1(z, t), u2(z, t), u3(z, t) resulting from the recovery of u1e(t) with increasing t
(Figure 6.4-1).

For ncase3, u1e(t) does not recover with increasing t so that the changes in
u1(z, t), u2(z, t), u3(z, t) are larger than for ncase=2. This is confirmed by the fol-
lowing output (for ncase=3 in Listings 6.1, 6.2).

[1] 21

[1] 64

t z u1(z,t) u2(z,t) u3(z,t)

0.00 0.00 1.000e+00 1.000e+00 1.000e+00

0.00 0.10 1.000e+00 1.000e+00 1.000e+00

0.00 0.20 1.000e+00 1.000e+00 1.000e+00

Case Studies 63

0.00 0.30 1.000e+00 1.000e+00 1.000e+00

0.00 0.40 1.000e+00 1.000e+00 1.000e+00

0.00 0.50 1.000e+00 1.000e+00 1.000e+00

0.00 0.60 1.000e+00 1.000e+00 1.000e+00

0.00 0.70 1.000e+00 1.000e+00 1.000e+00

0.00 0.80 1.000e+00 1.000e+00 1.000e+00

0.00 0.90 1.000e+00 1.000e+00 1.000e+00

0.00 1.00 1.000e+00 1.000e+00 1.000e+00

t z u1(z,t) u2(z,t) u3(z,t)

0.20 0.00 8.531e-01 9.662e-01 9.974e-01

0.20 0.10 9.600e-01 9.808e-01 9.988e-01

0.20 0.20 9.893e-01 9.929e-01 9.996e-01

0.20 0.30 9.975e-01 9.979e-01 9.999e-01

0.20 0.40 9.995e-01 9.995e-01 1.000e+00

0.20 0.50 9.999e-01 9.999e-01 1.000e+00

0.20 0.60 1.000e+00 1.000e+00 1.000e+00

0.20 0.70 1.000e+00 1.000e+00 1.000e+00

0.20 0.80 1.000e+00 1.000e+00 1.000e+00

0.20 0.90 1.000e+00 1.000e+00 1.000e+00

0.20 1.00 1.000e+00 1.000e+00 1.000e+00

. .

. .

. .

Output for t = 0.4, 0.6, 0.8 removed

. .

. .

. .

t z u1(z,t) u2(z,t) u3(z,t)

1.00 0.00 7.500e-01 8.325e-01 9.029e-01

1.00 0.10 8.242e-01 8.500e-01 9.213e-01

1.00 0.20 8.644e-01 8.784e-01 9.452e-01

1.00 0.30 8.967e-01 9.071e-01 9.643e-01

1.00 0.40 9.245e-01 9.326e-01 9.778e-01

1.00 0.50 9.475e-01 9.536e-01 9.868e-01

1.00 0.60 9.654e-01 9.697e-01 9.925e-01

1.00 0.70 9.784e-01 9.811e-01 9.959e-01

1.00 0.80 9.871e-01 9.886e-01 9.979e-01

1.00 0.90 9.923e-01 9.929e-01 9.988e-01

1.00 1.00 9.948e-01 9.943e-01 9.991e-01

ncall = 153

Table 6.3: Numerical output from Listings 5.1, 5.2, 6.1, 6.2, ncase=3

64 Numerical Modeling of COVID-19 Neurological Effects

z
t

u
1
(z
,t)

Figure 6.1-2 u1(z, t) from eqs. (3.1), 3D, ncase=2

We can note the following details about this output.

• The dimensions of array out from lsodes are the same as for ncase=2
(Table 6.2).

• ICs (3.1-2), (3.2-2), (5.1-2) are confirmed (t = 0).
• BC (3.1-3) is confirmed (u1(z = zl = 0, t) = u1e(t)) according to the half

sine wave as programmed in Listings 6.1, 6.2 for ncase=3 (e.g., u1(z =
0, t = 1) = 0.75).

• The computational effort as indicated by ncall = 153 is modest so that
lsodes computed the solution to eqs. (3.1), (3.2), (5.1) efficiently.

The graphical output is shown in Figures 6.5,6,7,8.
Figure 6.5-1 indicates the monotonic decrease of the capillary blood O2 concen-

tration toward 0.75 with increasing t.
Figure 6.5-2 confirms the response in z, t of Figure 6.5-1.

Case Studies 65

0.0 0.2 0.4 0.6 0.8 1.0

0
.8
8

0
.9
0

0
.9
2

0
.9
4

0
.9
6

0
.9
8

1
.0
0

z

u
2
(z
,t
)

Figure 6.2-1 u2(z, t) from eqs. (3.2), 2D, ncase=2

Figure 6.6-1 indicates the monotonic decrease of the brain tissue O2 concentration
with increasing t in response to the O2 through the BBB. Figure 6.6-2 confirms the
response in z, t of Figure 6.6-1.

Figure 6.7-1 indicates the continuing decrease in the neuron cell density according
to eq. (5.1-1).

Figure 6.7-2 confirms the response in z, t of Figure 6.7-1.
Figure 6.8-1 confirms u1e(t) programmed in Listings 6.1, 6.2 for ncase=3.
In general, the numerical and graphical output indicates lower O2 concentrations

and neuron cell density for ncase=3 than for ncase=2. For example,

66 Numerical Modeling of COVID-19 Neurological Effects

z
t

u
2
(z
,t)

Figure 6.2-2 u2(z, t) from eqs. (3.1), 3D, ncase=2

Table 6.2, ncase=2

t z u1(z,t) u2(z,t) u3(z,t)

1.00 0.10 9.139e-01 9.036e-01 9.284e-01

Table 6.3, ncase=3

t z u1(z,t) u2(z,t) u3(z,t)

1.00 0.10 8.242e-01 8.500e-01 9.213e-01

The reduced O2 concentrations and neuron cell density could result in cognitive
impairment originating from Covid-reduced respiratory/lung function.

A similar analysis can be carried out with a variable blood flow rate, vz(t), which
could also result from a Covid-reduced respiratory/lung function. This is left as an
exercise.

Case Studies 67

0.0 0.2 0.4 0.6 0.8 1.0

0
.9
2

0
.9
4

0
.9
6

0
.9
8

1
.0
0

z

u
3
(z
,t
)

Figure 6.3-1 u3(z, t) from eqs. (5.1), 2D, ncase=2

Additionally, the effect of the discontinuity between IC (3.1-2), u(z = zl = 0, t =
0) = u1n = 1, and BC (3.1-3), u(z = zl = 0, t > 0) = u1e = 0.75, can be observed by
changing the plotting of u1 from

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",ylab="u1(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

68 Numerical Modeling of COVID-19 Neurological Effects

z
t

u
3
(z
,t)

Figure 6.3-2 u3(z, t) from eqs. (5.1), 3D, ncase=2

to

matplot(x=z,y=u1,type="l",xlab="z",ylab="u1(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

This is left as an exercise.
The complex solutions for u1(z, t), u2(z, t), u3(z, t), as reflected in Figures 6.1,...,8,

are a result of the integration of the left hand side (LHS) t derivatives of eqs. (3.1-1),
(3.2-1), (5.1-1). These derivatives can be computed from the solutions and displayed
as explained in the next case.

6.1.2 LHS PDE TIME DERIVATIVES

The LHS t derivatives are computed, then displayed, with R code added to the main
programs of Listings 5.1, 6.1. The ODE/MOL routine is again pde3a in Listings 5.2,
6.2.

Case Studies 69

0.0 0.2 0.4 0.6 0.8 1.0

0
.7
5

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

u
1
e
(t
)

t

Figure 6.4-1 u1e(t) from eq. (3.1-1), ncase=2

70 Numerical Modeling of COVID-19 Neurological Effects

0.0 0.2 0.4 0.6 0.8 1.0

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

z

u
1
(z
,t
)

Figure 6.5-1 u1(z, t) from eqs. (3.1), 2D, ncase=3

Case Studies 71

z

t

u
1
(z
,t)

Figure 6.5-2 u1(z, t) from eqs. (3.1), 3D, ncase=3

72 Numerical Modeling of COVID-19 Neurological Effects

0.0 0.2 0.4 0.6 0.8 1.0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

z

u
2
(z
,t
)

Figure 6.6-1 u2(z, t) from eqs. (3.2), 2D, ncase=3

Case Studies 73

z

t

u
2
(z
,t)

Figure 6.6-2 u2(z, t) from eqs. (3.2), 3D, ncase=3

74 Numerical Modeling of COVID-19 Neurological Effects

0.0 0.2 0.4 0.6 0.8 1.0

0
.9
0

0
.9
2

0
.9
4

0
.9
6

0
.9
8

1
.0
0

z

u
3
(z
,t
)

Figure 6.7-1 u3(z, t) from eqs. (5.1), 2D, ncase=3

Case Studies 75

z

t

u
3
(z
,t)

Figure 6.7-2 u3(z, t) from eqs. (5.1), 3D, ncase=3

76 Numerical Modeling of COVID-19 Neurological Effects

0
.7
5

0
.8
0

0
.8
5

0
.9
0

0
.9
5

1
.0
0

u
1
e
(t
)

0.0 0.2 0.4 0.6 0.8 1.0

t

Figure 6.8-1 u1e(t) from eq. (3.1-1), ncase=3

Case Studies 77

Main program

The following code is added to the end of the main programs of Listings 5.1, 6.1 to
∂u1(z, t) ∂u2(z, t) ∂u

compute and plot , , 3(z, t) from eqs. (3.1-1), (3.2-1), (5.1-1).
∂ t ∂ t ∂ t

.

.

.

Main program from Listings 5.1, 6.1

.

.

.

#

Derivatives in t

u1t=matrix(0,nrow=nz,ncol=nout);

u2t=matrix(0,nrow=nz,ncol=nout);

u3t=matrix(0,nrow=nz,ncol=nout);

#

Derivative calculation

#

for(it in 1:nout){

#

u1t

for(iz in 1:nz){

if(iz==1){u1t[1,it]=0;}

if(iz>1){

u1t[iz,it]=-vz*(u1[iz,it]-u1[iz-1,it])/dz-

r1*km1*(u1[iz,it]-u2[iz,it]);}

}

#

u2t

for(iz in 1:nz){

if(iz==1){

u2t[1,it]=

2*D2*(u2[2,it]-u2[1,it])/dzs+

r2*km1*(u1[1,it]-u2[1,it]);}

if(iz==nz){

u2t[nz,it]=

D2*2*(u2[nz-1,it]-u2[nz,it])/dzs+

r2*km1*(u1[nz,it]-u2[nz,it]);}

if((iz>1)&&(iz<nz)){

u2t[iz,it]=

D2*(u2[iz+1,it]-2*u2[iz,it]+u2[iz-1,it])/dzs+

r2*km1*(u1[iz,it]-u2[iz,it]);}

}

78 Numerical Modeling of COVID-19 Neurological Effects

#

u3t

for(iz in 1:nz){

u3t[iz,it]=-kr3*(u2n-u2[iz,it]);

}

}

#

Derivative plotting

#

u1t

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1t[2:nz,],type="l",xlab="z",

ylab="u1t(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

persp(z,tout,u1t,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u1t(z,t)");

#

u2t

par(mfrow=c(1,1));

matplot(x=z,y=u2t,type="l",xlab="z",ylab="u2t(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u2t,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u2t(z,t)");

#

u3t

par(mfrow=c(1,1));

matplot(x=z,y=u3t,type="l",xlab="z",ylab="u3t(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u3t,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u3t(z,t)");

Listing 6.3: Additions to the main programs of Listings 5.1, 6.1 to compute and plot
the t derivatives

We can note the following details about Listing 6.3.
∂u1(z, t) ∂u2(z, t) ∂u3(z, t)• Matrices are defined for , , .

∂ t ∂ t ∂ t
#

Derivatives in t

u1t=matrix(0,nrow=nz,ncol=nout);

u2t=matrix(0,nrow=nz,ncol=nout);

u3t=matrix(0,nrow=nz,ncol=nout);

nz,nout are defined numerically in Listing 5.1.

Case Studies 79

∂u
The coding for 1(z, t)• of eq. (3.1-1) is taken from pde3a of Listing 5.2

∂ t
with a subscript it for t added.

#

Derivative calculation

#

for(it in 1:nout){

#

u1t

for(iz in 1:nz){

if(iz==1){u1t[1,it]=0;}

if(iz>1){

u1t[iz,it]=-vz*(u1[iz,it]-u1[iz-1,it])/dz-

r1*km1*(u1[iz,it]-u2[iz,it]);}

}

∂u
The coding for 2(z, t)• of eq. (3.2-1) is taken from pde3a of Listing 5.2

∂ t
with a subscript it for t added.

#

u2t

for(iz in 1:nz){

if(iz==1){

u2t[1,it]=

2*D2*(u2[2,it]-u2[1,it])/dzs+

r2*km1*(u1[1,it]-u2[1,it]);}

if(iz==nz){

u2t[nz,it]=

D2*2*(u2[nz-1,it]-u2[nz,it])/dzs+

r2*km1*(u1[nz,it]-u2[nz,it]);}

if((iz>1)&&(iz<nz)){

u2t[iz,it]=

D2*(u2[iz+1,it]-2*u2[iz,it]+u2[iz-1,it])/dzs+

r2*km1*(u1[iz,it]-u2[iz,it]);}

}

∂u3• The coding for of eq. (5.1-1) is taken from pde3a of Listing 5.2
∂ t

with a subscript it for t added.

(z, t)

#

u3t

for(iz in 1:nz){

u3t[iz,it]=-kr3*(u2n-u2[iz,it]);

}

}

The second } concludes the loop in it.

80 Numerical Modeling of COVID-19 Neurological Effects

∂u t
The plotting of 1(z,) ∂u

, 2(z, t) ∂u
• , 3(z, t) as a function of z, t is with

∂ t ∂ t ∂ t
matplot (2D) and persp (3D).

#

Derivative plotting

#

u1t

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1t[2:nz,],type="l",xlab="z",

ylab="u1t(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

persp(z,tout,u1t,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u1t(z,t)");

#

u2t

par(mfrow=c(1,1));

matplot(x=z,y=u2t,type="l",xlab="z",ylab="u2t(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u2t,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u2t(z,t)");

#

u3t

par(mfrow=c(1,1));

matplot(x=z,y=u3t,type="l",xlab="z",ylab="u3t(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,u3t,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="u3t(z,t)");

In summary, the main program consists of Listings 5.1, 6.1, 6.3.

ODE/MOL routine
The ODE/MOL routine is the same as given in Listings 5.2, 6.2.

Numerical and graphical output
∂u (z, t) ∂u (z, t) ∂u (z, t)

The graphical output from Listings 5.1, 6.1, 6.3 for 1 , 2 , 3 fol-
∂ t ∂ t ∂ t

lows (the numerical and graphical output for u1(z, t),u2(z, t),u2(z, t) was presented
previously in Tables 6.2, 6.3 and Figures 6.1-1,...,8).

∂u
Figure 6.9-1 indicates 1

< 0 with a reversal in u1e(t) at t = 0.5.
∂ t

Figure 6.9-2 confirms Figure 6.9-1.
∂u

Figure 6.10-1 indicates 2
< 0 with a reversal in u

∂ t 1e(t) at t = 0.5.

Case Studies 81

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

z

u
1
t(
z
,t
)

∂u1(z, t)Figure 6.9-1 from eqs. (3.1), 2D, ncase=2
∂ t

Figure 6.10-2 confirms Figure 6.10-1.

Figure 6.11-1 indicates 3
< 0 and continuing decrease of u

∂ t 3 with t. This de-

crease in u3(z, t) results from the single RHS term in eq. (5.1-1), −kr3(u2n−u2)< 0.
Figure 6.11-2 confirms Figure 6.11-1.

∂u

The constant kr3 is a sensitive parameter since if −kr3(u2n − u2) < 0 remains in
effect for a long enough time, u3(z, t)< 0 (negative neuron cell density) could occur

82 Numerical Modeling of COVID-19 Neurological Effects

z

t

u
1
t(z
,t)

∂u1(z, t)Figure 6.9-2 from eqs. (3.1), 3D, ncase=2
∂ t

(which is physically impossible). This example illustrates a possibly fundamental
limitation of a mathematical model, that is, the model solutions can assume physi-
cally unrealistic values (e.g., negative concentrations).

In the present case, this situation could possibly be avoided by using a nonlinear,
logistic rate, −kr3(u2n−u2)u3 so that as u3(z, t)→ 0 the rate approaches zero (rather
than remain negative). This extension of eq. (5.1-1) is left as an exercise.

For ncase=3, the graphical output is shown in Figures 6.12,13,14.

Figure 6.12-1 indicates 1
< 0 and movement toward a zero-derivative equilib-

∂ t
rium (steady state) solution.

Figure 6.12-2 confirms Figure 6.12-1.
∂u

Figure 6.13-1 indicates 2
< 0 and movement toward a zero-derivative equilib-

∂ t
rium (steady state) solution.

∂u

Case Studies 83

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.3

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

0
.3

z

u
2
t(
z
,t
)

∂u2(z, t)Figure 6.10-1 from eqs. (3.2), 2D, ncase=2
∂ t

Figure 6.13-2 confirms Figure 6.13-1.
∂u

Figure 6.14-1 indicates < 0 and continuing decrease of u
∂ t 3 with t. This de-

crease in u3(z, t) results from the single RHS term in eq. (5.1-1), −kr3(u2n−u2)< 0.
Figure 6.14-2 confirms Figure 6.14-1.

3

In summary, the reduction in O2 concentration of the capillary blood and brain
tissue, u1(z, t), u2(z, t), leads to a reduction in the neuron cell density, u3(z, t). These
changes could then explain long Covid cognitive impairment.

84 Numerical Modeling of COVID-19 Neurological Effects

z

t

u
2
t(z
,t)

∂u2(z, t)Figure 6.10-2 from eqs. (3.2), 3D, ncase=2
∂ t

Case Studies 85

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.1
2

−
0
.1
0

−
0
.0
8

−
0
.0
6

−
0
.0
4

−
0
.0
2

0
.0
0

z

u
3
t(
z
,t
)

∂u3(z, t)Figure 6.11-1 from eqs. (5.1), 2D, ncase=2
∂ t

86 Numerical Modeling of COVID-19 Neurological Effects

z

t

u
3
t(z
,t)

∂u3(z, t)Figure 6.11-2 from eqs. (5.1), 3D, ncase=2
∂ t

Case Studies 87

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.4

−
0
.3

−
0
.2

−
0
.1

0
.0

z

u
1
t(
z
,t
)

∂u1(z, t)Figure 6.12-1 from eqs. (3.1), 2D, ncase=3
∂ t

88 Numerical Modeling of COVID-19 Neurological Effects

z

t

u
1
t(z
,t)

∂u1(z, t)Figure 6.12-2 from eqs. (3.1), 3D, ncase=3
∂ t

Case Studies 89

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.2
5

−
0
.2
0

−
0
.1
5

−
0
.1
0

−
0
.0
5

0
.0
0

z

u
2
t(
z
,t
)

∂u2(z, t)Figure 6.13-1 from eqs. (3.2), 2D, ncase=3
∂ t

90 Numerical Modeling of COVID-19 Neurological Effects

z

t

u
2
t(z
,t)

∂u2(z, t)Figure 6.13-2 from eqs. (3.3), 3D, ncase=3
∂ t

6.1.3 ANALYSIS OF PDE RHS TERMS
∂u (z, t) ∂u (z, t)

u1(z, t), u2(z, t), u3(z, t) are determined by the time derivatives, 1 , 2 ,
∂ t ∂ t

∂u3(z, t) of eqs. (3.1-1), (3.2-1), (5.1-1). These derivatives, in turn, are defined by
∂ t

the RHS terms of eqs. (3.1-1), (3.2-1), (5.1-1) so that these terms provide insight into
the origin of the features of the solutions. Therefore, the calculation and display of
the PDE RHS terms is an important approach to the analysis of the PDE solutions.
This type of analysis is demonstrated by the following programming.

Main program
For the analysis of the RHS of eq. (3.1-1), two terms are calculated and displayed.

Case Studies 91

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.1
5

−
0
.1
0

−
0
.0
5

0
.0
0

z

u
3
t(
z
,t
)

∂u3(z, t)Figure 6.14-1 from eqs. (5.1), 2D, ncase=3
∂ t

∂u
= 1• term11 −vz .

∂ z
• term12 = −(2/rl)km1(u1 −u2).

The naming of the terms is according to term-PDE number-term in PDE. For
example, term11 is for PDE 1 (eq. (3.1-1)), term 1 (convection).

92 Numerical Modeling of COVID-19 Neurological Effects

z

t

u
3
t(z
,t)

∂u3(z, t)Figure 6.14-2 from eqs. (5.1), 3D, ncase=3
∂ t

These terms are calculated by the addition of the following code to the end of
Listing 6.3.

#

PDE RHS terms

#

u1t

#

Matrices for term11, term12

term11=matrix(0,nrow=nz,ncol=nout);

term12=matrix(0,nrow=nz,ncol=nout);

#

Calculation of term11, term12

Case Studies 93

for(it in 1:nout){

for(iz in 1:nz){

if(iz==1){term11[1,it]=-vz*(u1[2,it]-u1[1,it])/dz;}

if(iz>1){

term11[iz,it]=-vz*(u1[iz,it]-u1[iz-1,it])/dz;}

term12[iz,it]=-r1*km1*(u1[iz,it]-u2[iz,it]);

}

}

#

Plot term11

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=term11[2:nz,],type="l",xlab="z",

ylab="term11(z,t)",xlim=c(zl,zu),lty=1,main="",

lwd=2,col="black");

persp(z,tout,term11,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="term11(z,t)");

#

Plot term12

par(mfrow=c(1,1));

matplot(x=z,y=term12,type="l",xlab="z",ylab="term12(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,term12,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="term12");

Listing 6.4: Additional code for the calculation of eq. (3.1-1) RHS terms

We can note the following details about Listing 6.4.

• Matrices are defined for term11, term12.

#

PDE RHS terms

#

u1t

#

Matrices for term11, term12

term11=matrix(0,nrow=nz,ncol=nout);

term12=matrix(0,nrow=nz,ncol=nout);

• term11, term12 are calculated according to eq. (3.1-1).

#

Calculation of term11, term12

for(it in 1:nout){

94 Numerical Modeling of COVID-19 Neurological Effects

for(iz in 1:nz){

if(iz==1){term11[1,it]=-vz*(u1[2,it]-u1[1,it])/dz;}

if(iz>1){

term11[iz,it]=-vz*(u1[iz,it]-u1[iz-1,it])/dz;}

term12[iz,it]=-r1*km1*(u1[iz,it]-u2[iz,it]);

}

}

• term11, term12 are plotted in 2D and 3D.

#

Plot term11

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=term11[2:nz,],type="l",xlab="z",

ylab="term11(z,t)",xlim=c(zl,zu),lty=1,main="",

lwd=2,col="black");

persp(z,tout,term11,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="term11(z,t)");

#

Plot term12

par(mfrow=c(1,1));

matplot(x=z,y=term12,type="l",xlab="z",ylab="term12(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

persp(z,tout,term12,theta=120,phi=25,

xlim=c(zl,zu),ylim=c(t0,tf),

xlab="z",ylab="t",zlab="term12");

ODE/MOL routine
The ODE/MOL routine is pde3a of Listings 5.2, 6.2.

Numerical and graphical output
The graphical output for ncase=3, (set in Listing 5.1) is in Figures 6.15,16.

Figure 6.15-1 indicates that term11 at z = zl is not included (from
x=z[2:nz],y=term11[2:nz,]). Figure 6.15-2 confirms Figure 6.15-1.

Figure 6.16-1 indicates that term12 at z = zl is included (from x=z,y=term12).
Figure 6.16-2 confirms Figure 6.16-1.
A similar analysis can be applied for the remaining PDE RHS terms.

∂ 2u
• term21 = D 2

2 (eq. (3.2-1)).
∂ z2

2r
• term22 = l km1(u1 −u2) (eq. (3.2-1)).2 − r2(ru)l
• term31 = −kr3(u2n −u2) (eq. (5.1-1)).

Case Studies 95

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.5

−
1
.0

−
0
.5

0
.0

z

te
rm

1
1
(z
,t
)

Figure 6.15-1 term11 from Listing 6.4, 2D, ncase=3

The calculation and display of these terms is left as an exercise.
The computation and display of PDE RHS terms is an important methodology

for evaluating the physical/chemical/biological contributions to a PDE model. For
example, eq. (3.1-1) can be stated as

∂u1
= term

∂ t 11 + term12

96 Numerical Modeling of COVID-19 Neurological Effects

z

t

te
rm
1
1
(z
,t)

Figure 6.15-2 term11 from Listing 6.4, 3D, ncase=3

so that term11 + term12 defines the derivative 1 , which, in turn, determines
∂ t

through MOL numerical integration u1(z, t). By examining term11, term12, the rel-
ative contributions of convection and O2 mass transfer across the BBB can be ob-
served.

∂u

This is illustrated in Figures 6.15,16. Figure 6.15 indicates term11 < 0 while
Figure 6.16 indicates term12 > 0. Furthermore, the two terms have the same gen-

∂u
eral form so that they tend to sum to a small value. If they sum to zero, 1

= 0
∂ t

corresponding to an equilibrium solution for u1(z, t). That is, convection is balanced
by mass transfer. This detailed insight into the solution of eq. (3.1-1) can then be
used to adjust parameters and possibly alter the form of the RHS terms (the variation
of a PDE t derivative is illustrated in Figures 6.9,12. for eq. (3.1-1)).

Case Studies 97

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

z

te
rm
1
2
(z
,t
)

Figure 6.16-1 term12 from Listing 6.4, 2D, ncase=3

The methodology of examining the PDE RHS terms can be readily applied to
all of the model PDEs once numerical solutions (PDE dependent variables) have
been calculated, to provide insight into the differences of the solutions in t and z. An
important special case in physical applications modeled by systems of simultaneous
PDEs is when (1) certain PDEs have equilibrium solutions and (2) other PDEs have
dynamic solutions. These hybrid systems are termed “stiff” and generally can be
accommodated within the MOL framework.

98 Numerical Modeling of COVID-19 Neurological Effects

z

t

te
rm
1
2

Figure 6.16-2 term12 from Listing 6.4, 3D, ncase=3

6.1.4 SUMMARY AND CONCLUSIONS

Two cases of the three PDE model of eqs. (3.1), (3.2), (5.1) are developed in this
chapter. For the second case, the PDE analysis is illustrated by: (1) the calculation

and display of the derivatives
∂u1

∂ t
,

∂u2

∂ t
,

∂u3

∂ t
, and (2) the calculation and display of

the PDE RHS terms. These additional calculations are based on the computed solu-
tions u1(z, t), u2(z, t), u3(z, t) and provide additional insight into the origin of the fea-
tures of the PDE solutions, particularly the approach to an equilibrium (steady state).

REFERENCE
1. Soetaert, K., J. Cash, and F. Mazzia (2012), Solving Differential Equations in R, Springer-

Verlag, Heidelberg, Germany.

Appendix A: Introduction to
PDE Analysis
The intent of this appendix is to provide an introduction to computer-based modeling
based on partial differential equations (PDEs).

A.1 PDE NOTATION

If a biological/chemical/physical application is to be modeled in both space and time
(spatiotemporal analysis), PDEs are an established mathematical form for the model.
The notation used in the model PDEs is reviewed next.

If a model PDE defines a dependent variable, u(z, t), as a function of the indepen-
dent variables, z (space) and t (time), then the partial derivative of u(z, t) with respect

∂u ∂u
to z and t, is denoted, respectively, as and .

∂ z ∂ t
∂u ∂u

is the rate of change of u(z, t) with respect to z at constant t. is the rate of
∂ z ∂ t

change of u(z, t) with respect to t at constant z. These derivatives are first order in z
and t, respectively.

To facilitate the coding (programming) of PDEs, a subscript notation for partial
derivatives is often used.

∂u ∂u⇒ u
∂ z z; ⇒ u

∂ t t

Derivatives of order higher than one can be considered for PDE models.(
∂u(z, t)

∂
∂ z ∂ 2u(z, t)

= = u
∂ z ∂ z zz2()

∂u(z, t)
∂

∂ t ∂ 2u(z, t)
= = u

∂ t ∂ t tt2() ()
∂u(z, t) ∂u(z, t)

∂
∂ z ∂ 2 ∂

u(z, t) ∂ t ∂ 2u(z, t)
= = u =

∂ t ∂ t∂ z tz = = u
∂ z ∂ z∂ t zt

)

The third form of the second derivative is termed a mixed partial derivative, for which
the order of differentiation in z and t is assumed to be interchangeable.

PDE spatial derivatives can be expressed in different coordinate systems. For
example,

99

100 Appendix A

• Cartesian coordinates, (x,y,z): x,y,z are defined along mutually perpen-
dicular (orthogonal) axes [1].

• cylindrical coordinates, (r,θ ,z): r,θ ,z are defined along mutually perpen-
dicular axes. r is a radial coordinate [2]. θ is an angular coordinate. z is an
axial coordinate.

• spherical coordinates, (r,θ ,φ): r,θ ,φ are defined along mutually perpen-
dicular axes. r is a radial coordinate [3]. θ ,φ are angular coordinates.

Other coordinate systems can be derived from general curvilinear coordinates [4].
The choice of a particular coordinate system is usually determined by the match of
the boundary conditions (discussed subsequently) to the geometry of the physical
system.

A.2 PDE CLASSIFICATION
PDEs can be classified geometrically which facilitates the selection of numerical
methods (algorithms) for the computer solution of PDEs. The generally accepted
geometrical classifications are summarized next.

A.2.1 HYPERBOLIC

Hyperbolic PDEs are of two types:

First order: If the PDE is first order in the initial value (temporal) variable t,
and first order in the boundary value (spatial) variable z, it is generally termed first-
order hyperbolic. As an example, the linear, first-order hyperbolic (advection) PDE
equation, is

∂u ∂u
+ v

∂ t z = 0 (A.1-1)
∂ z

For a complete (well-posed) problem, one initial condition (IC) and one boundary
condition (BC) are required.

u(z, t = 0) = f (z) (A.1-2)

u(z = 0, t) = g(t) (A.1-3)

where f (z),g(t) are functions to be specified. As an example that is subsequently
integrated numerically, f (z) = 0,g(t) = 1, for which an analytical (exact) solution is
available.

If λ = z− vzt (Lagrangian coordinate, traveling wave), u(z, t) = u(λ), and eqs.
(A.1) can be stated in terms of λ .

∂u du ∂λ du
= =−v

∂ t dλ ∂ t z dλ

∂u du ∂λ du
= =

∂ z dλ ∂ z dλ

Appendix A 101

Substitution in eq. (A.1-1) gives

∂u ∂u du du
+ vz =−vz + vz = 0

∂ t ∂ z dλ dλ

Thus, u(λ) is a solution to eqs. (A.1) with u(λ > 0) = 0 (IC (A.1-2), f (z) = 0),
u(λ < 0) = 1 (BC (A.1-3) g(t) = 1) (a unit step or Heaviside function, traveling left
to right in z with velocity vz). This special case of the advection equation is used
subsequently in evaluating (testing) a numerical solution.

Second order: If the PDE is second order in the initial value (temporal) variable
t, and second order in the boundary value (spatial) variable z, it is generally termed
second-order hyperbolic. For example, the linear wave equation, is

∂ 2u ∂ 2
2 u 2= c ; u

∂ t ∂ z tt = c uzz (A.2-1)2 2

where c is a wave velocity.
Equation (A.2-1) is second order in t and requires two ICs,

∂u(z, t = 0)
u(z, t = 0) = f1(z); = ut(z, t = 0) = f2(z) (A.2-2,3)

∂ t
where f1(z), f2(z) are functions to be specified.

Equation (A.2-1) is second order in z and requires two BCs, for example

∂u(z = z , t)
u(z = z z u

l , t) = g1(); = g
∂ z 2(z) (A.2-4,5)

where zl ,zu are lower and upper boundary values of z, respectively, and g1(z),g2(z)
are functions to be specified. Equation (A.2-4) is a Dirichlet BC1 and eq. (A.2-5) is
a Neumann BC.

A second-order hyperbolic PDE can be expressed as a system of two first-order
hyperbolic PDEs. For example, u(z, t),v(z, t) can be defined by two simultaneous
first-order hyperbolic PDEs.

∂v ∂u
= (A.3-1)

∂ z ∂ t
∂v ∂u

= (A.3-2)
∂ t ∂ z

If eq. (A.3-1) is differentiated with respect to t and eq. (A.3-2) is differentiated with
respect to z,

∂ 2v ∂ 2u
= (A.3-3)

∂ t∂ z ∂ t2

∂ 2v ∂ 2u
= (A.3-4)

∂ z∂ t ∂ z2

1A Dirichlet BC specifies the dependent variable, u(z, t), at the boundary. A Neumann BC speci-
fies the first-order spatial derivative of u(z, t) with respect to z at the boundary. A Robin BC includes
both the dependent variable and the first-order spatial derivative, frequently as a linear combination, e.g.,

∂u(z = z
D u, t)

+ k
∂

mu(z = zu, t) = 0.
z

102 Appendix A

If eq. (A.3-4) is subtracted from eq. (A.3-3),

∂ 2v ∂ 2v ∂ 2u ∂ 2u− = −
∂ t∂ z ∂ z∂ t ∂ t2 ∂ z2

or if the mixed partial derivatives are assumed equal

∂ 2u ∂ 2u
=

∂ t2 ∂ z2

which is eq. (A.2-1) with c = 1 . This result suggests second-order hyperbolic PDEs
can be studied through associated systems of first-order PDEs.

A second-order hyperbolic PDE can also be expressed as a system of PDEs first
order in t and second order in z. For example, if two variables, u1(z, t) and u2(z, t),
are defined as

∂u ∂u
u1(z, t) = u(z, t 1

); u2(z, t) = =
∂ t ∂ t

eq. (A.2-1) can be written as

∂u1 ∂u
= u2(z

2 ∂ 2u1
, t); =

∂ t ∂ t ∂ z2

This formulation is particularly useful when numerically integrating second-order
hyperbolic PDEs.

A.2.2 PARABOLIC

Parabolic PDEs are first order in an initial value variable and second order in a bound-
ary value variable. The diffusion equation (heat conduction equation, Fick’s second
law, Fourier’s second law) is an example.

∂u ∂ 2u
= D (A.4-1)

∂ t ∂ z2

where D is a diffusivity. Equation (A.4-1) is first order in t and requires one IC.

u(z, t = 0) = f (z) (A.4-2)

Equation (A.4-1) is second order in z and requires two BCs, for example

∂u(z = z , t
u u)
(z = zl , t) = g(t); D + kmuz(z = zu, t) = 0 (A.4-3,4)

∂ z

where zl ,zu are lower and upper boundary values of z, respectively, km is a mass
transfer coefficient, and f (z), g(t) are functions to be specified. Equation (A.4-3) is
a Dirichlet BC and eq. (A.4-4) is a Robin BC (explained previously).

Equation (A.4-1) is based on a material (mass) balance for an incremental volume
Ac∆z. ∣ (∣)

∂u ∂u ∣ ∂u ∣
Ac∆z =−AcD ∣∣ − −A ∣

∂ t cD ∣ (A.4-5)
∂ z z ∂ z z+∆z

Appendix A 103

The diffusive flux into and out of the incremental volume is based on Fick’s first law
(Fourier’s first law).

∂u
q =−D (A.4-6)

∂ z
∂u

with q > 0 for < 0 (diffusion in the direction of decreasing u(z, t)).
∂ z

Division of eq. (A.4-5) by Ac∆z and minor rearrangement gives 
∂u ∂u

∂
|u  ∂

∆ − |
z z+ z

∂ z z
= D  (A.4-7)

∂ t ∆z

With ∆z → 0, eq. (A.4-7) is eq. (A.4-1).
The diffusion equation can be expressed in terms of the coordinate-independent

vector differential operator ∇.

∂u
= D ∇ ·∇u = D div grad u (A.4-8)

∂ t
where ∇· is the divergence of a vector and ∇ is the gradient of a scalar. ∇ can then
be stated for a particular coordinate system. This is done in the following tables for
Cartesian, cylindrical and spherical coordinates.

∇· (divergence of a vector):

Coordinate system Components 
∂

∇ []x =  ∂x 
Cartesian  ∂  [∇]y =  ∂y  

∂
[∇]z =

∂ z 
1 ∂ [∇]r = (r) r ∂ r 

cylindrical  1 ∂  [∇ ] =
θ  r ∂θ  

∂
[∇]z =

∂ z 1 ∂
[∇]r = (r2)

r2 ∂ r   1 ∂ 
spherical  [∇] = () 

θ
sinθ  r sinθ ∂θ  1 ∂ 

[∇] =
φ r sinθ ∂φ

104 Appendix A

∇ (gradient of a scalar):

Coordinate system Components 
∂

[∇]x = ∂x 
Cartesian  ∂  [∇ ] y = 

∂y  
∂

[∇]z =
∂ z 
∂ [∇]r = ∂ r  1cylindrical  ∂  [∇ ] =

θ  r ∂θ  
∂

[∇]z =
∂ z 
∂ [∇]r =
∂ r   1 ∂ 

spherical  [∇] = 
θ  r ∂θ  1 ∂

[∇] =
φ r sinθ ∂φ

∇ ·∇ (divergence of the gradient of a scalar):

Coordinate system Component

∂ 2 ∂ 2 ∂ 2
Cartesian + +

∂x2 ∂y2 ∂ z2()
∂ 2 1 ∂ 1 ∂ 2 ∂ 2

cylindrical + + +
∂ r2 r ∂ r r2 ∂θ 2 ∂ z2() ()

∂ 2 2 ∂ 1 ∂ ∂ 1 ∂ 2
spherical + + sin +

∂ r2 θ
r ∂ r r2 sinθ ∂θ ∂θ r2 sin2

θ ∂φ 2

Cartesian coordinates:

With the orthonormal vectors (ix, jy,kz), ∇ ·∇ in the RHS of eq. (A.4-8) follows as() ()
∂ ∂ ∂ ∂ ∂ ∂ ∂ 2 ∂ 2 ∂ 2

∇ ·∇ = i + j +k · i + j +k = + +
∂x ∂y ∂ z ∂x ∂y ∂ z ∂x2 ∂y2 ∂ z2

Appendix A 105

Cylindrical coordinates:

With the orthonormal vectors (ir, jθ ,kz), ∇ ·∇ in the RHS of eq. (A.4-8) follows as() ()
1 ∂ 1 ∂ ∂ ∂ 1 ∂ ∂

∇ ·∇ = ir (r)+ jθ +kz · ir + jθ +k
r ∂ r r ∂θ ∂ z ∂ r r ∂θ

z
∂ z() () ()

1 ∂ ∂ 1 ∂ 1 ∂ ∂ ∂
= r + +

r ∂ r ∂ r r ∂θ r ∂θ ∂ z ∂ z()
1 ∂ ∂ 2 1 ∂ ∂ ∂ ∂

= + r + +
r ∂ r ∂ r2 r2 ∂θ ∂θ ∂ z ∂ z()

∂ 2 1 ∂ 1 ∂ 2 ∂ 2
= + + +

∂ r2 r ∂ r r2 ∂θ 2 ∂ z2

Spherical coordinates:

With the orthonormal vectors (ir, jθ ,kφ), ∇ ·∇ in the RHS of eq. (A.4-8) follows as()
1 ∂

∇ ·∇ = i 2 1 ∂ 1 ∂
r (r)+ (sin)+
r2 jθ θ k

∂ r r sinθ ∂θ
φ r sinθ ∂φ()

∂ 1 ∂ 1 ∂× ir + j
∂

θ +k
r r ∂θ

φ r sinθ ∂φ() () ()
1 ∂ 2 ∂ 1 ∂ 1 ∂ 1 ∂ 1 ∂

= r + sinθ +
r2 ∂ r ∂ r r sinθ ∂θ r ∂θ r sinθ ∂φ r sinθ ∂φ() ()

∂ 2 2 ∂ 1 ∂ ∂ 1 ∂ 2
= + + sin

∂ r2 θ +
r ∂ r r2 sinθ ∂θ ∂θ r2 sin2

θ ∂φ 2

Equation (A.4-8) can be extended to include a convection term.

∂u
= (−∇ ·v+D ∇ ·∇)u = (−div v+D div grad)u (A.4-9)

∂ t

where v is a velocity vector. In the three coordinate systems,

Cartesian : v = ixvx + jyvy +kzvz

cylindrical : v = irvr + jθ vθ +kzvz

spherical : v = irvr + jθ vθ +kφ vφ

As a prototype model that can be used to test numerical integration algorithms for
parabolic PDEs, the following IC and BCs for eq. (A.4-1) are considered subse-
quently.

u(z, t = 0) = f (z) = sin(π(z− zl)/(zu − zl)) (A.4-10)
u(z = zl , t) = u(z = zu, t) = 0 (A.4-11,12)

Equations (A.4-11,12) define homogeneous Dirichlet BCs.

106 Appendix A

As a second case,

u(z, t = 0) = f (z) = cos(π(z− zl)/(zu − zl)) (A.4-13)

∂u(z = zl , t) ∂u(z = zu, t)
= = 0 (A.4-14,15)

∂ z ∂ z

Equations (A.4-14,15) define homogeneous Neumann BCs.

∂u(z = z
D l , t)

+ kmu(z = zl , t) = 0
∂ z

∂u(z = z
D u, t)

+ k
∂ z mu(z = zu, t) = 0 (A.4-16,17)

Equations (A.4-16,17) define homogeneous Robin BCs.
An exact solution to eqs. (A.4-1), (A.4-10,11,12),

u z t e−D(π/(zu−z 2
(,) = l)) t sin(π(z− zl)/(zu − zl)) (A.4-18)

and an exact solution to eqs. (A.4-1), (A.4-13,14,15),

u(z, t) = e−D(π/(z 2
u−zl)) t cos(π(z− zl)/(zu − zl)) (A.4-19)

are used subsequently to test numerical FD integration algorithms implemented
within the method of lines (MOL) framework. An exact solution to eq. (A.4-1), (A.4-
16,17) is available, but it is relatively complicated so it is not included here.

As the term diffusion equation implies (eq. (A.4-1)), parabolic PDEs smooth steep
moving fronts and discontinuities, and therefore are easier to integrate numerically
than hyperbolic PDEs (such as eq. (A.1-1)).

A.2.3 ELLIPTIC

Elliptic PDEs are zeroth order in an initial value variable (no derivative in t) and
second order in two boundary value variables. Laplace’s equation is an example.

∂ 2u ∂ 2u
+ = 0 (A.5-1)

∂y2 ∂ z2

Equation (A.5-1) is second order in y and z and requires two BCs for each. For
example,

∂u(y = yu,z)u(y = yl ,z) = f1(z); = f
∂y 2(z) (A.5-2,3)

∂u(y,z = z)
u(y,z = zl) = g1(y);

u
= g

∂ z 2(z) (A.5-4,5)

One approach to the numerical integration of elliptic PDEs is to append a derivative
in an initial value variable. For example, for eq. (A.5-1),

∂u ∂ 2u ∂ 2u
= + (A.5-6)

∂ t ∂y2 ∂ z2

Appendix A 107

that is, to effectively convert the elliptic PDE to a parabolic PDE, then integrate the
∂u

parabolic equation to a steady state. For example, for eq. (A.5-6), ≈ 0, at which
∂ t

point the solution u(y,z, t → ∞) is the solution to the elliptic PDE.
This approach to a numerical solution of the elliptic PDE is termed the method

of false transients since t is not part of the original elliptic problem, but rather, is
a parameter that continues the solution of the parabolic PDE to the solution of the
elliptic PDE.

A.2.4 MULTITYPE

More than one geometric form can be included in a PDE. For example, a combination
of eqs. (A.1-1) and (A.4-1) gives

∂u ∂u ∂ 2u
=−v

∂ t z +D (A.6-1)
∂ z ∂ z2

Equation (A.6-1) mathematically is a hyperbolic-parabolic PDE, and physically, a
convection-diffusion equation.

Equation (A.6-1) is first order in t and requires one IC.

u(z, t = 0) = f (z) (A.6-2)

where f (z) is a function to be specified.
Equation (A.6-1) is second order in z and requires two BCs, e.g.,

∂u(z =u, t)u(z = zl , t) = g(t); = 0 (A.6-3,4)
∂ z

where g(t) is a function to be specified.
BC (A.6-4) specifies a zero slope (derivative in z) at z = zu. If the solution u(z, t)

is a discontinuity (step) traveling in the positive z direction (vz > 0) as discussed
previously, eq. (A.6-4) requires the discontinuity move across the exit boundary at
z = zu with zero slope. Since this is essentially impossible, the solution displays a
numerical error (artifact) such as an oscillation.

To avoid this situation of an unrealistic exit BC, the following condition can be
used.

∂u(z = zu, t) ∂u(z = zu, t)
+ vz = 0 (A.6-5)

∂ t ∂ z
Equation (A.6-5) qualifies as a BC for eq. (A.6-1) since it is of lower order in z than
eq. (A.6-1), Experience has indicated that BC (A.6-5) provides a smooth exit of a
discontinuity at z = zu.

If a volumetric source term is added to eq. (A.6-1),

∂u ∂u ∂ 2u
=−v p

∂ t z +D + k
∂ z ∂ z ru (A.6-6)2

eq. A.6-6 mathematically is still hyperbolic-parabolic, and physically is a
convection-diffusion-reaction equation. If p = 1, eq. (A.6-6) is also nonlinear, i.e., it
is not of first degree (the distinction between order and degree is noteworthy).

̸

108 Appendix A

A.3 FIRST-ORDER SPATIAL DERIVATIVES
The implementation of eq. (A.6-6) in a series of R routines2 is considered next,

∂u
starting with the approximation of the first-order spatial derivative .

∂ z

A.3.1 FINITE DIFFERENCES

The derivative in z, , in eqs. (A.1-1), (A.6-1), (A.6-6) can be approximated by a
∂ z

two-point, upwind3 finite difference (FD).

∂u u(z, t)−u(z−∆z, t)≈ +O(∆z) (A.7-1)

∂u

∂ z ∆z

where ∆z is the interval in z for a FD grid of nz points

z
∆z u − zl

= (A.7-2)
nz −1

O(∆z) indicates that the truncation error of the FD approximation of eq. (A.7-1) is
first order (first degree) in ∆z.

Substitution of approximation (A.7-1) in eq. (A.1-1) gives

∂u(z, t) u(z, t)−u(z−∆z, t)
=−v

∂ t z (A.7-3)
∆z

Equation (A.7-3) is a system of ODEs4.

dui ui −u
=−v i−1

dt z ; i = 1,2, ...,n
∆z z (A.7-4)

If IC (A.1-2) is a unit step (Heaviside function), h(t),1, t < 0
h(t) = (A.7-5)0, t > 0

the exact (analytical) solution to eq. (A.1-1) (also discussed after eq. (A.1-3)) is

u(z, t) = u(z− vzt) = h(z− vzt) (A.7-6)

which can be used to test the MOL numerical solution, eq. (A.7-3).

2R is a quality, open-source scientific computing system that is easily downloaded from the Internet.
3Upwind refers to the use of u(z−∆, t) in the FD which is upstream of u(z, t) (with vz > 0). As ex-

pected, u(z−∆, t) affects u(z, t) by convection. If the downwind (downstream) value u(z+∆z, t) is used in
the FD approximation, the resulting ordinary differential equation (ODE) system is unstable (unbounded
u(z, t) with increasing t).

4Equation (A.7-3) is an example of the method of lines (MOL) approximation of a PDE as a series of
ODEs. The MOL is a general numerical method (algorithm) in which the spatial derivatives of a PDE are
replaced with an algebraic approximation, in this case, a FD. The approximating ODEs are then integrated
by a library initial value ODE integrator.

Appendix A 109

A main program for eqs. (a.1) and (A.7) follows.

#

First order hyperbolic PDE

(advection equation)

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1a.R");

source("step.R");

#

Set case

ncase=1;

#

Parameters

nz=21;

vz=1;

ue=1;

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);

z=seq(from=zl,to=zu,by=dz);

#

Independent variable for ODE integration

t0=0;tf=1;nout=5;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

Initial condition (t=0)

u0=rep(0,nz);

ncall=0;

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde1a,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

#

Arrays for plotting numerical, exact solutions

110 Appendix A

u=matrix(0,nrow=nz,ncol=nout);

uex=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

uex[iz,it]=step(z[iz],tout[it],vz);

}

u[1,it]=ue;

}

#

Display numerical solution

iv=seq(from=1,to=nout,by=2);

for(it in iv){

cat(sprintf("\n t z z-v*t u(z,t) uex(z,t)\n"));

iv=seq(from=1,to=nz,by=10);

for(iz in iv){

lam=z[iz]-vz*tout[it];

cat(sprintf("%6.2f%6.2f%8.2f%12.3e%12.3e\n",

tout[it],z[iz],lam,u[iz,it],uex[iz,it]));

}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

#

Plot PDE solution

#

u

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u[2:nz,],type="l",xlab="z",

ylab="u(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

matpoints(x=z[2:nz],u[2:nz,],pch="n",lty=1,lwd=2,

col="black");

#

uex

matpoints(x=z[2:nz],uex[2:nz,],type="l",lty=1,lwd=2,

col="black");

matpoints(x=z[2:nz],uex[2:nz,],pch="x",lty=1,lwd=2,

col="black");

Listing A.1: Main program for eqs. (A.1-1,2,3), first-order hyperbolic

Appendix A 111

The following details about Listing A.1 can be noted.

• Previous workspaces are deleted.

#

First order hyperbolic PDE

(advection equation)

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The R ODE integrator library deSolve is accessed [6].

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1a.R");

source("step.R");

Then the directory with the files for the solution of eqs. (A.1-1,2,3) is des-
ignated. Note that setwd (set working directory) uses / rather than the
usual \.
The ODE/MOL routine pde1a is discussed subsequently. step is the ex-
act (analytical) solution to eq. (A.1-1) with eqs. (A.1-2,3) specified as a
Heaviside step function, u(z, t) = h(z− vzt).

• An index for a case, with ncase=1,2, is specified. This index is used in the
ODE/MOL routine pde1a considered subsequently.

#

Set case

ncase=1;

• The parameters of eqs. (A.1-1,2,3) are specified

#

Parameters

nz=101;

vz=1;

ue=1;

where
− nz: number of points in the spatial grid in z.
− vz: velocity vz in eq. (A.1-1).

112 Appendix A

− ue: boundary value u(z = zl = 0, t) = g(t) = ue (according to BC
(A.1-3)).

• A spatial grid for eq. (A.1-1) is defined with nz=101 points so that z =

0,1/100=0.01,...,1.

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);

z=seq(from=zl,to=zu,by=dz);

The grid spacing is dz = ∆z.
• The interval in t is defined with nout=5 output points.

#

Independent variable for ODE integration

t0=0;tf=1;nout=5;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1))

• IC (A.1-2) is implemented, with uz,t=0 = f (z) = 0.

#

Initial condition (t=0)

u0=rep(0,nz);

ncall=0;

Also, the counter for the calls to pde1a is initialized.
• The system of nz=101 ODEs is integrated by the library integrator lsodes

(available in deSolve, [6]). As expected, the inputs to lsodes are the ODE
function, pde1a, the IC vector u0, and the vector of output values of t,
tout. The length of u0 (101) informs lsodes how many ODEs are to be
integrated. func,y,times are reserved names.

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde1a,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

nrow,ncol confirm the dimensions of out.
• u(z, t) and the exact solution h(z−vzt) are placed in matrices for subsequent

plotting.

#

Arrays for plotting numerical, exact solutions

Appendix A 113

u=matrix(0,nrow=nz,ncol=nout);

uex=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

uex[iz,it]=step(z[iz],tout[it],vz);

}

u[1,it]=ue;

}

Function step for the exact (analytical) solution to eq. (A.1-1), listed next,
follows from eq. (A.7-6) and the discussion after eq. (A.1-3) pertaining to
λ = z− vzt (with h(λ = 0) = 0.5).

step=function(z,t,vz){

#

Function step computes the exact (analytical)

for the linear advection equation with step BC

#

lambda = z-vz*t

lam=z-vz*t

#

Step function

if(lam<0){step=1;}

if(lam==0){step=0.5;}

if(lam>0){step=0;}

#

Return function

return(c(step));

}

Listing A.2: h(z− vzt) for eqs. (A.1)

c is the vector operator in R, i.e., step is returned as a vector to the main
program of Listing A.1.

• The numerical values of u(z, t) returned by lsodes and the exact solution
are displayed. Every second value in t and every tenth value in z appear
from by=2,10.

#

Display numerical solution

iv=seq(from=1,to=nout,by=2);

for(it in iv){

cat(sprintf("\n t z z-v*t u(z,t) uex(z,t)\n"));

iv=seq(from=1,to=nz,by=10);

for(iz in iv){

114 Appendix A

lam=z[iz]-vz*tout[it];

cat(sprintf("%6.2f%6.2f%8.2f%12.3e%12.3e\n",

tout[it],z[iz],lam,u[iz,it],uex[iz,it]));

}

}

• The number of calls to pde1a is displayed at the end of the solution.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• The numerical solution is plotted as lines and superimposed points with the
letter n.

#

Plot PDE solution

#

u

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u[2:nz,],type="l",xlab="z",

ylab="u(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

matpoints(x=z[2:nz],u[2:nz,],pch="n",lty=1,lwd=2,

col="black");

• The exact solution is plotted as lines and superimposed points with the
letter x.

#

uex

matpoints(x=z[2:nz],uex[2:nz,],type="l",lty=1,lwd=2,

col="black");

matpoints(x=z[2:nz],uex[2:nz,],pch="x",lty=1,lwd=2,

col="black");

The discontinuity at z = zl of eqs (A.7-5,6) is not plotted ([2:nz,]) to
improve the appearance of the plots.

This completes the discussion of the main program of Listing A.1. The
ODE/MOL routine, pde1a, called by lsodes in the main program is considered
next.

pde1a=function(t,u,parm){

#

Function pde1a computes the t derivative

of u(z,t)

Appendix A 115

#

BC, z=zl

u[1]=ue;

#

PDE

ut=rep(0,nz);

if(ncase==1){

for(iz in 1:nz){

if(iz==1){ut[iz]=0;}

if(iz>1){

ut[iz]=-vz*(u[iz]-u[iz-1])/dz;}

}

}

if(ncase==2){

for(iz in 1:(nz-1)){

if(iz==1){ut[iz]=0;}

if(iz>1){

ut[iz]=-vz*(u[iz+1]-u[iz-1])/(2*dz);}

}

ut[nz]=-vz*(3*u[nz]-4*u[nz-1]+u[nz-2])/(2*dz);

}

#

Increment calls to pde1a

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing A.3: ODE/MOL routine pde1a for eq. (A.1)

The following details about Listing A.3 can be noted.

• The function is defined.

pde1a=function(t,u,parm){

#

Function pde1a computes the t derivative

of u1(z,t)

t is the current value of t in eqs. (A.1). u is the 101-vector of ODE/PDE-
dependent variables. parm is an argument to pass parameters to pde1a (un-
used, but required in the argument list). The arguments must be listed in the
order stated to properly interface with lsodes called in the main program
of Listing A.1. The derivative vector of the LHS of eq. (A.1-1) is calculated
and returned to lsodes as explained subsequently.

116 Appendix A

• BC (A.1-3) is programmed (with f (z) = ue).

#

BC, z=zl

u[1]=ue;

• Equation (A.1-1) is programmed for ncase=1.

#

PDE

ut=rep(0,nz);

if(ncase==1){

for(iz in 1:nz){

if(iz==1){ut[iz]=0;}

if(iz>1){

ut[iz]=-vz*(u[iz]-u[iz-1])/dz;}

}

}
∂u

The derivative in eq. (A.1-1) is approximated with a two point upwind
∂ z

finite difference (FD) as in eqs. (A.7).
For z = zl , BC (A.1-3) sets the value of u(z = zl , t) and therefore the deriva-
tive is set to zero (if(iz==1)u1t[iz]=0;) to ensure the boundary value
is maintained.
The correspondence of the programming with eqs. (A.7) is an important
feature of the MOL. The principal disadvantage of the two point upwind
FD, numerical diffusion which is an error (artifact) in the numerical so-
lution, is demonstrated by the graphical output in Figure A.1-1 produced
from the main program of Listing A.1 (discussed next).

• Equation (A.1-1) is programmed for ncase=2.

if(ncase==2){

for(iz in 1:(nz-1)){

if(iz==1){ut[iz]=0;}

if(iz>1){

ut[iz]=-vz*(u[iz+1]-u[iz-1])/(2*dz);}

}

ut[nz]=-vz*(3*u[nz]-4*u[nz-1]+u[nz-2])/(2*dz);

}

∂u
The derivative in eq. (A.1-1) is approximated with a two point centered

∂ z
finite difference (FD).

∂u u(z+∆, t)−u(z−∆z, t)≈ +O(∆z2) (A.8-1)
∂ z 2∆z

O ∆z2() indicates that the truncation error of the FD approximation of eq.
(A.8-1) is second order in ∆z.

Appendix A 117

Substitution of approximation (A.8-1) in eq. (A.1-1) gives

∂u(z, t) u(z+∆z, t)−u(z−∆z, t)
=−v

∂ t z (A.8-2)
2∆z

or in terms of the index i on the spatial grid in z,

dui ui+1 −u
v i−1

=−
dt z ; i = 1,2, ...,n (A.8-3)

2∆z z

For the right boundary (z = zu = 1), FD (A.8-1) introduces a fictitious value
u(zu +∆z, t). To circumvent this problem, a three point concentred FD ap-

∂u(zu, t)proximation for is used.
∂ z

∂u(zu, t) 3u(zu, t)−4u(zu −∆z, t)+u(zu −2∆z, t)≈ (∆z2+O) (A.8-4)
∂ z 2∆z

The centered FD approximation of eq. (A.8-1) introduces a second form
of error, numerical oscillation, as demonstrated by the graphical output in
Figure A.1-2 discussed subsequently.

• The counter for the calls to pde1a is incremented and returned to the main
program of Listing A.1 by <<-.

#

Increment calls to pde1a

ncall <<- ncall+1;

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde1a.

#

Return derivative vector

return(list(c(ut)));

}

The numerical output from the routines of Listings A.1, A.2, A.3 follows. For
ncase=1 the numerical output is in Table A.1.

[1] 5

[1] 102

t z z-v*t u(z,t) uex(z,t)

0.00 0.00 0.00 1.000e+00 5.000e-01

0.00 0.10 0.10 0.000e+00 0.000e+00

0.00 0.20 0.20 0.000e+00 0.000e+00

0.00 0.30 0.30 0.000e+00 0.000e+00

118 Appendix A

0.00 0.40 0.40 0.000e+00 0.000e+00

0.00 0.50 0.50 0.000e+00 0.000e+00

0.00 0.60 0.60 0.000e+00 0.000e+00

0.00 0.70 0.70 0.000e+00 0.000e+00

0.00 0.80 0.80 0.000e+00 0.000e+00

0.00 0.90 0.90 0.000e+00 0.000e+00

0.00 1.00 1.00 0.000e+00 0.000e+00

t z z-v*t u(z,t) uex(z,t)

0.50 0.00 -0.50 1.000e+00 1.000e+00

0.50 0.10 -0.40 1.000e+00 1.000e+00

0.50 0.20 -0.30 1.000e+00 1.000e+00

0.50 0.30 -0.20 9.991e-01 1.000e+00

0.50 0.40 -0.10 9.354e-01 1.000e+00

0.50 0.50 0.00 5.188e-01 5.000e-01

0.50 0.60 0.10 9.227e-02 0.000e+00

0.50 0.70 0.20 4.334e-03 0.000e+00

0.50 0.80 0.30 5.701e-05 0.000e+00

0.50 0.90 0.40 2.386e-07 0.000e+00

0.50 1.00 0.50 3.641e-10 0.000e+00

t z z-v*t u(z,t) uex(z,t)

1.00 0.00 -1.00 1.000e+00 1.000e+00

1.00 0.10 -0.90 1.000e+00 1.000e+00

1.00 0.20 -0.80 1.000e+00 1.000e+00

1.00 0.30 -0.70 1.000e+00 1.000e+00

1.00 0.40 -0.60 1.000e+00 1.000e+00

1.00 0.50 -0.50 1.000e+00 1.000e+00

1.00 0.60 -0.40 1.000e+00 1.000e+00

1.00 0.70 -0.30 9.993e-01 1.000e+00

1.00 0.80 -0.20 9.826e-01 1.000e+00

1.00 0.90 -0.10 8.536e-01 1.000e+00

1.00 1.00 0.00 5.133e-01 5.000e-01

ncall = 307

Table A.1: Numerical output from Listings A.1, A.2, A.3, ncase=1 eqs. (A.7)

The following details about this output can be noted.

• 5 t output points as the first dimension of the solution matrix out from
lsodes as programmed in the main program of Listing A.1 (with nout=5).

• The solution matrix out returned by lsodes has 102 elements as a second
dimension. The first element is the value of t. Elements 2 to 102 are u(z, t)
from eqs. (A.7) (for each of the 101 output points).

Appendix A 119

• The solution is displayed for t=0,1/4=0.25,...,1 as programmed in
Listing A.1 (every second value of t is displayed as explained previously).

• The solution is displayed for z=0,1/100=0.01,...,1 as programmed in
Listing A.1 (every tenth value of z is displayed as explained previously).

• IC (A.7-5) is confirmed (t = 0). Note in particular the IC at z− vzt = 0.
• The BC u(z = 0, t) = ue = 1 as programmed in Listing A.3 is confirmed.
• The computational effort as indicated by ncall = 307 is modest so that

lsodes computed the solution to eqs. (A.7) efficiently.

The graphical output is in Figures A.1-1.
Comparison of the numerical solution u(z, t) (plotted with n) and exact solution

h(z− vzt) (plotted with x) indicates the numerical diffusion of the two point upwind
∂u

FD approximation of the spatial derivative . Generally, the two solutions (numer-
∂ z

ical and exact) are fronts moving left to right (as expected with vz > 0).
For ncase=2, the numerical output is in Table A.2.

[1] 5

[1] 102

t z z-v*t u(z,t) uex(z,t)

0.00 0.00 0.00 1.000e+00 5.000e-01

0.00 0.10 0.10 0.000e+00 0.000e+00

0.00 0.20 0.20 0.000e+00 0.000e+00

0.00 0.30 0.30 0.000e+00 0.000e+00

0.00 0.40 0.40 0.000e+00 0.000e+00

0.00 0.50 0.50 0.000e+00 0.000e+00

0.00 0.60 0.60 0.000e+00 0.000e+00

0.00 0.70 0.70 0.000e+00 0.000e+00

0.00 0.80 0.80 0.000e+00 0.000e+00

0.00 0.90 0.90 0.000e+00 0.000e+00

0.00 1.00 1.00 0.000e+00 0.000e+00

t z z-v*t u(z,t) uex(z,t)

0.50 0.00 -0.50 1.000e+00 1.000e+00

0.50 0.10 -0.40 1.002e+00 1.000e+00

0.50 0.20 -0.30 1.009e+00 1.000e+00

0.50 0.30 -0.20 9.115e-01 1.000e+00

0.50 0.40 -0.10 9.638e-01 1.000e+00

0.50 0.50 0.00 3.426e-01 5.000e-01

0.50 0.60 0.10 1.753e-03 0.000e+00

0.50 0.70 0.20 6.549e-07 0.000e+00

0.50 0.80 0.30 3.609e-11 0.000e+00

0.50 0.90 0.40 4.309e-16 0.000e+00

0.50 1.00 0.50 4.286e-22 0.000e+00

120 Appendix A

t z z-v*t u(z,t) uex(z,t)

1.00 0.00 -1.00 1.000e+00 1.000e+00

1.00 0.10 -0.90 1.006e+00 1.000e+00

1.00 0.20 -0.80 1.010e+00 1.000e+00

1.00 0.30 -0.70 1.002e+00 1.000e+00

1.00 0.40 -0.60 1.017e+00 1.000e+00

1.00 0.50 -0.50 1.044e+00 1.000e+00

1.00 0.60 -0.40 9.336e-01 1.000e+00

1.00 0.70 -0.30 1.066e+00 1.000e+00

1.00 0.80 -0.20 1.133e+00 1.000e+00

1.00 0.90 -0.10 1.211e+00 1.000e+00

1.00 1.00 0.00 3.394e-01 5.000e-01

ncall = 550

Table A.2: Numerical output from Listings A.1, A.2, A.3, ncase=2, eqs. (A.8)

The following details about this output can be noted (some of the discussion for
ncase=1 is repeated to provide a self contained explanation)

• 5 t output points as the first dimension of the solution matrix out from
lsodes as programmed in the main program of Listing A.1 (with nout=5).

• The solution matrix out returned by lsodes has 102 elements as a second
dimension. The first element is the value of t. Elements 2 to 102 are u(z, t)
from eqs. (A.8) (for each of the 101 output points).

• The solution is displayed for t=0,1/4=0.25,...,1 as programmed in
Listing A.1 (every second value of t is displayed as explained previously).

• The solution is displayed for z=0,1/100=0.01,...,1 as programmed in
Listing A.1 (every tenth value of z is displayed as explained previously).

• IC (A.7-5) is confirmed (t = 0). Note, in particular, the IC at z− vzt = 0.
• The BC u(z = 0, t) = ue = 1 as programmed in Listing A.3 is confirmed.
• The computational effort as indicated by ncall = 550 is modest so that

lsodes computed the solution to eqs. (A.8) efficiently.

The graphical output is in Figures A.1-2. Comparison of the numerical solution
u(z, t) (plotted with n) and exact solution h(z−vzt) (plotted with x) indicates the nu-
merical oscillation of the two point centered FD approximation of the spatial deriva-

∂u
tive . (the numerical oscillation invalidates the numerical solution). Generally,

∂ z
centered FD approximations should not be applied to hyperbolic (strongly convec-
tive) PDEs.

An improvement in the numerical integration of the advection equation, eq.
(A.1-1) (reduced numerical diffusion, elimination of numerical oscillation), can be

∂u
achieved by using flux limiter approximations for the derivative ([5], pp. 37–43).

∂ z

Appendix A 121

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
(z
,t
)

nn

nnnnnnnnnnnnnnn
n
n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
nnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
n
n
n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nn
n
n
n
n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n
n
n
nnnnnnnnnn

nnn
n
n
n
n
n
n
n

n

n

n

n

n

n

n

n

n

n

xx

xxxxxxxxxxxxxxxxxxxxxxxx

x

xxx

xxx

x

xx

xx

x

xxxxxxxxxxxxxxxxxxxxxxxxx

xxx

x

Figure A.1-1 u(z, t) from eqs. (A.7)

122 Appendix A

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

z

u
(z
,t
)

nn

n
nn

n
n

n

n

n

nn

n

nn

n

n
n

n

n

n
n

n

n

n

n

n

n

n

n

n
nnn

nnnnn
nn
n
n
n
n
n

nn

n
n
n

nn

n

n
n

n

n
n

n

n
n

n

nn

n

n

n

n

n

n

n
n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

n
n
nnn

nnnnnnnnn
nnn
n
n
nn
nn
n
n
n

nn

n
n
n

nn

n

n
n

n
n

n

n
n

n

n
n

n

n
n

n

n

n
n

n

n
n

n

n

nn

n

n

n
n

n

n

n

nn

n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

n

n
n
n
nnnnnnnnnnnnnnnnnnn

nnnnnnnnnn
n
nn
nnn
nn
nn
nn
n
n
n
nn
n
n
n
nn

n
n
n

nn

n
n
n

n
n

n

nn

n

nn

n

nn

n

nn

n

nn

n

n
n
n

n

nn

n

n

n
n

n

n

n
n

n

n

n
n

n

n

n
n

n

n

n

n
n
n

n

n

n

n

nn

n

n

n

n

n

n

n

n

xx

xxxxxxxxxxxxxxxxxxxxxxxx

x

xxx

xxx

x

xx

xx

x

xxxxxxxxxxxxxxxxxxxxxxxxx

xxx

x

Figure A.1-2 u(z, t) from eqs. (A.8)

Appendix A 123

A.3.2 FLUX LIMITERS

Consideration is now given to two flux limiters: van leer and smart. Small extensions
to the main program of Listing A.1 are added, i.e., (1) files for the two flux limiters
are specified and (2) an index, ncase=1,2, is added and displayed for the limiters.

.

.

.

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1b.R");

source("vanl.R");

source("smart.R");

source("step.R");

#

Specify case

ncase=1;

.

.

.

#

Display numerical solution

iv=seq(from=1,to=nout,by=2);

cat(sprintf("\n ncase = %2d"));

for(it in iv){

cat(sprintf("\n t z z-v*t u(z,t) uex(z,t)\n"));

iv=seq(from=1,to=nz,by=5);

for(iz in iv){

lam=z[iz]-vz*tout[it];

cat(sprintf("%6.2f%6.2f%8.2f%12.3e%12.3e\n",

tout[it],z[iz],lam,u[iz,it],uex[iz,it]));

}

}

.

.

.

Listing A.4: Additions to the main program of Listing A.1 for eqs. (A.1-1,2,3)

ncase is used in the ODE/MOL routine, pde1b, to call a particular flux limiter.

pde1b=function(t,u,parm){

#

Function pde1b computes the t derivative

124 Appendix A

of u(z,t)

#

BC, z=zl

u[1]=ue;

#

PDE

if(ncase==1){uz= vanl(zl,zu,nz,u,vz);}

if(ncase==2){uz=smart(zl,zu,nz,u,vz);}

ut=rep(0,nz);

for(iz in 1:nz){

if(iz==1){ut[iz]=0;}

if(iz>1){

ut[iz]=-vz*uz[iz];}

}

#

Increment calls to pde1b

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing A.5: ODE/MOL routine pde1b for eqs. (A.1-1,2,3)

The following details about Listing A.5 can be noted. (with some repetition of the
discussion of Listing A.3).

• The function is defined.

pde1b=function(t,u,parm){

#

Function pde1b computes the t derivative

of u1(z,t)

t is the current value of t in eqs. (A.1). u is the 101-vector of ODE/PDE
dependent variables. parm is an argument to pass parameters to pde1b (un-
used, but required in the argument list). The arguments must be listed in the
order stated to properly interface with lsodes called in the main program
of Listing A.1. The derivative vector of the LHS of eq. (A.1-1) is calculated
and returned to lsodes as explained subsequently.

• BC (A.1-3) is programmed (with f (z) = ue).

#

BC, z=zl

u[1]=ue;

Appendix A 125

• Equation (A.1-1) is programmed for ncase=1,2.

#

PDE

if(ncase==1){uz= vanl(zl,zu,nz,u,vz);}

if(ncase==2){uz=smart(zl,zu,nz,u,vz);}

ut=rep(0,nz);

for(iz in 1:nz){

if(iz==1){ut[iz]=0;}

if(iz>1){

ut[iz]=-vz*uz[iz];}

}

∂u
The derivative in eq. (A.1-1) is approximated with a flux limiter se-

∂ z
lected by ncase. The code (programming) in functions vanl,smart is
discussed subsequently.
For z = zl , BC (A.1-3) sets the value of u(z = zl , t) and therefore the deriva-
tive is set to zero (if(iz==1)u1t[iz]=0;) to ensure the boundary value
is maintained.

• The counter for the calls to pde1b is incremented and returned to the main
program of Listing A.1 by <<-.

#

Increment calls to pde1b

ncall <<- ncall+1;

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde1b.

#

Return derivative vector

return(list(c(ut)));

}

Function vanl for the van Leer flux limiter is listed next

vanl=function(zl,zu,n,u,v) {

#

Function vanl computes the van Leer flux limiter

approximation of a first derivative

#

Declare arrays

uz=rep(0,n);

phi=rep(0,n);

r=rep(0,n);

#

126 Appendix A

Grid spacing

dz=(zu-zl)/(n-1);

#

Tolerance for limiter switching

delta=1.0e-05;

#

Positive v

if(v >= 0){

for(i in 3:(n-1)){

if(abs(u[i]-u[i-1])<delta)

phi[i]=0

else{

r[i]=(u[i+1]-u[i])/(u[i]-u[i-1])

if(r[i]<0)

phi[i]=0

else

phi[i]=max(0,min(2*r[i],min(0.5*(1.0+r[i]),2)))}

if(abs(u[i-1]-u[i-2])<delta)

phi[i-1]=0

else{

r[i-1]=(u[i]-u[i-1])/(u[i-1]-u[i-2])

if(r[i-1]<0)

phi[i-1]=0

else

phi[i-1]=max(0,min(2*r[i-1],min(0.5*(1.0+r[i-1]),2)))}

flux2=u[i]+(u[i]-u[i-1])*phi[i]/2;

flux1=u[i-1]+(u[i-1]-u[i-2])*phi[i-1]/2;

uz[i]=(flux2-flux1)/dz;

}

uz[1]=(-u[1]+u[2])/dz;

uz[2]=(-u[1]+u[2])/dz;

uz[n]=(u[n]-u[n-1])/dz;

}

#

Negative v

if(v < 0){

for(i in 2:(n-2)){

if(abs(u[i]-u[i+1])<delta)

phi[i]=0

else{

r[i]=(u[i-1]-u[i])/(u[i]-u[i+1])

if(r[i]<0)

phi[i]=0

else

Appendix A 127

phi[i]=max(0,min(2*r[i],min(0.5*(1.0+r[i]),2)))}

if(abs(u[i+1]-u[i+2])<delta)

phi[i+1]=0

else{

r[i+1]=(u[i]-u[i+1])/(u[i+1]-u[i+2])

if(r[i+1]<0)

phi[i+1]=0

else

phi[i+1]=max(0,min(2*r[i+1],min(0.5*(1.0+r[i+1]),2)))}

flux2=u[i]+(u[i]-u[i+1])*phi[i]/2;

flux1=u[i+1]+(u[i+1]-u[i+2])*phi[i+1]/2;

uz[i]=-(flux2-flux1)/dz;

}

uz[1]=(-u[1]+u[2])/dz;

uz[n-1]=(-u[n-1]+u[n])/dz;

uz[n] =(-u[n-1]+u[n])/dz;

}

#

All points concluded (z=zl,...,z=zu)

return(c(uz));

}

Listing A.6: Function vanl

The following details about vanl can be noted.

• The function is defined.

vanl=function(zl,zu,n,u,v) {

#

Function vanl computes the van Leer flux limiter

approximation of a first derivative

zl,zu are the lower and upper boundary values of the spatial grid in z. n
is the number of grid points in z. u is the vector of PDE-dependent variable
values to be differentiated numerically. v is the convective velocity (only
the sign is used to determine the direction of the convection).

• Arrays (vectors) are declared for subsequent use.

#

Declare arrays

uz=rep(0,n);

phi=rep(0,n);

r=rep(0,n);

128 Appendix A

• The grid spacing is calculated.

#

Grid spacing

dz=(zu-zl)/(n-1);

• The tolerance (threshold) for switching between sections of the flux limiter
is specified.

#

Tolerance for limiter switching

delta=1.0e-05;

delta can be varied to determine the sensitivity of the solution to its value.
• For positive velocity (in eq. (A.1-1)), the limiting function phi is calcu-

lated.

#

Positive v

if(v >= 0){

for(i in 3:(n-1)){

if(abs(u[i]-u[i-1])<delta)

phi[i]=0

else{

r[i]=(u[i+1]-u[i])/(u[i]-u[i-1])

if(r[i]<0)

phi[i]=0

else

phi[i]=max(0,min(2*r[i],min(0.5*(1.0+r[i]),2)))}

if(abs(u[i-1]-u[i-2])<delta)

phi[i-1]=0

else{

r[i-1]=(u[i]-u[i-1])/(u[i-1]-u[i-2])

if(r[i-1]<0)

phi[i-1]=0

else

phi[i-1]=max(0,min(2*r[i-1],

min(0.5*(1.0+r[i-1]),2)))}

flux2=u[i]+(u[i]-u[i-1])*phi[i]/2;

flux1=u[i-1]+(u[i-1]-u[i-2])*phi[i-1]/2;

uz[i]=(flux2-flux1)/dz;

}

phi is a nonlinear function of u[i+1],u[i],u[i-1],u[i-2] (the two
point upwind and centered FDs considered previously are linear in u(z, t)).
max,min are utilities in the basic R.

Appendix A 129

At the end, the limiting function phi is used to calculate the fluxes
flux1,flux2 and derivative in z, uz, for grid points 3:(n-1). Mathe-
matical and graphical details for the limiting function are available in [5],
pp. 41–43.

• The derivative in z is computed for the boundary points 1,2,n.

uz[1]=(-u[1]+u[2])/dz;

uz[2]=(-u[1]+u[2])/dz;

uz[n]=(u[n]-u[n-1])/dz;

}

∂u
This completes the calculation of the approximation for v>0.

∂ z
The code for v<0 is similar with the values u[i-1],u[i-2] replaced by

u[i+1],u[i+2].
The performance of the van Leer limiter is demonstrated by execution of the R

routines in Listings A.1-5 with ncase=1. The numerical output is given in Table A.3.

[1] 5

[1] 102

ncase = 1

t z z-v*t u(z,t) uex(z,t)

0.00 0.00 0.00 1.000e+00 5.000e-01

0.00 0.10 0.10 0.000e+00 0.000e+00

0.00 0.20 0.20 0.000e+00 0.000e+00

0.00 0.30 0.30 0.000e+00 0.000e+00

0.00 0.40 0.40 0.000e+00 0.000e+00

0.00 0.50 0.50 0.000e+00 0.000e+00

0.00 0.60 0.60 0.000e+00 0.000e+00

0.00 0.70 0.70 0.000e+00 0.000e+00

0.00 0.80 0.80 0.000e+00 0.000e+00

0.00 0.90 0.90 0.000e+00 0.000e+00

0.00 1.00 1.00 0.000e+00 0.000e+00

t z z-v*t u(z,t) uex(z,t)

0.50 0.00 -0.50 1.000e+00 1.000e+00

0.50 0.10 -0.40 1.000e+00 1.000e+00

0.50 0.20 -0.30 1.000e+00 1.000e+00

0.50 0.30 -0.20 1.000e+00 1.000e+00

0.50 0.40 -0.10 1.000e+00 1.000e+00

0.50 0.50 0.00 4.418e-01 5.000e-01

0.50 0.60 0.10 -3.977e-07 0.000e+00

0.50 0.70 0.20 -1.773e-08 0.000e+00

130 Appendix A

0.50 0.80 0.30 -3.050e-10 0.000e+00

0.50 0.90 0.40 -1.527e-12 0.000e+00

0.50 1.00 0.50 -2.378e-15 0.000e+00

t z z-v*t u(z,t) uex(z,t)

1.00 0.00 -1.00 1.000e+00 1.000e+00

1.00 0.10 -0.90 1.000e+00 1.000e+00

1.00 0.20 -0.80 1.000e+00 1.000e+00

1.00 0.30 -0.70 1.000e+00 1.000e+00

1.00 0.40 -0.60 1.000e+00 1.000e+00

1.00 0.50 -0.50 1.000e+00 1.000e+00

1.00 0.60 -0.40 1.000e+00 1.000e+00

1.00 0.70 -0.30 1.000e+00 1.000e+00

1.00 0.80 -0.20 1.000e+00 1.000e+00

1.00 0.90 -0.10 9.999e-01 1.000e+00

1.00 1.00 0.00 3.566e-01 5.000e-01

ncall = 4919

Table A.3: Numerical output from Listings A.1-5, ncase=1, van Leer limiter

The following details about Table A.3 can be noted.

• The dimensions of the solution matrix out returned by lsodes in the main
program of Listing A.1 are again 5×102 as explained previously for Tables
A.1, A.2.

• The case is confirmed (as set in the main program of Listing A.1).

ncase = 1

• The solution is displayed for z=0,1/100=0.01,...,1 as programmed in
Listing A.1 (every tenth value of z is displayed as explained previously).

• IC (A.7-5) is confirmed (t = 0). Note, in particular, the IC at z− vzt = 0.
• The BC u(z = 0, t) = ue = 1 as programmed in Listing A.5 is confirmed.
• The computational effort as indicated by ncall = 4919 is higher than for

the FD output of Tables A.1, A.2 due to the computations in the van Leer
limiter of Listing A.6.

The graphical output is in Figure A.2-1. Comparison of the numerical solution u(z, t)
(plotted with n) and exact solution h(z− vzt) (plotted with x) indicates small numer-
ical diffusion and no numerical oscillation, i.e., a major improvement over the FD
solutions in Figures A.1-1, A.1-2.

The exact solution h(z−vzt) is impossible to reproduce numerically since for z−
vzt = 0 the solution is undefined (infinite slope). With this in mind, the performance
of the van Leer limiter is quite impressive.

Function smart for the smart flux limiter is listed next (ncase=2 in the main
program of Listings A.1, A.4).

Appendix A 131

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
(z
,t
)

nn

nnnnnnnnnnnnnnnnnnnnn

n

n

n

n

n

n

nnn

nnn
n

n

n

n

n

n

n

nn

nnn
n

n

n

n

n

n

n

n
nnnnnnnnnnnnnnnnnnnnnnn

nn
n

n

n

n

n

n

xx

xxxxxxxxxxxxxxxxxxxxxxxx

x

xxx

xxx

x

xx

xx

x

xxxxxxxxxxxxxxxxxxxxxxxxx

xxx

x

Figure A.2-1 u(z, t) from eqs. (A.1), van Leer flux limiter

smart=function(zl,zu,n,u,v) {

#

Function smart computes the smart flux limiter

approximation of a first derivative

#

Declare arrays

132 Appendix A

uz=rep(0,n);

phi=rep(0,n);

r=rep(0,n);

#

Grid spacing

dz=(zu-zl)/(n-1);

#

Tolerance for limiter switching

delta=1.0e-05;

#

Positive v

if(v >= 0){

for(i in 3:(n-1)){

if(abs(u[i]-u[i-1])<delta)

phi[i]=0

else{

r[i]=(u[i+1]-u[i])/(u[i]-u[i-1])

phi[i]=max(0,min(4,0.75*r[i]+0.25,2*r[i]))}

if(abs(u[i-1]-u[i-2])<delta)

phi[i-1]=0

else{

r[i-1]=(u[i]-u[i-1])/(u[i-1]-u[i-2])

phi[i-1]=max(0,min(4,0.75*r[i-1]+0.25,2*r[i-1]))}

flux2=u[i]+(u[i]-u[i-1])*phi[i]/2

flux1=u[i-1]+(u[i-1]-u[i-2])*phi[i-1]/2

uz[i]=(flux2-flux1)/dz

}

uz[1]=(-u[1]+u[2])/dz;

uz[2]=(-u[1]+u[2])/dz;

uz[n]=(u[n]-u[n-1])/dz;

}

#

Negative v

if(v < 0){

for(i in 2:(n-2)){

if(abs(u[i]-u[i+1])<delta)

phi[i]=0

else{

r[i]=(u[i-1]-u[i])/(u[i]-u[i+1])

phi[i]=max(0,min(4,0.75*r[i]+0.25,2*r[i]))}

if(abs(u[i+1]-u[i+2])<delta)

phi[i+1]=0

else{

r[i+1]=(u[i]-u[i+1])/(u[i+1]-u[i+2])

Appendix A 133

phi[i+1]=max(0,min(4,0.75*r[i+1]+0.25,2*r[i+1]))}

flux2=u[i]+(u[i]-u[i+1])*phi[i]/2

flux1=u[i+1]+(u[i+1]-u[i+2])*phi[i+1]/2

uz[i]=-(flux2-flux1)/dz

}

uz[1]=(-u[1]+u[2])/dz;

uz[n-1]=(-u[n-1]+u[n])/dz;

uz[n]=(-u[n-1]+u[n])/dz;

}

#

All points concluded (z=zl,...,z=zu)

return(c(uz));

}

Listing A.7: Function smart

smart is the same as vanl in Listing A.6 except for the limiting function phi

listed next (for v>0).

#

Positive v

if(v >= 0){

for(i in 3:(n-1)){

if(abs(u[i]-u[i-1])<delta)

phi[i]=0

else{

r[i]=(u[i+1]-u[i])/(u[i]-u[i-1])

phi[i]=max(0,min(4,0.75*r[i]+0.25,2*r[i]))}

if(abs(u[i-1]-u[i-2])<delta)

phi[i-1]=0

else{

r[i-1]=(u[i]-u[i-1])/(u[i-1]-u[i-2])

phi[i-1]=max(0,min(4,0.75*r[i-1]+0.25,2*r[i-1]))}

flux2=u[i]+(u[i]-u[i-1])*phi[i]/2

flux1=u[i-1]+(u[i-1]-u[i-2])*phi[i-1]/2

uz[i]=(flux2-flux1)/dz

}

uz[1]=(-u[1]+u[2])/dz;

uz[2]=(-u[1]+u[2])/dz;

uz[n]=(u[n]-u[n-1])/dz;

}

The code for v<0 is similar with the values u[i-1],u[i-2] replaced by
u[i+1],u[i+2]. Mathematical and graphical details for the limiting function are
available in [5], pp. 41–43.

The performance of the smart limiter is demonstrated by execution of the R rou-
tines in Listings A.1-5 with ncase=2. The numerical output is given in Table A.4.

134 Appendix A

[1] 5

[1] 102

ncase = 2

t z z-v*t u(z,t) uex(z,t)

0.00 0.00 0.00 1.000e+00 5.000e-01

0.00 0.10 0.10 0.000e+00 0.000e+00

0.00 0.20 0.20 0.000e+00 0.000e+00

0.00 0.30 0.30 0.000e+00 0.000e+00

0.00 0.40 0.40 0.000e+00 0.000e+00

0.00 0.50 0.50 0.000e+00 0.000e+00

0.00 0.60 0.60 0.000e+00 0.000e+00

0.00 0.70 0.70 0.000e+00 0.000e+00

0.00 0.80 0.80 0.000e+00 0.000e+00

0.00 0.90 0.90 0.000e+00 0.000e+00

0.00 1.00 1.00 0.000e+00 0.000e+00

t z z-v*t u(z,t) uex(z,t)

0.50 0.00 -0.50 1.000e+00 1.000e+00

0.50 0.10 -0.40 1.000e+00 1.000e+00

0.50 0.20 -0.30 1.000e+00 1.000e+00

0.50 0.30 -0.20 1.000e+00 1.000e+00

0.50 0.40 -0.10 9.999e-01 1.000e+00

0.50 0.50 0.00 4.544e-01 5.000e-01

0.50 0.60 0.10 -4.710e-07 0.000e+00

0.50 0.70 0.20 -1.156e-08 0.000e+00

0.50 0.80 0.30 -8.708e-11 0.000e+00

0.50 0.90 0.40 -3.044e-13 0.000e+00

0.50 1.00 0.50 -5.391e-16 0.000e+00

t z z-v*t u(z,t) uex(z,t)

1.00 0.00 -1.00 1.000e+00 1.000e+00

1.00 0.10 -0.90 1.000e+00 1.000e+00

1.00 0.20 -0.80 1.000e+00 1.000e+00

1.00 0.30 -0.70 1.000e+00 1.000e+00

1.00 0.40 -0.60 1.000e+00 1.000e+00

1.00 0.50 -0.50 1.000e+00 1.000e+00

1.00 0.60 -0.40 1.000e+00 1.000e+00

1.00 0.70 -0.30 1.000e+00 1.000e+00

1.00 0.80 -0.20 1.000e+00 1.000e+00

1.00 0.90 -0.10 9.999e-01 1.000e+00

1.00 1.00 0.00 4.600e-01 5.000e-01

Appendix A 135

ncall = 3352

Table A.4: Numerical output from Listings A.1-5, ncase=2, smart limiter

The following details about Table A.4 can be noted (with some repetition of the
discussion of Table A.3).

• The dimensions of the solution matrix out returned by lsodes in the main
program of Listing A.1 are again 5×102 as explained previously for Tables
A.1, A.2, A.3

• The case is confirmed (as set in the main program of Listing A.1).

ncase = 2

• The solution is displayed for z=0,1/100=0.01,...,1 as programmed in
Listing A.1 (every tenth value of z is displayed as explained previously).

• IC (A.7-5) is confirmed (t = 0). Note in particular the IC at z− vzt = 0.
• The BC u(z = 0, t) = ue = 1 as programmed in Listing A.5 is confirmed.
• The computational effort as indicated by ncall = 3352 (less than for the

van Leer limiter).

The graphical output is in Figure A.2-2. Comparison of the numerical solution u(z, t)
(plotted with n) and exact solution h(z− vzt) (plotted with x) indicates small numer-
ical diffusion and no numerical oscillation, i.e., a major improvement over the FD
solutions in Figures A.1-1, A.1-2.

Again, the exact solution h(z− vzt) is impossible to reproduce numerically since
for z− vzt = 0 the solution is undefined (infinite slope). With this in mind, the per-
formance of the smart limiter is quite impressive.

∂u
This completes the discussion of the approximation of the derivative in eq.

∂ z
(A.1-1) by FDs and flux limiters. Discussion follows next for the approximation of

∂ 2u
the second derivative in eqs. (A.4-1), (A.6-1).

∂ z2

A.4 SECOND-ORDER SPATIAL DERIVATIVES
From FD approximation (A.4-7),

∂u ∂u
∂

|u  ∂ z z+∆z − |
∂ z z≈ D 

∂ t ∆z 
u(z+∆z, t)−u(z, t) u(z, t)−u(z−∆z, t) − 

D ∆z ∆z≈  ∆ z

()
u(z+∆z, t)−2u(z, t)+u(z−∆z, t)

= D (A.9-1)
∆z2



136 Appendix A

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
(z
,t
)

nn

nnnnnnnnnnnnnnnnnnnnnn

n

n

n

n

n

n
nn

nn
n

n

n

n

n

n

n

n
nn

nnn

n

n

n

n

n

n

n

n
nnnnnnnnnnnnnnnnnnnnn

nn

n

n

n

n

xx

xxxxxxxxxxxxxxxxxxxxxxxx

x

xxx

xxx

x

xx

xx

x

xxxxxxxxxxxxxxxxxxxxxxxxx

xxx

x

Figure A.2-2 u(z, t) from eqs. (A.1), smart flux limiter

A FD approximation of the second derivative is therefore

∂ 2u u(z+∆z, t)−2u(z, t)+u(z−∆z, t)≈)+O(z2) (A.9-2)
∂ z2 ∆z2 ∆

which is used in the following MOL analysis.

Appendix A 137

A main program for eqs. (A.4-1,2) and various BCs based on eqs. (A.9) follows.

#

Second order parabolic PDE

(diffusion equation)

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1c.R");

#

Specify case

ncase=1;

#

Parameters

nz=21;

D=0.1;

km=0.1;

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

#

Independent variable for ODE integration

t0=0;tf=1;nout=11;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

Initial condition (t=0)

u0=rep(0,nz);

if(ncase==1){

for(iz in 1:nz){

u0[iz]=sin(pi/(zu-zl)*(z[iz]-zl));}

}

if(ncase==2){

for(iz in 1:nz){

u0[iz]=cos(pi/(zu-zl)*(z[iz]-zl));}

}

if(ncase==3){

for(iz in 1:nz){

u0[iz]=1;}

138 Appendix A

}

ncall=0;

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde1c,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

#

Arrays for plotting numerical, exact solutions

u=matrix(0,nrow=nz,ncol=nout);

uex=matrix(0,nrow=nz,ncol=nout);

if(ncase==1){

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

uex[iz,it]=exp(-D*(pi/(zu-zl))^2*tout[it])*

sin(pi*(z[iz]-zl)/(zu-zl));

}

u[1,it]=0;

u[nz,it]=0;

}

}

if(ncase==2){

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

uex[iz,it]=exp(-D*(pi/(zu-zl))^2*tout[it])*

cos(pi*(z[iz]-zl)/(zu-zl));

}

}

}

if(ncase==3){

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

}

}

}

#

Display numerical solution

ncase=1,2

if(ncase<3){

Appendix A 139

iv=seq(from=1,to=nout,by=2);

cat(sprintf("\n ncase = %2d\n",ncase));

for(it in iv){

cat(sprintf("\n t z u(z,t) uex(z,t) error\n"));

iv=seq(from=1,to=nz,by=10);

for(iz in iv){

err=u[iz,it]-uex[iz,it];

cat(sprintf("%6.2f%6.2f%12.3e%12.3e%12.3e\n",

tout[it],z[iz],u[iz,it],uex[iz,it],err));

}

}

}

#

ncase=3

if(ncase==3){

iv=seq(from=1,to=nout,by=2);

cat(sprintf("\n ncase = %2d\n",ncase));

for(it in iv){

cat(sprintf("\n t z u(z,t)\n"));

iv=seq(from=1,to=nz,by=5);

for(iz in iv){

cat(sprintf("%6.2f%6.2f%12.3e\n",

tout[it],z[iz],u[iz,it]));

}

}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

#

Plot PDE solution

#

u

par(mfrow=c(1,1));

matplot(x=z,y=u,type="l",xlab="z",ylab="u(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

matpoints(x=z,y=u,pch="n",lty=1,lwd=2,col="black");

#

uex

if(ncase<3){

matpoints(x=z,y=uex,pch="x",lty=1,lwd=2,col="black");

matpoints(x=z,y=uex,type="l",lty=1,lwd=2,col="black");

}

Listing A.8: Main program for eqs. (A.4-1,2), parabolic

140 Appendix A

The following details about Listing A.8 can be noted (with some repetition of the
discussion of Listing A.1).

• Previous workspaces are deleted.

#

Second order parabolic PDE

(diffusion equation)

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The R ODE integrator library deSolve is accessed [6].

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1c.R");

Then the directory with the files for the solution of eqs. (A.4-1,2) is des-
ignated. Note that setwd (set working directory) uses / rather than the
usual \.
The ODE/MOL routine pde1c is discussed subsequently.

• An index for a case, with ncase=1,2,3, is specified. This index is used in
the ODE/MOL routine pde1c considered subsequently.

#

Specify case

ncase=1;

• The parameters of eqs. (A.4-1,2).

#

Parameters

nz=21;

D=0.1;

km=0.1;

where D, km are parameters in Robin BCs for ncase=3.
• A spatial grid for eq. (A.4-1) is defined with 21 points so that z =

0,1/20=0.05,...,1.

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

The grid spacing is dz = ∆z.

Appendix A 141

• An interval in t is defined with nout=11 output points.

#

Independent variable for ODE integration

t0=0;tf=1;nout=11;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• IC (A.4-2) is implemented for ncase=1,2,3.

Initial condition (t=0)

u0=rep(0,nz);

if(ncase==1){

for(iz in 1:nz){

u0[iz]=sin(pi/(zu-zl)*(z[iz]-zl));}

}

if(ncase==2){

for(iz in 1:nz){

u0[iz]=cos(pi/(zu-zl)*(z[iz]-zl));}

}

if(ncase==3){

for(iz in 1:nz){

u0[iz]=1;}

}

ncall=0;

The three ICs are discussed subsequently. Also, the counter for the calls to
pde1c is initialized.

• The system of nz=21 ODEs is integrated by the library integrator lsodes
(available in deSolve, [6]). The inputs to lsodes are the ODE function,
pde1c, the IC vector u0, and the vector of output values of t, tout. The
length of u0 (nz = 21) informs lsodes how many ODEs are to be inte-
grated. func,y,times are reserved names.

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde1c,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

nrow,ncol confirm the dimensions of out.
• u(z, t) and the exact solution are placed in matrices for subsequent plotting.

#

Arrays for plotting numerical, exact solutions

142 Appendix A

u=matrix(0,nrow=nz,ncol=nout);

uex=matrix(0,nrow=nz,ncol=nout);

if(ncase==1){

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

uex[iz,it]=exp(-D*(pi/(zu-zl))^2*tout[it])*

sin(pi*(z[iz]-zl)/(zu-zl));

}

u[1,it]=0;

u[nz,it]=0;

}

}

if(ncase==2){

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

uex[iz,it]=exp(-D*(pi/(zu-zl))^2*tout[it])*

cos(pi*(z[iz]-zl)/(zu-zl));

}

}

}

if(ncase==3){

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

}

}

}

An exact (analytical) solution is included for ncase=1,2, and not for
ncase=3, as discussed subsequently.

• The numerical and exact solutions are displayed for ncase=1,2.

#

Display numerical solution

ncase=1,2

if(ncase<3){

iv=seq(from=1,to=nout,by=2);

cat(sprintf("\n ncase = %2d\n",ncase));

for(it in iv){

cat(sprintf("\n t z u(z,t) uex(z,t) error\n"));

iv=seq(from=1,to=nz,by=5);

for(iz in iv){

err=u[iz,it]-uex[iz,it];

Appendix A 143

cat(sprintf("%6.2f%6.2f%12.3e%12.3e%12.3e\n",

tout[it],z[iz],u[iz,it],uex[iz,it],err));

}

}

}

Every second value of t and every fifth value of z is selected with by=2,5.
• The numerical solution is displayed for ncase=3.

#

ncase=3

if(ncase==3){

iv=seq(from=1,to=nout,by=2);

cat(sprintf("\n ncase = %2d\n",ncase));

for(it in iv){

cat(sprintf("\n t z u(z,t)\n"));

iv=seq(from=1,to=nz,by=5);

for(iz in iv){

cat(sprintf("%6.2f%6.2f%12.3e\n",

tout[it],z[iz],u[iz,it]));

}

}

}

• The number of calls to pde1c at the end of the solutions is displayed.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• The numerical solution is plotted with lines and points superimposed as n.

#

Plot PDE solution

#

u

par(mfrow=c(1,1));

matplot(x=z,y=u,type="l",xlab="z",ylab="u(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

matpoints(x=z,y=u,pch="n",lty=1,lwd=2,col="black");

• The exact solutions for ncase=1,2 are plotted with lines and points super-
imposed as x.

#

uex

144 Appendix A

if(ncase<3){

matpoints(x=z,y=uex,pch="x",lty=1,lwd=2,col="black");

matpoints(x=z,y=uex,type="l",lty=1,lwd=2,col="black");

}

This completes the discussion of the main program. The ODE/MOL routine pde1c

is discussed next.

pde1c=function(t,u,parm){

#

Function pde1c computes the t derivative

of u(z,t)

#

BCs

if(ncase==1){

u[1]=0;

u[nz]=0;}

#

PDE

ut=rep(0,nz);

if(ncase==1){

for(iz in 2:(nz-1)){

ut[iz]=D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs;

}

ut[1]=0;

ut[nz]=0;

}

if(ncase==2){

for(iz in 1:nz){

if(iz==1){

um=u[2];

ut[1]=D*(u[2]-2*u[1]+um)/dzs;}

if(iz==nz){

up=u[nz-1];

ut[nz]=D*(up-2*u[nz]+u[nz-1])/dzs;}

if((iz>1)&(iz<nz)){

ut[iz]=D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs;}

}

}

if(ncase==3){

for(iz in 1:nz){

if(iz==1){

um=u[2]-(km/D)*(2*dz)*u[1];

ut[1]=D*(u[2]-2*u[1]+um)/dzs;}

if(iz==nz){

Appendix A 145

up=u[nz-1]-(km/D)*(2*dz)*u[nz];

ut[nz]=D*(up-2*u[nz]+u[nz-1])/dzs;}

if((iz>1)&(iz<nz)){

ut[iz]=D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs;}

}

}

#

Increment calls to pde1c

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing A.9: ODE/MOL routine pde1c for eqs. (A.4-1,3,4)

The following details about Listing A.9 can be noted.

• The function is defined.

pde1c=function(t,u,parm){

#

Function pde1c computes the t derivative

of u(z,t)

t is the current value of t in eq. (A.4-1). u is the 21-vector of ODE/PDE-
dependent variables. parm is an argument to pass parameters to pde1c (un-
used, but required in the argument list). The arguments must be listed in the
order stated to properly interface with lsodes called in the main program
of Listing A.8. The derivative vector of the LHS of eq. (A.4-1) is calculated
and returned to lsodes as explained subsequently.

• For ncase=1, homogeneous Dirichlet BCs are specified.

u(z = zl , t) = u(z = zu, t) = 0 (A.9-3)

Equation (A.4-1) is programmed for ncase=1.

#

PDE

ut=rep(0,nz);

if(ncase==1){

for(iz in 2:(nz-1)){

ut[iz]=D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs;

}

ut[1]=0;

ut[nz]=0;

}

146 Appendix A

∂ 2u
The derivative in eq. (A.4-1) is approximated with the three-point cen-

∂ z2

tered finite difference (FD) of eq. (A.9-2). For z= zl ,zu, the BCs set the val-
ues of u(z = zl , t),u(z = zu, t) and therefore the derivatives are set to zero to
ensure the boundary values are maintained.
The MOL ODEs are defined at the interior grid poins in z,

if((iz>1)}&(iz<nz))

according to eq. (A.9-1).
• Equation (A.4-1) is programmed for ncase=2.

if(ncase==2){

for(iz in 1:nz){

if(iz==1){

um=u[2];

ut[1]=D*(u[2]-2*u[1]+um)/dzs;}

if(iz==nz){

up=u[nz-1];

ut[nz]=D*(up-2*u[nz]+u[nz-1])/dzs;}

if((iz>1)&(iz<nz)){

ut[iz]=D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs;}

}

}

For a homogeneous Neumann BC at z = zl ,

∂u(z = zl , t)
= 0

∂ z

the FD approximation is (iz=1)

∂u(zl , t) u(zl +∆z, t)−u(zl −∆z, t)≈ = 0
∂ z 2∆z

or u(zl −∆z, t) = u(zl +∆z, t). u(zl −∆z, t) is an exterior (fictitious) value
outside the grid in z (um in the preceding code).
Similarly, for a homogeneous Neumann BC at z = zu,

∂u(z = zu, t)
= 0

∂ z

the FD approximation is (iz=nz)

∂u(zu, t) u(zu +∆z, t)−u(zu −∆z, t)≈ = 0
∂ z 2∆z

or u(zu +∆z, t) = u(zu −∆z, t). u(zu +∆z, t) is an exterior value outside the
grid in z (up in the preceding code).

Appendix A 147

An extension of the homogeneous Neumann BCs can be considered as non-
homogeneous (inhomogeneous, time varying) BCs. For example,

∂u(z = zl , t)
= g

∂ z nl(t) (A.9-4)

∂u(z = zu, t)
= g

∂ z nu(t) (A.9-5)

where gnl(t),gnu(t) are functions to be specified. This case can be readily
programmed since t is an input argument of the ODE/MOL routine (pde1c).
The exterior values are

u(z = zl −∆z, t) = u(z = zl +∆z, t)−2∆zgnl(t) (A.9-6)
u(z = zu +∆z, t) = u(z = zu −∆z, t)+2∆zgnu(t) (A.9-7)

• Equation (A.4-1) is programmed for ncase=3.

if(ncase==3){

for(iz in 1:nz){

if(iz==1){

um=u[2]-(km/D)*(2*dz)*u[1];

ut[1]=D*(u[2]-2*u[1]+um)/dzs;}

if(iz==nz){

up=u[nz-1]-(km/D)*(2*dz)*u[nz];

ut[nz]=D*(up-2*u[nz]+u[nz-1])/dzs;}

if((iz>1)&(iz<nz)){

ut[iz]=D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs;}

}

}

For a homogeneous Robin BC at z = zl ,

∂u(z = z
D l , t) − k

∂ z mu(z = zl , t) = 0

the FD approximation is (iz=1)

u(z
D l +∆z, t)−u(zl −∆z, t) − k u(z , t) = 0

2∆z m l

or u(zl −∆z, t) = u(zl +∆z, t)− (km/D)(2∆z)u(z = zl , t). u(zl −∆z, t) is an
exterior (fictitious) value outside the grid in z (um in the preceding code).
Similarly, for a homogeneous Robin BC at z = zu,

∂u(z = z ,
D u t)

+ k
∂ z mu(z = zu, t) = 0

the FD approximation is (iz=nz)

u(z
D u +∆z, t)−u(zu −∆z, t)

+ k
2∆z mu(zl , t) = 0

148 Appendix A

or u(zu+∆z, t) = u(zu−∆z, t)−(km/D)(2∆z)u(z = zu, t). u(zu+∆z, t) is an
exterior value outside the grid in z (up in the preceding code).
The MOL ODEs are defined at the interior grid points in z,

if((iz>1)}&(iz<nz))

according to eq. (A.9-1).
An extension of the linear Robin BCs can be considered as nonlinear BCs.
For example,

∂u(z = z
D l , t) − frl(u(z− z

∂ z l , t)) = 0

∂u(z = z
D u, t)

+ f
∂ z ru(u(z− zu, t)) = 0

and frl , fru are functions to be specified. The FD approximations of the
nonlinear Robin BCs are

u(z
D l +∆z, t)−u(zl −∆z, t) − f (u(z− z , t)) = 0

2∆z rl l

u(z
D u +∆z, t)−u(zu −∆z, t)

+ f (
2∆z ru u(z− zu, t)) = 0

or
u(zl −∆z, t) = u(zl +∆z, t)− (2∆z) frl(u(z = zl , t)) (A.9-8)

u(zu +∆z, t) = u(zu −∆z, t)− (2∆z) fru(u(z = zu, t)) (A.9-9)

Equations (A.9-8,9) can be programmed in the ODE/MOL routine (pde1c)
since u(z = zl , t),u(z = zu, t) are available in the input argument vector for
u(z, t).

• The counter for the calls to pde1c is incremented and returned to the main
program of Listing A.8 by <<-.

#

Increment calls to pde1c

ncall <<- ncall+1;

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde1c.

#

Return derivative vector

return(list(c(ut)));

}

This completes the discussion of pde1c. The output from the main program of List-
ing A.8 and ODE/MOL routine pde1c of Listing A.9 is considered next, staring with
ncase=1.

Appendix A 149

[1] 11

[1] 22

ncase = 1

t z u(z,t) uex(z,t) error

0.00 0.00 0.000e+00 0.000e+00 0.000e+00

0.00 0.25 7.071e-01 7.071e-01 0.000e+00

0.00 0.50 1.000e+00 1.000e+00 0.000e+00

0.00 0.75 7.071e-01 7.071e-01 0.000e+00

0.00 1.00 0.000e+00 1.225e-16 -1.225e-16

t z u(z,t) uex(z,t) error

0.20 0.00 0.000e+00 0.000e+00 0.000e+00

0.20 0.25 5.807e-01 5.804e-01 2.349e-04

0.20 0.50 8.212e-01 8.209e-01 3.323e-04

0.20 0.75 5.807e-01 5.804e-01 2.349e-04

0.20 1.00 0.000e+00 1.005e-16 -1.005e-16

t z u(z,t) uex(z,t) error

0.40 0.00 0.000e+00 0.000e+00 0.000e+00

0.40 0.25 4.769e-01 4.765e-01 3.873e-04

0.40 0.50 6.744e-01 6.738e-01 5.477e-04

0.40 0.75 4.769e-01 4.765e-01 3.873e-04

0.40 1.00 0.000e+00 8.252e-17 -8.252e-17

t z u(z,t) uex(z,t) error

0.60 0.00 0.000e+00 0.000e+00 0.000e+00

0.60 0.25 3.916e-01 3.911e-01 4.747e-04

0.60 0.50 5.538e-01 5.531e-01 6.714e-04

0.60 0.75 3.916e-01 3.911e-01 4.747e-04

0.60 1.00 0.000e+00 6.774e-17 -6.774e-17

t z u(z,t) uex(z,t) error

0.80 0.00 0.000e+00 0.000e+00 0.000e+00

0.80 0.25 3.216e-01 3.211e-01 5.196e-04

0.80 0.50 4.548e-01 4.540e-01 7.349e-04

0.80 0.75 3.216e-01 3.211e-01 5.196e-04

0.80 1.00 0.000e+00 5.560e-17 -5.560e-17

t z u(z,t) uex(z,t) error

1.00 0.00 0.000e+00 0.000e+00 0.000e+00

1.00 0.25 2.641e-01 2.635e-01 5.331e-04

150 Appendix A

1.00 0.50 3.735e-01 3.727e-01 7.540e-04

1.00 0.75 2.641e-01 2.635e-01 5.331e-04

1.00 1.00 0.000e+00 4.564e-17 -4.564e-17

ncall = 55

Table A.5: Numerical output from Listings A.8, A.9, ncase=1

The following details about Table A.5 can be noted (with some repetition of the
discussion of Tables A.1-4).

• 11 t output points as the first dimension of the solution matrix out

from lsodes as programmed in the main program of Listing A.8 (with
nout=11).

• The solution matrix out returned by lsodes has 22 elements as a second
dimension. The first element is the value of t. Elements 2 to 22 are u(z, t)
from eq. (A.4-1) (for each of the 21 output points).

• The solution is displayed for t=0,1/10=0.1,...,1 as programmed in
Listing A.8 (every second value of t is displayed as explained previously).

• The solution is displayed for z=0,1/20=0.05,...,1 as programmed in
Listing A.8 (every fifth value of z is displayed as explained previously).

• IC (A.4-10) is confirmed (t = 0).
• BCs (A.4-11,12) are confirmed (z = zl = 0,z = zu = 1).
• The computational effort as indicated by ncall = 55 is modest so that

lsodes computed the solution to eq. (A.4-1) efficiently.

The graphical output is in Figures A.3-1. Comparison of the numerical solution
u(z, t) (plotted with n) and exact solution of eq. (A.4-18) (plotted with x) indicates
good agreement between the numerical and exact solutions. In other words, Fig-
ure A.3-1 indicates the numerical integration of the parabolic (diffusion) PDE with
Dirichlet BCs is straightforward in comparison with the first-order hyperbolic (ad-
vection) PDE.

The output for ncase=2 follows.

[1] 11

[1] 22

ncase = 2

t z u(z,t) uex(z,t) error

0.00 0.00 1.000e+00 1.000e+00 0.000e+00

0.00 0.25 7.071e-01 7.071e-01 0.000e+00

0.00 0.50 6.123e-17 6.123e-17 0.000e+00

0.00 0.75 -7.071e-01 -7.071e-01 0.000e+00

Appendix A 151

0.00 1.00 -1.000e+00 -1.000e+00 0.000e+00

t z u(z,t) uex(z,t) error

0.20 0.00 8.212e-01 8.209e-01 3.323e-04

0.20 0.25 5.807e-01 5.804e-01 2.350e-04

0.20 0.50 -2.565e-15 5.026e-17 -2.615e-15

0.20 0.75 -5.807e-01 -5.804e-01 -2.350e-04

0.20 1.00 -8.212e-01 -8.209e-01 -3.323e-04

t z u(z,t) uex(z,t) error

0.40 0.00 6.744e-01 6.738e-01 5.476e-04

0.40 0.25 4.769e-01 4.765e-01 3.872e-04

0.40 0.50 -7.886e-15 4.126e-17 -7.928e-15

0.40 0.75 -4.769e-01 -4.765e-01 -3.872e-04

0.40 1.00 -6.744e-01 -6.738e-01 -5.476e-04

t z u(z,t) uex(z,t) error

0.60 0.00 5.538e-01 5.531e-01 6.714e-04

0.60 0.25 3.916e-01 3.911e-01 4.748e-04

0.60 0.50 1.522e-14 3.387e-17 1.518e-14

0.60 0.75 -3.916e-01 -3.911e-01 -4.748e-04

0.60 1.00 -5.538e-01 -5.531e-01 -6.714e-04

t z u(z,t) uex(z,t) error

0.80 0.00 4.548e-01 4.540e-01 7.349e-04

0.80 0.25 3.216e-01 3.211e-01 5.197e-04

0.80 0.50 6.965e-14 2.780e-17 6.962e-14

0.80 0.75 -3.216e-01 -3.211e-01 -5.197e-04

0.80 1.00 -4.548e-01 -4.540e-01 -7.349e-04

t z u(z,t) uex(z,t) error

1.00 0.00 3.735e-01 3.727e-01 7.540e-04

1.00 0.25 2.641e-01 2.635e-01 5.332e-04

1.00 0.50 3.852e-14 2.282e-17 3.850e-14

1.00 0.75 -2.641e-01 -2.635e-01 -5.332e-04

1.00 1.00 -3.735e-01 -3.727e-01 -7.540e-04

ncall = 55

Table A.6: Numerical output from Listings A.8, A.9, ncase=2

The following details about Table A.6 can be noted (with some repetition of the
discussion of Tables A.5).

• The dimensions of the array out from lsodes are again 11× 22 (as for
ncase=1, Table A.5).

152 Appendix A

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
(z
,t
)

n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n

n n n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n

n n n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

nn

n

n

n

n

n

n

n
n

n n n
n

n

n

n

n

n

n

n

nx

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x x x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x x x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x x x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x x x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x x x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x x x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x
x x x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x x x
x

x

x

x

x

x

x

x

x

Figure A.3-1 u(z, t) from eqs. (A.4), ncase=1, Dirichlet BCs

• The solution is displayed for t=0,1/10=0.1,...,1 as programmed in
Listing A.8 (every second value of t) and z=0,1/20=0.05,...,1 (every
fifth value of z).

• IC (A.4-13) is confirmed (t = 0).
• BCs (A.4-14,15) are confirmed (z = zl = 0,z = zu = 1).
• The computational effort as indicated by ncall = 55 is modest so that

lsodes computed the solution to eq. (A.4-1) efficiently.

The graphical output is in Figures A.3-2. Comparison of the numerical solution
u(z, t) (plotted with n) and exact solution of eq. (A.4-19) (plotted with x) indi-
cates good agreement between the numerical and exact solutions. In other words,

Appendix A 153

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

z

u
(z
,t
)

n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n n

n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n n

n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n n

n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n n

n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n n

n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n n

n n
n

n
n

n

n

n

n

n

n

n

n

n

n

n

n
n

n
n n

n n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n n n

n n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n n n

n n n
n

n
n

n

n

n

n

n

n

n

n

n

n
n

n
n n n

n n n
n

n
n

n

n

n

n

n

n

n

n

n
n

n
n

n n n

x x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x x

x x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x x

x x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x x

x x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x x

x x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x x

x x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x x

x x
x

x
x

x

x

x

x

x

x

x

x

x

x

x

x
x

x
x x

x x x
x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x x x

x x x
x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x x x

x x x
x

x
x

x

x

x

x

x

x

x

x

x

x
x

x
x x x

x x x
x

x
x

x

x

x

x

x

x

x

x

x
x

x
x

x x x

Figure A.3-2 u(z, t) from eqs. (A.4), ncase=2, Neumann BCs

Figure A.3-2 indicates the numerical integration of the parabolic (diffusion) PDE
with Neumann BCs is straightforward.

The output for ncase=3 follows.

[1] 11

[1] 22

ncase = 3

154 Appendix A

t z u(z,t)

0.00 0.00 1.000e+00

0.00 0.25 1.000e+00

0.00 0.50 1.000e+00

0.00 0.75 1.000e+00

0.00 1.00 1.000e+00

t z u(z,t)

0.20 0.00 3.355e-01

0.20 0.25 8.925e-01

0.20 0.50 9.892e-01

0.20 0.75 8.925e-01

0.20 1.00 3.355e-01

t z u(z,t)

0.40 0.00 2.547e-01

0.40 0.25 7.560e-01

0.40 0.50 9.148e-01

0.40 0.75 7.560e-01

0.40 1.00 2.547e-01

t z u(z,t)

0.60 0.00 2.122e-01

0.60 0.25 6.518e-01

0.60 0.50 8.123e-01

0.60 0.75 6.518e-01

0.60 1.00 2.122e-01

t z u(z,t)

0.80 0.00 1.822e-01

0.80 0.25 5.659e-01

0.80 0.50 7.118e-01

0.80 0.75 5.659e-01

0.80 1.00 1.822e-01

t z u(z,t)

1.00 0.00 1.580e-01

1.00 0.25 4.925e-01

1.00 0.50 6.212e-01

1.00 0.75 4.925e-01

1.00 1.00 1.580e-01

ncall = 145

Table A.7: Numerical output from Listings A.8, A.9, ncase=3

Appendix A 155

The following details about Table A.7 can be noted (with some repetition of the
discussion of Table A.5).

• The dimensions of the array out from lsodes are again 11× 22 (as for
ncase=1,2, Tables A.5, A.6).

• The solution is displayed for t=0,1/10=0.1,...,1 as programmed in
Listing A.8 (every second value of t) and z=0,1/20=0.05,...,1 (every
fifth value of z).

• The IC u(z, t = 0) = 1 (programmed in Listing A.8) is confirmed (t = 0)
and in Figure A.3-3 that follows.

• BCs (A.4-16,17) are confirmed (z = zl = 0,z = zu = 1) and in Figure A.3-3
that follows.

• The computational effort as indicated by ncall = 145 is modest so that
lsodes computed the solution to eq. (A.4-1) efficiently.

The graphical output is in Figures A.3-3. An exact solution to eq. (A.4-1), (A.4-
16,17) is available, but is relatively complicated so it is not included in Figure A.3-3.
The numerical solution of eqs. (A.4-1) (A.4-16,17) is straightforward, which indi-
cates a principal feature of the numerical MOL.

This concludes the discussion of a parabolic PDE with eq. (A.4-1) (diffusion
equation) as an example. Consideration is next for a multitype PDE, including con-
vection and diffusion.

A.5 MULTITYPE PDE
Equation (A.6-1) has convection and diffusion terms (vz = 0,D = 0) and is termed a
convection-diffusion or hyperbolic-parabolic PDE. The MOL numerical integration
(solution) of this multitype PDE is straightforward. A main program follows.

̸ ̸

#

Convection-diffusion PDE

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1d.R");

source("vanl.R");

#

Specify case

ncase=1;

156 Appendix A

#

Parameters

vz=1;

ue=1;

if(ncase==1){

D=1;

nz=21;}

if(ncase==2){

D=0.001;

nz=101;}

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

#

Independent variable for ODE integration

t0=0;tf=1;nout=11;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#

Initial condition (t=0)

u0=rep(0,nz);

for(iz in 1:nz){

u0[iz]=0}

ncall=0;

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde1d,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

#

Array for plotting numerical solution

u=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

}

u[1,it]=ue;

}

#

Display numerical solution

Pe=vz*(zu-zl)/D;

iv=seq(from=1,to=nout,by=5);

Appendix A 157

cat(sprintf("\n ncase = %2d Pe = %7.3e\n",

ncase,Pe));

for(it in iv){

cat(sprintf("\n t z u(z,t)\n"));

iv=seq(from=1,to=nz,by=10);

for(iz in iv){

cat(sprintf("%6.2f%6.2f%12.3e\n",

tout[it],z[iz],u[iz,it]));}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

#

Plot PDE solution

#

u

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u[2:nz,],type="l",xlab="z",ylab="u(z,t)",

xlim=c(zl,zu),lty=1,main="",lwd=2,col="black");

matpoints(x=z[2:nz],y=u[2:nz,],pch="n",lty=1,lwd=2,col="black");

Listing A.10: Main program for eqs. (A.6-1,2,3,5), hyperbolic-parabolic

The following details about Listing A.10 can be noted.

• Previous workspaces are deleted.

#

Convection-diffusion PDE

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The R ODE integrator library deSolve is accessed [6].

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1d.R");

source("vanl.R");

Then the directory with the files for the solution of eqs. (A.6-1,2,3,5) is
designated. Note that setwd (set working directory) uses / rather than the
usual \.

158 Appendix A

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
(z
,t
)

n n

n

n

n

n

n

n
n n n n n n n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n n n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n n n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n

n n n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n
n n n

n

n

n

n

n

n

n

n

n

Figure A.3-3 u(z, t) from eqs. (A.4), ncase=3, Robin BCs

The ODE/MOL routine pde1d is discussed subsequently. The van Leer flux
∂u

limiter is used for the convection term, vz , in eq. (A.6-1).
∂ z

• An index for a case, with ncase=1,2, is specified.

#

Specify case

ncase=1;

• The parameters of eqs. (A.6-1,2,3,5) are specified

#

Parameters

Appendix A 159

vz=1;

ue=1;

if(ncase==1){

D=1;

nz=21;}

if(ncase==2){

D=0.001;

nz=101;}

The number of grid points in z, nz varies with ncase to provide ade-
quate resolution of the graphical solution (in Figures A.4 discussed sub-
sequently).

• A spatial grid for eq. (A.6-1) is defined with nz points.

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

The grid spacing is dz = ∆z.
• The interval in t is defined with nout=11 output points.

#

Independent variable for ODE integration

t0=0;tf=1;nout=11;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• IC (A.6-2) is implemented, with u(z, t = 0) = f (z) = 0.

#

Initial condition (t=0)

u0=rep(0,nz);

for(iz in 1:nz){

u0[iz]=0;}

ncall=0;

Also, the counter for the calls to pde1d is initialized.
• The system of nz ODEs is integrated by the library integrator lsodes

(available in deSolve, [6]). As expected, the inputs to lsodes are the
ODE function, pde1d, the IC vector u0, and the vector of output values
of t, tout. The length of u0 (nz) informs lsodes how many ODEs are to
be integrated. func,y,times are reserved names.

#

ODE integration

160 Appendix A

out=lsodes(y=u0,times=tout,func=pde1d,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

nrow,ncol confirm the dimensions of out.
• The numerical values of u(z, t) returned by lsodes are placed in matrix u.

The BC u(z = zl , t)=u[1,it]=ue is specified since it is not returned from
lsodes (only solutions to ODEs are returned from lsodes).

#

Array for plotting numerical solution

u=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u[iz,it]=out[it,iz+1];

}

u[1,it]=ue;

}

• The numerical values of u(z, t) returned by lsodes are displayed. Every
fifth value in t and every tenth value in z appear from by=5,10. The axial

v
Peclet number, P z(zu − zl)

e = is computed and displayed as explained
D

subsequently.

#

Display numerical solution

Pe=vz*(zu-zl)/D;

iv=seq(from=1,to=nout,by=5);

cat(sprintf("\n ncase = %2d Pe = %7.3e\n",

ncase,Pe));

for(it in iv){

cat(sprintf("\n t z u(z,t)\n"));

iv=seq(from=1,to=nz,by=10);

for(iz in iv){

cat(sprintf("%6.2f%6.2f%12.3e\n",

tout[it],z[iz],u[iz,it]));}

}

• The number of calls to pde1d is displayed at the end of the solution.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• The numerical solution is plotted as lines and superimposed points with the
letter n.

Appendix A 161

#

Plot PDE solution

#

u

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u[2:nz,],type="l",xlab="z",

ylab="u(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

matpoints(x=z[2:nz],y=u[2:nz,],pch="n",lty=1,lwd=2,

col="black");

The solution at z = zl is not plotted ([2:nz,]) to avoid the discontiniuty in
the IC and BC, u(z, t = 0) = 0, u(z = zl = 0, t) = ue = 1.

This completes the discussion of the main program of Listing A.10. The ODE/MOL
routine, pde1d, called by lsodes in the main program is considered next.

pde1d=function(t,u,parm){

#

Function pde1d computes the t derivative

of u(z,t)

#

BC, z=zl

u[1]=ue;

#

PDE

uz=vanl(zl,zu,nz,u,vz);

ut=rep(0,nz);

for(iz in 1:(nz-1)){

if(iz==1){ut[iz]=0;}

if(iz>1){

ut[iz]=-vz*uz[iz]+

D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs;}

}

#

BC, z=zu

ut[nz]=-vz*uz[nz];

#

Increment calls to pde1d

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing A.11: ODE/MOL routine pde1d for eqs. (A.6-1,2,3,5)

162 Appendix A

The following details about Listing A.11 can be noted.

• The function is defined.

pde1d=function(t,u,parm){

#

Function pde1d computes the t derivative

of u(z,t)

t is the current value of t in eq. (A.6-1). u is the nz-vector of ODE/PDE-
dependent variables. parm is an argument to pass parameters to pde1d (un-
used, but required in the argument list). The arguments must be listed in
the order stated to properly interface with lsodes called in the main pro-
gram of Listing A.10. The derivative vector of the LHS of eq. (A.6-1) is
calculated and returned to lsodes as explained subsequently.

• BC (A.6-3) is programmed.

#

BC, z=zl

u[1]=ue;

• Equation (A.6-1) is programmed.

#

PDE

uz=vanl(zl,zu,nz,u,vz);

ut=rep(0,nz);

for(iz in 1:(nz-1)){

if(iz==1){ut[iz]=0;}

if(iz>1){

ut[iz]=-vz*uz[iz]+

D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs;}

}

Note that the hyperbolic term -vz*uz[iz] and parabolic term
D*(u[iz+1]-2*u[iz]+u[iz-1])/dzs are included.

• The dynamic BC (A.6-5) is programmed.

#

BC, z=zu

ut[nz]=-vz*uz[nz];

• The counter for the calls to pde1d is incremented and returned to the main
program of Listing A.10 by <<-.

#

Increment calls to pde1d

ncall <<- ncall+1;

Appendix A 163

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde1d.

#

Return derivative vector

return(list(c(ut)));

}

The numerical and graphical output from the main program and ODE/MOL rou-
tine pde1d in Listings A.10, A.11 is considered next.

For ncase=1, the numerical output is in Table A.8.

[1] 11

[1] 22

ncase = 1 Pe = 1.000e+00

t z u(z,t)

0.00 0.00 1.000e+00

0.00 0.50 0.000e+00

0.00 1.00 0.000e+00

t z u(z,t)

0.50 0.00 1.000e+00

0.50 0.50 7.066e-01

0.50 1.00 3.360e-01

t z u(z,t)

1.00 0.00 1.000e+00

1.00 0.50 8.376e-01

1.00 1.00 6.300e-01

ncall = 247

Table A.8: Numerical output from Listings A.10, A.11, ncase=1

The following details about Table A.8 can be noted.

• The dimensions of the array out from lsodes are 11×22.
• The solution is displayed for t=0,1/10=0.1,...,1 as programmed in

Listing A.10 (every fifth value of t) and z=0,1/20=0.05,...,1 (every
tenth value of z).

164 Appendix A

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
(z
,t
)

n n n n n n n n n n n n n n n n n n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n
n

n
n

n
n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n
n

n
n

n
n

n
n

n
n

n

n

n

n

n

n

n

n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

Figure A.4-1 u(z, t) from eq. (A.6-1), ncase=1

• The IC u(z, t = 0) = 0 (programmed in Listing A.10) is confirmed (t = 0)
and in Figure A.4-1 that follows.

• BC (A.6-3) is confirmed (z = zl = 0,z = zu = 1) and in Figure A.4-1 that
follows.

• The computational effort as indicated by ncall = 247 is modest so that
lsodes computed the solution to eq. (A.4-1) efficiently.

Appendix A 165

The graphical output is in Figures A.4-1. The solution for the strongly parabolic
vz(z−zl) (1)(1)

case, ncase=1, Pe = = 1 5= 1 (with vz = ,D = 1) is confirmed (a
D 1

smoothing of the discontinuity at z = zl = 0).
For ncase=2, the numerical output is given in Table A.9.

[1] 11

[1] 102

ncase = 2 Pe = 1.000e+03

t z u(z,t)

0.00 0.00 1.000e+00

0.00 0.10 0.000e+00

0.00 0.20 0.000e+00

0.00 0.30 0.000e+00

0.00 0.40 0.000e+00

0.00 0.50 0.000e+00

0.00 0.60 0.000e+00

0.00 0.70 0.000e+00

0.00 0.80 0.000e+00

0.00 0.90 0.000e+00

0.00 1.00 0.000e+00

t z u(z,t)

0.50 0.00 1.000e+00

0.50 0.10 1.000e+00

0.50 0.20 1.000e+00

0.50 0.30 1.000e+00

0.50 0.40 9.969e-01

0.50 0.50 5.362e-01

0.50 0.60 6.452e-07

0.50 0.70 3.982e-08

0.50 0.80 9.385e-10

0.50 0.90 7.827e-12

0.50 1.00 2.390e-14

t z u(z,t)

1.00 0.00 1.000e+00

1.00 0.10 1.000e+00

(5 v
The Peclet number, P z zu − zl)

e = , can be considered as the ratio of the relative hyperbolic to
D

parabolic contributions. For Pe = 1 (ncase=1), eq. (A.6-1) is strongly parabolic (diffusive). For Pe = 1000
(ncase=2), eq. (A.6-1) is strongly hyperbolic (convective).

166 Appendix A

1.00 0.20 1.000e+00

1.00 0.30 1.000e+00

1.00 0.40 1.000e+00

1.00 0.50 1.000e+00

1.00 0.60 1.000e+00

1.00 0.70 1.000e+00

1.00 0.80 9.999e-01

1.00 0.90 9.783e-01

1.00 1.00 5.299e-01

ncall = 5885

Table A.9: Numerical output from Listings A.10, A.11, ncase=2

The following details about Table A.9 can be noted.

• The dimensions of the array out from lsodes are 11×102.
• The solution is displayed for t=0,1/10=0.1,...,1 as programmed in

Listing A.10 (every fifth value of t) and z=0,1/100=0.01,...,1 (every
tenth value of z).

• The IC u(z, t = 0) = 0 (programmed in Listing A.10) is confirmed (t = 0)
and in Figure A.4-2 that follows.

• BC (A.6-3) is confirmed (z = zl = 0,z = zu = 1) and in Figure A.4-2 that
follows.

• The computational effort indicated by ncall = 5885 reflects the compu-
tational requirement of the van Leer limiter.

The graphical output is in Figure A.4-2.
vz(z z

The solution for the strongly hyperbolic case, ncase=2, P − l)
e = =

D
(1)(1)

= 1000 (with vz = 1,D = 0.001) is confirmed, that is, propagation (move-
0.001

ment left to right) of the discontinuity originating at z = zl = 0. The solution has
no numerical oscillation. The small axial diffusion from the van Leer flux limiter is
physical (from eq. (A.6-1) with D= 0.001), not numerical. The right BC, eq. (A.6-5),
gives a smooth exit of the moving front at z = zu = 1.

This concludes the discussion of a hyperbolic-parabolic PDE with eq. (A.6-1)
(convection-diffusion equation) as an example. Consideration is next for a 2×2 (two
equations in two unknowns) system of simultaneous PDEs.

A.6 SIMULTANEOUS PDEs
The concluding PDE example is based on the application of eqs. (A.6-1,2,3,5), to a
2×2 PDE system. The equations are listed next.

∂u1 ∂u 2
v 1 ∂ u

=−
∂

z1 +D 1

t ∂ z 1 + k
∂ z m(u2 −u1) (A.10-1)2

Appendix A 167

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
(z
,t
)

nn

nnnnn
n

n

n

n

n

n

n

n

nnn

nnnnnnnnnnnnnn
n

n

n

n

n

n

n

n

n

n

nn

nnnnnnnnnnnnnnnnnnnnnnn
n
n

n

n

n

n

n

n

n

n

n

n
nnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
n

n

n

n

n

n

n

n

n

n

n

n

n
nn

nn
n
n

n

n

n

n

n

n

n

n

n

n

n

n

nn

nnn
n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

nnn
n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
nnnnnnnnnnnnnnnnnnnnnnn

nnn
n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
nnnnnnnnnnnn

nn
n
n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
nn

nn
n
n

n

n

n

n

n

n

n

n

Figure A.4-2 u(z, t) from eq. (A.6-1), ncase=2

∂u2 ∂u2 ∂ 2u
=−v

∂ t z2 +D 2

∂ z 2 − k
∂ z m(u2 −u1) (A.10-2)2

Equations (A.10-1,2) are first order in t and each requires an IC.

u1(z, t = 0) = f1(z); u2(z, t = 0) = f2(z) (A.10-3,4)

where f1(z), f2(z) are functions to be specified.

168 Appendix A

Equations (A.10-1,2) are second order in z and each requires two BCs. For a
countercurrent system with vz1 > 0,vz2 < 0,

u1(z = zl , t) = g1(t) (A.10-5)

∂u1(z = zu, t) ∂u (z =
+ v 1 zu, t)

z1 − k
∂ t ∂ z m(u2(z = zu, t)−u1(z = zu, t)) = 0 (A.10-6)

u2(z = zu, t) = g2(t) (A.10-7)

∂u2(z = zl , t) ∂u (z =
+ v 2 zl , t)

z2 + k
∂ t ∂ z m(u2(z = zl , t)−u1(z = zl , t)) = 0 (A.10-8)

where g1(t),g2(t) are functions to be specified.
A main program for eqs. (A.10) follows.

#

Two convection-diffusion PDEs

#

Delete previous workspaces

rm(list=ls(all=TRUE))

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1e.R");

source("vanl.R");

#

Parameters

vz1 =1;

vz2=-1;

u1e=1;

u2e=0;

D1=0.001;

D2=0.001

km=1;

nz=41;

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

#

Independent variable for ODE integration

t0=0;tf=1;nout=11;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

Appendix A 169

#

Initial condition (t=0)

u0=rep(0,2*nz);

for(iz in 1:nz){

u0[iz]=0;

u0[iz+nz]=0;

}

ncall=0;

#

ODE integration

out=lsodes(y=u0,times=tout,func=pde1e,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

#

Arrays for plotting numerical solution

u1=matrix(0,nrow=nz,ncol=nout);

u2=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u1[iz,it]=out[it,iz+1];

u2[iz,it]=out[it,iz+1+nz];

}

u1[1,it] =u1e;

u2[nz,it]=u2e;

}

#

Display numerical solution

Pe1=abs(vz1)*(zu-zl)/D1;

Pe2=abs(vz2)*(zu-zl)/D2;

iv=seq(from=1,to=nout,by=5);

cat(sprintf("\n Pe1 = %7.3e Pe2 = %7.3e\n",Pe1,Pe2));

for(it in iv){

cat(sprintf("\n t z u1(z,t) u2(z,t)\n"));

iv=seq(from=1,to=nz,by=10);

for(iz in iv){

cat(sprintf("%6.2f%6.2f%12.3e%12.3e\n",

tout[it],z[iz],u1[iz,it],u2[iz,it]));}

}

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

#

170 Appendix A

Plot PDE solution

#

u1

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",

ylab="u1(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

matpoints(x=z[2:nz],y=u1[2:nz,],pch="n",lty=1,lwd=2,

col="black");

#

u2

par(mfrow=c(1,1));

matplot(x=z[1:(nz-1)],y=u2[1:(nz-1),],type="l",xlab="z",

ylab="u2(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

matpoints(x=z[1:(nz-1)],y=u2[1:(nz-1),],pch="n",lty=1,lwd=2,

col="black");

Listing A.12: Main program for eqs. (A.10), 2×2 hyperbolic-parabolic

The following details about Listing A.10 can be noted.

• Previous workspaces are deleted.

#

Two convection-diffusion PDEs

#

Delete previous workspaces

rm(list=ls(all=TRUE))

• The R ODE integrator library deSolve is accessed [6].

#

Access ODE integrator

library("deSolve");

#

Access functions for numerical solution

setwd("f:/Covid-19 neurological effects/appA");

source("pde1e.R");

source("vanl.R");

Then the directory with the files for the solution of eqs. (A.10) is des-
ignated. Note that setwd (set working directory) uses / rather than the
usual \.
The ODE/MOL routine pde1e is discussed subsequently. The van Leer flux

∂u ∂u
limiter is used for the convection terms, v 1

z1 , v 2

∂ z z2 in eqs. (A.10-1,2).
∂ z

Appendix A 171

• The parameters of eqs. (A.10) are specified

#

Parameters

vz1 =1;

vz2=-1;

u1e=1;

u2e=0;

D1=0.001;

D2=0.001

km=1;

nz=41;

The following details about these parameters can be noted.
− Countercurrent convection is specified with velocities of opposite

sign, vz1=1, vz2=-1.
− The boundary value u1(z = zl , t) = ue1 = 1 moves the PDE system

away from the ICs.
− The PDE is strongly convective with D1=D2=0.001 so that Pe1 =

Pe2 = 1000.
− The transfer coefficient in eqs. (A.10-1,2) is specified, km = 1.
− The number of grid points in z, nz=41, provides adequate spa-

tial resolution of the graphical solution (in Figures A.5 discussed
subsequently).

• A spatial grid for eqs. (A.10-1,2) is defined with nz=41 points.

#

Spatial grid in z

zl=0;zu=1;dz=(zu-zl)/(nz-1);dzs=dz^2;

z=seq(from=zl,to=zu,by=dz);

The grid spacing is dz = ∆z.
• The interval in t is defined with nout = 11 output points.

#

Independent variable for ODE integration

t0=0;tf=1;nout=11;

tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• ICs (A.10-3,4) are implemented, with u1(z, t = 0) = f1(z) = 0. u2(z, t =
0) = f2(z) = 0.

#

Initial condition (t=0)

u0=rep(0,2*nz);

for(iz in 1:nz){

172 Appendix A

u0[iz]=0;

u0[iz+nz]=0;

}

ncall=0;

Also, the counter for the calls to pde1e is initialized.
• The system of 2*nz=82 ODEs is integrated by the library integrator

lsodes (available in deSolve, [6]). As expected, the inputs to lsodes

are the ODE function, pde1e, the IC vector u0, and the vector of output
values of t, tout. The length of u0 (2*nz=82) informs lsodes how many
ODEs are to be integrated. func,y,times are reserved names.

ODE integration

out=lsodes(y=u0,times=tout,func=pde1e,

sparsetype="sparseint",rtol=1e-6,

atol=1e-6,maxord=5);

nrow(out)

ncol(out)

nrow,ncol confirm the dimensions of out.
• The numerical values of u1(z, t),u2(z, t) returned by lsodes are

placed in matrix u1,u2. The BCs u1(z = zl , t)=u1[1,it]=u1e, u1(z =
zu, t)=u2[nz,it]=u2e are specified since they are not returned from
lsodes (only solutions to ODEs are returned from lsodes).

#

Arrays for plotting numerical solution

u1=matrix(0,nrow=nz,ncol=nout);

u2=matrix(0,nrow=nz,ncol=nout);

for(it in 1:nout){

for(iz in 1:nz){

u1[iz,it]=out[it,iz+1];

u2[iz,it]=out[it,iz+1+nz];

}

u1[1,it] =u1e;

u2[nz,it]=u2e;

}

• The numerical values of u1(z, t),u2(z, t) returned by lsodes are displayed.
Every fifth value in t and every tenth value in z appear from by=5,10.
The axial Peclet numbers, Pe1 = Pe2 = 1000 are computed and displayed as
explained subsequently.

#

Display numerical solution

Pe1=abs(vz1)*(zu-zl)/D1;

Appendix A 173

Pe2=abs(vz2)*(zu-zl)/D2;

iv=seq(from=1,to=nout,by=5);

cat(sprintf("\n Pe1 = %7.3e Pe2 = %7.3e\n",Pe1,Pe2));

for(it in iv){

cat(sprintf("\n t z u1(z,t) u2(z,t)\n"));

iv=seq(from=1,to=nz,by=10);

for(iz in iv){

cat(sprintf("%6.2f%6.2f%12.3e%12.3e\n",

tout[it],z[iz],u1[iz,it],u2[iz,it]));}

}

• The number of calls to pde1e is displayed at the end of the solution.

#

Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• The numerical solution u1(z, t) is plotted as lines and superimposed points
with the letter n.

#

Plot PDE solution

#

u1

par(mfrow=c(1,1));

matplot(x=z[2:nz],y=u1[2:nz,],type="l",xlab="z",

ylab="u1(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

matpoints(x=z[2:nz],y=u1[2:nz,],pch="n",lty=1,lwd=2,

col="black");

The solution at z = zl is not plotted ([2:nz,]) to avoid the discontiniuty in
the IC and BC, u1 1 l e1

• The numerical solution u2(z, t) is plotted as lines and superimposed points
with the letter n.

#

u2

par(mfrow=c(1,1));

matplot(x=z[1:(nz-1)],y=u2[1:(nz-1),],type="l",xlab="z",

ylab="u2(z,t)",xlim=c(zl,zu),lty=1,main="",lwd=2,

col="black");

matpoints(x=z[1:(nz-1)],y=u2[1:(nz-1),],pch="n",lty=1,

lwd=2,col="black");

The solution at z = zu is not plotted ([1:(nz-1)]) to avoid a possible dis-
continuity in the IC and BC, u2(z, t = 0), u2(z = zu, t).

(z, t = 0) = 0, u (z = z = 0, t) = u = 1.

174 Appendix A

This completes the discussion of the main program of Listing A.12. The
ODE/MOL routine, pde1e, called by lsodes in the main program, is considered
next.

pde1e=function(t,u,parm){

#

Function pde1e computes the t derivative

of u1(z,t), u2(z,t)

#

One vector to two vectors

u1=rep(0,nz);

u2=rep(0,nz);

for(iz in 1:nz){

u1[iz]=u[iz];

u2[iz]=u[iz+nz];

}

#

BCs, z=zl, z=zu

u1[1] =u1e;

u2[nz]=u2e;

#

PDEs

#

u1t

u1z=vanl(zl,zu,nz,u1,vz1);

u1t=rep(0,nz);

for(iz in 1:(nz-1)){

if(iz==1){u1t[1]=0;}

if(iz>1){

u1t[iz]=-vz1*u1z[iz]+

D1*(u1[iz+1]-2*u1[iz]+u1[iz-1])/dzs+

km*(u2[iz]-u1[iz]);}

}

#

u2t

u2z=vanl(zl,zu,nz,u2,vz2);

u2t=rep(0,nz);

for(iz in 2:nz){

if(iz==nz){u2t[nz]=0;}

if(iz<nz){

u2t[iz]=-vz2*u2z[iz]+

D2*(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs-

km*(u2[iz]-u1[iz]);}

}

#

Appendix A 175

BC, z=zl, zu

u1t[nz]=-vz1*u1z[nz]+km*(u2[nz]-u1[nz]);

u2t[1] =-vz2*u2z[1] -km*(u2[1]-u1[1]);

#

Two vectors to one vector

ut=rep(0,2*nz);

for(iz in 1:nz){

ut[iz] =u1t[iz];

ut[iz+nz]=u2t[iz];

}

#

Increment calls to pde1e

ncall <<- ncall+1;

#

Return derivative vector

return(list(c(ut)));

}

Listing A.13: ODE/MOL routine pde1e for eqs. (A.10), 2×2 hyperbolic-parabolic

The following details about Listing A.11 can be noted.

• The function is defined.

pde1e=function(t,u,parm){

#

Function pde1e computes the t derivative

of u1(z,t), u2(z,t)

t is the current value of t in eqs. (A.10-1,2). u is the 2*nz=82-vector of
ODE/PDE dependent variables. parm is an argument to pass parameters to
pde1e (unused, but required in the argument list). The arguments must be
listed in the order stated to properly interface with lsodes called in the
main program of Listing A.12. The derivative vector of the LHS of eqs.
(A.10-1,2) is calculated and returned to lsodes as explained subsequently.

• u is placed in two vectors, u1, u2, to facilitate the programming of eqs.
(A.10-1,2)

#

One vector to two vectors

u1=rep(0,nz);

u2=rep(0,nz);

for(iz in 1:nz){

u1[iz]=u[iz];

u2[iz]=u[iz+nz];

}

176 Appendix A

• BCs (A.10-5,7) are programmed.

#

BCs, z=zl, z=zu

u1[1] =u1e;

u2[nz]=u2e;

iz=1,nz specify points z = zl ,zu, respectively (programmed in Listing
A.12). u1e=1 moves the PDE solutions away from tne homogeneous ICs,
eqs. (A.10-3,4) with f1(z) = f2(z) = 0 programmed in Listing A.12.

• Equation (A.10-1) is programmed.

#

PDEs

#

u1t

u1z=vanl(zl,zu,nz,u1,vz1);

u1t=rep(0,nz);

for(iz in 1:(nz-1)){

if(iz==1){u1t[1]=0;}

if(iz>1){

u1t[iz]=-vz1*u1z[iz]+

D1*(u1[iz+1]-2*u1[iz]+u1[iz-1])/dzs+

km*(u2[iz]-u1[iz]);}

}

Note that the hyperbolic term -vz1*u1z[iz] and parabolic term
D1*(u1[iz+1]-2*u1[iz]+u1[iz-1])/dzs are included.

• Equation (A.10-2) is programmed.

#

u2t

u2z=vanl(zl,zu,nz,u2,vz2);

u2t=rep(0,nz);

for(iz in 2:nz){

if(iz==nz){u2t[nz]=0;}

if(iz<nz){

u2t[iz]=-vz2*u2z[iz]+

D2*(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs-

km*(u2[iz]-u1[iz]);}

}

The hyperbolic term -vz2*u2z[iz] and parabolic term
D2*(u2[iz+1]-2*u2[iz]+u2[iz-1])/dzs are included.

• The dynamic BCs (A.10-6,8) are programmed. iz=1,nz specify points
z = zl ,zu, respectively (programmed in Listing A.12).

Appendix A 177

#

BC, z=zl, zu

u1t[nz]=-vz1*u1z[nz]+km*(u2[nz]-u1[nz]);

u2t[1] =-vz2*u2z[1] -km*(u2[1]-u1[1]);

• The counter for the calls to pde1e is incremented and returned to the main
program of Listing A.13 by <<-.

#

Increment calls to pde1e

ncall <<- ncall+1;

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde1e.

• The derivative vectors u1t, u2t are placed in a single vector ut to return
to lsodes for the next step along the solution.

#

Two vectors to one vector

ut=rep(0,2*nz);

for(iz in 1:nz){

ut[iz] =u1t[iz];

ut[iz+nz]=u2t[iz];

}

• The vector ut is returned as a list as required by lsodes. c is the R vector
utility. The final } concludes pde1e.

#

Return derivative vector

return(list(c(ut)));

}

The numerical and graphical output from the main program and ODE/MOL rou-
tine pde1e in Listings A.12, A.13 is considered next. The numerical output is in
Table A.10.

[1] 11

[1] 83

Pe1 = 1.000e+03 Pe2 = 1.000e+03

t z u1(z,t) u2(z,t)

0.00 0.00 1.000e+00 0.000e+00

0.00 0.25 0.000e+00 0.000e+00

178 Appendix A

0.00 0.50 0.000e+00 0.000e+00

0.00 0.75 0.000e+00 0.000e+00

0.00 1.00 0.000e+00 0.000e+00

t z u1(z,t) u2(z,t)

0.50 0.00 1.000e+00 1.994e-01

0.50 0.25 8.007e-01 8.846e-02

0.50 0.50 3.436e-01 6.350e-03

0.50 0.75 2.056e-08 5.081e-10

0.50 1.00 7.773e-11 0.000e+00

t z u1(z,t) u2(z,t)

1.00 0.00 1.000e+00 3.271e-01

1.00 0.25 8.324e-01 2.189e-01

1.00 0.50 6.688e-01 1.282e-01

1.00 0.75 5.131e-01 5.549e-02

1.00 1.00 2.119e-01 0.000e+00

ncall = 3969

Table A.10: Numerical output from Listings A.12, A.13

The following details about Table A.10 can be noted.

• The dimensions of the array out from lsodes are 11× 83 corresponding
to nout=11, 2(nz)+1=2(41)+1=83.

• The solution is displayed for t=0,1/10=0.1,...,1 as programmed in
Listing A.12 (every fifth value of t) and z=0,1/40=0.025,...,1 (every
tenth value of z).

• The ICs u(z, t = 0) = u2(z, t = 0) = 0 (programmed in Listing A.12) are
confirmed (t = 0) and in Figures A.5-1,2 that follow.

• BCs (A.10-5,7) are confirmed, (u1(z = zl = 0, t) = 1, u2(z = zu = 1, t) = 0,
and in Figures A.5-1,2 that follow. The numerical solutions u1(z, t),u2(z, t)
are the response to BC (A.10-5) starting from homogeneous ICs (A.10-3,4).

• The computational effort indicated by ncall = 3969 reflects the compu-
tational requirement of the van Leer limiter.

The graphical output is in Figures A.5-1,2.
u1(z, t) is the response to BC (A.10-5) starting from homogeneous IC (A.10-3),

and includes the effect of the transfer term km(u2(z, t)− u1(z, t)). u2(z, t) is the
response to the transfer term km(u2(z, t)− u1(z, t)) starting from homogeneous IC
(A.10-4),

Appendix A 179

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

u
1
(z
,t
)

n n

n

n

n

n

n

n

n n

n

n

n

n

n

n

n

n

n

n

n n

n
n
n
n
n
n

n

n

n

n

n

n

n

n

n n

n
n
n
n
n
n
n
n
n
n
n

n

n

n

n

n

n

n

n
n n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n

n

n

n

n

n

n

n
n n n n n n n n n n n n n n n n n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n

n

n

n

n

n

n

n

n n n n n n n n n n n n n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n

n

n

n

n

n

n

n

n n n n n n n n n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n

n

n

n

n

n

n

n

n n n n n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n

n

n

n

n

n

n

n

n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n

n

n

n

n

Figure A.5-1 u1(z, t) from eq. (A.10-1)

A.7 SUMMARY AND CONCLUSIONS
This appendix is intended as a basic introduction to PDE analysis, with emphasis on
evolutionary (time dependent) PDEs. PDE terminology and geometric classification
are presented, followed by computer implementation of PDE systems by the method

180 Appendix A

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

z

u
2
(z
,t
)

n n

n

n

n

n

n
n n

n

n

n

n

n

n

n

n
n
n n

n

n

n

n

n

n

n

n

n

n

n

n
n
n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n
n n n n n n n n n n n n n n n n n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n
n
n n n n n n n n n n n n n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n
n
n
n n n n n n n n n n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n
n
n
n
n
n
n
n n n n n n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n
n
n
n
n
n
n
n
n
n
n n n n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Figure A.5-2 u2(z, t) from eq. (A.10-2)

of lines. Source routines in R with detailed documentation provide a starting point
for the development of new PDE models.

REFERENCES
1. https://en.wikipedia.org/wiki/Cartesian˙coordinate˙system.
2. https://en.wikipedia.org/wiki/Cylindrical˙coordinate˙system.

Appendix A 181

3. https://en.wikipedia.org/wiki/Spherical˙coordinate˙system.
4. https://en.wikipedia.org/wiki/Curvilinear˙coordinates.
5. Griffiths, G.W., and W.E. Schiesser (2012), Traveling Wave Analysis of Partial Differential

Equations, Academic Press-Elsevier, Oxford, UK.
6. Soetaert, K., J. Cash, and F. Mazzia (2012), Solving Differential Equations in R, Springer-

Verlag, Heidelberg, Germany.

Index
advection 1–3, 5, 7–8, 10–11, 14, 17,

21, 24, 29, 40, 43, 46, 79
advection PDE 100–101

BBB see blood brain barrier
blood brain barrier 1–2, 8, 15, 17, 38
blood convection 1–3, 5, 7–8, 10, 14
blood oxygen concentration 1–3, 10,

15–16, 46, 55
time variation 55

blood to brain tissue transfer
17–19, 29

boundary condition (BC) 2, 9–12, 14,
17, 28–29, 31, 46, 55, 57,
79, 100–101

Dirichlet 101
Neumann 101
Robin 101

brain cognitive impairment 1, 38, 67
brain fog 1

capillary blood flow 1–3, 5, 7–8,
10–11, 14–16, 40,
43, 46, 48

Cartesian coordinates 17, 100
cocurrent PDEs 168
cognitive impairment 1, 38, 67
convection 1–3, 5, 7–8, 10–11, 14–16,

40, 43, 46, 48, 55, 57
divergence operator 105

convection diffusion reaction
equation 107

countercurrent PDEs 168
Covid-19 1

impaired respiratory function
1, 58

cylindrical coordinates 100

diffusion 17–19, 21, 24, 28, 42, 47, 55
diffusion equation 102, 144

analytical solution 105–106, 142,
149–153

ODE/MOL routine 144–149
diffusivity 17–19, 21, 24, 28, 42, 47,

55, 57, 79
Dirichlet boundary condition

101–102, 105, 149–152
discontinuity 14, 23, 27, 39, 41, 51,

55–56, 80
divergence operator 103–104

Cartesian coordinates 103–104
convection 105
cylindrical coordinates 103–104
spherical coordinates 103–104

elliptic PDE 106

false transients 107
fatique 1
Fick’s first law 18, 103
Fick’s second law 102
finite difference (FD) 3, 12, 28–29

noncentered 115, 117
order 12, 30
three point centered 30–31,

47, 49, 77, 79, 122, 136,
146–148

two point centered 30–31, 47,
49, 77, 79, 116–117, 146–
148

two point upwind 29–31, 46, 48,
77, 79, 108, 116

flux limiters 123
smart 123–125, 131–136
van Leer 123–131

geometric PDE classification 100
elliptic 106
hyperbolic 100

183

184 Index

geometric PDE classification (cont.)
hyperbolic-parabolic 107, 165
parabolic 102

Heaviside function 101, 108,
110–111, 113

hyperbolic PDE 100
first order 100–101
boundary condition (BC) 100
initial condition (IC) 100
main program 109
ODE/MOL routine 109, 115
second order 101
boundary conditions 101
expressed as first order 101–102
initial conditions 101

hyperbolic-parabolic PDE 107, 165
hypoxia 1, 7

impaired respiratory function 1, 58
initial condition (IC) 2, 8, 17, 39,

100–101

Lagrangian coordinate 100–101, 113
Laplace’s equation 106
Laplacian operator 104–105

Cartesian coordinates 104
cylindrical operator 105
spherical coordinates 105

long Covid 1
LHS PDE derivatives 68

main program 77
lungs 1

impaired respiratory function
1, 58

main program 5
mass transfer coefficient 1–3, 5,

7–8, 10–11, 14–15, 24,
40, 55, 57

mass transfer rate 1–3, 10
method of lines see MOL
mixed derivative 99, 102
MOL 5–6, 10, 15, 38, 108

ODE/MOL routine 5–6, 8,
10–11, 22, 27

time derivative vector 1–3, 11,
28, 32

Neumann boundary condition 17,
101, 106, 153

neurological effects 1
brain cognitive impairment 1,

38, 67
brain fog 1
fatique 1

neuron 1
density 1, 47
time derivative 39, 47, 49
rate constant 39–40, 43, 47, 49,

53, 78

one PDE model 1
blood oxygen concentration 1,

10, 15–16
boundary condition (BC) 2,

9–12, 14
convection 1–3, 5, 7–8,

10–11, 14
dependent variable
blood oxygen concentration 1–3,

10, 15–16
discontinuity 14
finite difference (FD) 12
order 12
graphical output 15–16
independent variables
space 8
time 8
initial condition (IC) 2, 8
main program 5
mass transfer coefficient 1–3, 5,

7, 10–11, 14–15, 18–19
numerical output 13
ODE/MOL routine 5–6, 8,

10–11
spatial derivative 1–3
spatial grid 8
spatiotemporal modeling 1–3
time derivative 1–3, 11
time interval 8
velocity 1–3, 5, 7–8, 10–11, 14

Index 185

ODE/MOL routine 5–6, 8, 10–11
oxygen concentration 1, 15–16

along capillary 1, 15–16

parabolic PDE 102, 137–144
ODE/MOL routine 144–149

partial differential equation see PDE
PDE see also one, two, three PDE

advecion equation 100–101
Cartesian coordinates 17, 100
convection diffusion reaction 107
cylindrical coordinates 100
diffusion equation 102, 144
analytical solution 105–106, 142,

149–153
ODE/MOL routine 144–149
Dirichlet boundary condition

101–102, 105, 149–152
divergence operator 103–104
Cartesian coordinates 103–104
cylindrical coordinates 103–104
spherical coordinates 103–104
convection 105
elliptic PDE 106
false transients 107
Fick’s first law 18, 103
Fick’s second law 102
finite difference (FD) 3, 12,

28–29
noncentered 115, 117
order 12, 30
three point centered 30–31, 47,

49, 77, 79, 122, 136,
146–148

two point centered 30–31, 47,
49, 77, 79, 116–117,
146–148

two point upwind 29–31, 46, 48,
77, 79, 108, 121

first order hyperbolic 100–101
boundary condition 100
initial condition 100
flux limiters 123
smart 123–124, 131–133
van Leer 123–124

geometric classification 100
elliptic 106
hyperbolic 100
parabolic 102
Heaviside function 101, 108,

110–111, 113
hyperbolic PDE 100
first order 100–101
boundary condition (BC) 100
initial condition (IC) 100
main program 109
ODE/MOL routine 109, 115
second order 101
boundary conditions 101
expressed as first order 101–102
initial conditions 101
hyperbolic-parabolic PDE

107, 165
Lagrangian coordinate 100–101,

113
Laplace’s equation 106
Laplacian operator 104–105
Cartesian coordinates 104
cylindrical operator 105
spherical coordinates 105
LHS PDE time derivatives 68
main program 77
numerical graphical output

80–90
mixed derivatives 99, 102
Neumann boundary condition

101, 106, 153
notation 99
subscript 99, 101
numerical integration
parabolic PDE 102, 137–144
ODE/MOL routine 144–149
Peclet number 165–167,

172–173
RHS PDE terms 90–94, 98
main program 92–93

186 Index

PDE see also one, two, three PDE
(cont.)

numerical graphical output
92–98

Robin boundary condition
101–102, 106, 147–148,
153–155, 158

second order hyperbolic 101
boundary conditions 101
expressed as first order 101–102
initial conditions 101
simultaneous PDEs see also two,
three PDE models 166–167
cocurrent 168
countercurrent 168
main program 168–174
ODE/MOL routine 174–177
numerical graphical output

177–180
smart flux limiter 123–125,

131–136
spherical coordinates 100
step function 113
traveling wave 100
two point upwind 29–31, 46, 48,

77, 79, 108, 115–116, 121
van Leer flux limiter 123–131,

155–163
wave equation see second order

hyperbolic
Peclet number 165–167, 172–173

R scientific computing system 2
availabilty 2, 107
[] matrix subscripting 6
% number format 6
d 6
e 6
f 6
= replace 5, 7
> greater than 11
< less than 28
&& and operator 28
comment 5
" " 6–7

; end of code 5, 7
{} text brackets 6
c numerical vector 11–12
\n new line 6–7
<<- return 11
by 6
cat 6
deSolve 5, 7–8
for 6
function 5, 10–11
if 10
library 5, 7
list 5, 7, 11–12
lsodes 6, 8–9, 14, 22, 26, 40,

44, 109, 112
ODE/MOL function 6–7, 10–11
atol 6
func 6
maxord 6
out 6
rtol 6
sparsetype 6
y (IC) 6
times 6
matplot 7, 14–15
matpoints 110
matrix 6
subscripting 6
ncol 6, 14
nrow 6, 14
par 7
persp 7, 16
rep 6
rm remove files 5, 7
return 11–12
seq 6
from 6
to 6
by 6
setwd 5, 7
source 5, 7
sprintf 6

Index 187

respiratory function 1, 58
impaired respiratory function

1, 58
RHS PDE terms 90–94, 98

main program 92–93
numerical graphical output

92–98
Robin boundary condition 101–102,

106, 147–148, 153–155, 158

SARS-CoV-2 1
simultaneous PDEs see also two,

three PDE models 166–167
cocurrent 168
countercurrent 168
main program 168–174
ODE/MOL routine 174–177
numerical graphical output

177–180
source of neurological effects see

neurolicical effects
smart flux limiter 123–124, 131–133
spatial derivative 1–3
spatial grid 8
spatiotemporal modeling 1–3
spherical coordinates 100
step function 113

three pde model
blood to brain tissue transfer
boundary conditions (BC) 44,

46–48, 55, 61–64
cognitive impairment 67
convection 40, 43, 46, 48
dependent variables
blood oxygen concentration 46
brain tissue oxygen

concentration 47
neuron cell density 39, 47
diffusivity 39, 42, 47
discontinuity 41, 51
finite difference (FD)
three point centered 47, 49
two point centered 47, 49
two point upwind 46, 48

graphical output 41, 45, 52–53
initial conditions (IC) 39, 43
main program 39
mass transfer coefficient 40, 42
neuron time derivative 39–40,

47, 49
rate constant 39–40, 43, 47,

49, 53
numerical output 40, 44–45,

50–51
ODE/MOL routine 39–40, 44,

46–48
spatial derivative 47
spatial grid 40, 43
time derivatives 39, 48–49
time interval 40, 43
time variation of the brain

oxygen concentration 55
velocity 40, 43, 46, 48

time derivative 1–3, 11
time interval 8
time variation of the blood oxygen

concentration 55
boundary condition 55, 57, 79
constant 55, 57–59
sine variation 55, 57–59
concentration 55
convection 55, 57
diffusion 55
diffusivity 55, 57, 79
discontinuity 56, 80
finite difference (FD)
three point centered 77, 79
two point centered 77, 79
two point upwind 77, 79
graphical output 56–58, 80–90
lung recovery 58
neuron rate constant 56–57, 78
numerical output 60–61
ODE/MOL routine 55, 59, 80
mass transfer coefficient 55,

57, 79
respiratory function recovery 58
recovery 58

188 Index

time variation of the blood oxygen
concentration (cont.)

supplemental oxygen 58
time derivative vectors 78, 98
velocity 55, 57, 79

traveling wave 100
two PDE model

blood to brain tissue transfer
17–19, 29

boundary conditions (BC) 17,
27–29, 31

convection 17, 21, 24, 29
dependent variables
blood oxygen concentration 17
brain tissue oxygen

concentration 17–18
diffusivity 17–19, 21, 24, 28
discontinuity 23, 27
finite difference (FD) 28–29
order 30
three point centered 30–31
two point centered 30–31
two point upwind 29–31

graphical output 34–36
initial conditions (IC) 17, 22, 25
main program 21
mass transfer coefficients

17, 21, 24
numerical output 32–33
ODE/MOL routine 22, 27
spatial derivative 28
spatial grid 22, 25
time derivative 28, 32
time interval 22, 25
velocity 17, 21, 24, 29

upwind finite difference 29–31, 46,
48, 77, 79, 108, 115–116,
121

van Leer flux limiter 123–131,
155–163

velocity 1–3, 5, 7–8, 10, 14

wave equation see hyperbolic PDE,
second order

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Chapter 1 Source of Neurological Effects One PDE Model
	1.1 Introduction
	1.1.1 One PDE model formulation
	1.1.2 Summary and conclusions

	References

	Chapter 2 Implementation of the One PDE Model
	2.1 Introduction
	2.1.1 R routines for the one PDE model
	2.1.2 Summary and conclusions

	References

	Chapter 3 Two PDE Model
	3.1 Introduction
	3.1.1 Two PDE model formulation
	3.1.2 Summary and conclusions

	Reference

	Chapter 4 Implementation of the Two PDE Model
	4.1 Introduction
	4.1.1 R routines for the two PDE model
	4.1.2 Summary and conclusions

	References

	Chapter 5 Three PDE Model
	5.1 Introduction
	5.1.1 Three PDE model formulation
	5.1.2 Three PDE model implementation
	5.1.3 Summary and conclusions

	Reference

	Chapter 6 Case Studies
	6.1 Introduction
	6.1.1 Time variation of the brain O[sub(2)] concentration
	6.1.2 LHS PDE time derivatives
	6.1.3 Analysis of PDE RHS terms
	6.1.4 Summary and conclusions

	Reference

	Appendix A: Introduction to PDE Analysis
	Index

