

�

� �

�

Chemical and Biomedical Engineering
Calculations Using PythonⓇ

�

� �

�

�

� �

�

Chemical and Biomedical Engineering
Calculations Using PythonⓇ

Jeffrey J. Heys
Montana State University
Bozeman, Montana, USA

�

� �

�

This edition first published 2017
© 2017 John Wiley & Sons, Inc

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from
this title is available at http://www.wiley.com/go/permissions.

The right of Jeffrey J. Heys to be identified as the author of this work has been asserted in
accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some
content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
The publisher and the authors make no representations or warranties with respect to the accuracy
or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation any implied warranties of fitness for a particular purpose. This work is sold
with the understanding that the publisher is not engaged in rendering professional services. The
advice and strategies contained herein may not be suitable for every situation. In view of ongoing
research, equipment modifications, changes in governmental regulations, and the constant flow
of information relating to the use of experimental reagents, equipment, and devices, the reader is
urged to review and evaluate the information provided in the package insert or instructions for
each chemical, piece of equipment, reagent, or device for, among other things, any changes in the
instructions or indication of usage and for added warnings and precautions. The fact that an
organization or website is referred to in this work as a citation and/or potential source of further
information does not mean that the author or the publisher endorses the information the
organization or website may provide or recommendations it may make. Further, readers should
be aware that websites listed in this work may have changed or disappeared between when this
works was written and when it is read. No warranty may be created or extended by any
promotional statements for this work. Neither the publisher nor the author shall be liable for any
damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Names: Heys, Jeffrey J., 1974- author.
Title: Chemical and Biomedical Engineering Calculations Using Python®/ Jeffrey J. Heys.
Description: Hoboken, NJ : John Wiley & Sons, 2017. | Includes

bibliographical references and index.
Identifiers: LCCN 2016039763| ISBN 9781119267065 (cloth) | ISBN 9781119267072

(epub)
Subjects: LCSH: Engineering mathematics. | Python (Computer program language)
Classification: LCC TA330 .H49 2017 | DDC 620.00285/5133–dc23 LC record available at

https://lccn.loc.gov/2016039763

Cover design by Wiley

Cover image: © lvcandy/Getty Images, Inc.

Set in 10/12pt, Warnock by SPi Global, Chennai, India

Printed in United States

10 9 8 7 6 5 4 3 2 1

�

� �

�

v

Contents

Preface xi
About the Companion Website xv

1 Problem Solving in Engineering 1
1.1 Equation Identification and Categorization 4
1.1.1 Algebraic versus Differential Equations 4
1.1.2 Linear versus Nonlinear Equations 5
1.1.3 Ordinary versus Partial Differential Equations 6
1.1.4 Interpolation versus Regression 8

Problems 10
Additional Resources 11
References 11

2 Programming with Python 12
2.1 Why Python? 12
2.1.1 Compiled versus Interpreted Computer Languages 13
2.1.2 A Note on Python Versions 14
2.2 Getting Python 15
2.2.1 Installation of Python 17
2.2.2 Alternative to Installation: SageMathCloud 18
2.3 Python Variables and Operators 19
2.3.1 Updating Variables 21
2.3.2 Containers 23
2.4 External Libraries 25
2.4.1 Finding Documentation 27

Problems 28
Additional Resources 29
References 30

3 Programming Basics 31
3.1 Comparators and Conditionals 31
3.2 Iterators and Loops 34

�

� �

�

vi Contents

3.2.1 Indentation Style 39
3.3 Functions 39
3.3.1 Pizza Example 43
3.3.2 Print Function 44
3.4 Debugging or Fixing Errors 45
3.5 Top 10+ Python Error Messages 45

Problems 47
Additional Resources 49
References 49

4 External Libraries for Engineering 51
4.1 Numpy Library 51
4.1.1 Array and Vector Creation 51
4.1.2 Array Operations 55
4.1.3 Getting Helping with Numpy 55
4.1.4 Numpy Mathematical Functions 56
4.1.5 Random Vectors with Numpy 57
4.1.6 Sorting and Searching 57
4.1.7 Polynomials 58
4.1.8 Loading and Saving Arrays 59
4.2 Matplotlib Library 60
4.3 Application: Gillespie Algorithm 63

Problems 66
Additional Resources 68
References 68

5 Symbolic Mathematics 70
5.1 Introduction 70
5.2 Symbolic Mathematics Packages 71
5.3 An Introduction to SymPy 72
5.3.1 Multiple Equations 75
5.4 Factoring and Expanding Functions 76
5.4.1 Equilibrium Kinetics Example 77
5.4.2 Partial Fraction Decomposition 78
5.5 Derivatives and Integrals 78
5.5.1 Reaction Example 79
5.5.2 Symbolic Integration 80
5.5.3 Reactor Sizing Example 80
5.6 Cryptography 81

Problems 83
References 86

6 Linear Systems 87
6.1 Example Problem 88
6.2 A Direct Solution Method 91

�

� �

�

Contents vii

6.2.1 Distillation Example 95
6.2.2 Blood Flow Network Example 95
6.2.3 Computational Cost 98
6.3 Iterative Solution Methods 100
6.3.1 Vector Norms 100
6.3.2 Jacobi Iteration 100
6.3.3 Gauss–Seidel Iteration 103
6.3.4 Relaxation Methods 105
6.3.5 Convergence of Iterative Methods 105

Problems 107
References 112

7 Regression 113
7.1 Motivation 113
7.2 Fitting Vapor Pressure Data 114
7.3 Linear Regression 115
7.3.1 Alternative Derivation of the Normal Equations 118
7.4 Nonlinear Regression 119
7.4.1 Lunar Disintegration 122
7.5 Multivariable Regression 126
7.5.1 Machine Learning 127

Problems 129
References 134

8 Nonlinear Equations 135
8.1 Introduction 135
8.2 Bisection Method 137
8.3 Newton’s Method 140
8.4 Broyden’s Method 143
8.5 Multiple Nonlinear Equations 146
8.5.1 The Point Inside a Square 149

Problems 151

9 Statistics 156
9.1 Introduction 156
9.2 Reading Data from a File 156
9.2.1 Numpy Library 157
9.2.2 CVS Library 159
9.2.3 Pandas 159
9.2.4 Parsing an Array 162
9.3 Statistical Analysis 162
9.4 Advanced Linear Regression 164
9.5 U.S. Electrical Rates Example 168

Problems 172
References 175

�

� �

�

viii Contents

10 Numerical Differentiation and Integration 176
10.1 Introduction 176
10.2 Numerical Differentiation 176
10.2.1 First Derivative Approximation 177
10.2.2 Second Derivative Approximation 180
10.2.3 Scipy Derivative Approximation 181
10.3 Numerical Integration 183
10.3.1 Trapezoid Rule 185
10.3.2 Numerical Integration Using Scipy 186
10.3.3 Error Function 187

Problems 190
References 192

11 Initial Value Problems 193
11.1 Introduction 193
11.2 Biochemical Reactors 193
11.3 Forward Euler 195
11.4 Modified Euler Method 198
11.5 Systems of Equations 199
11.5.1 The Lorenz System and Chaotic Solutions 200
11.5.2 Second-Order Initial Value Problems 203
11.6 Stiff Differential Equations 203

Problems 206
References 210

12 Boundary Value Problems 211
12.1 Introduction 211
12.2 Shooting Method 212
12.3 Finite Difference Method 216
12.3.1 Reactions in Spherical Catalysts 220

Problems 224
References 226

13 Partial Differential Equations 227
13.1 Finite Difference Method for Steady-State

PDEs 227
13.1.1 Setup 228
13.1.2 Matrix Assembly 230
13.1.3 Solving and Plotting 232
13.2 Convection 233
13.3 Finite Difference Method for Transient PDEs 236

Problems 241
References 244

�

� �

�

Contents ix

14 Finite Element Method 245
14.1 A Warning 245
14.2 Why FEM? 246
14.3 Laplace’s Equation 246
14.3.1 The Mesh 246
14.3.2 Discretization 247
14.3.3 Wait! Why Are We Doing This? 248
14.3.4 FEniCS Implementation 248
14.4 Pattern Formation 249

Additional Resources 253
References 254

Index 255

�

� �

�

�

� �

�

xi

Preface

Computers have become a powerful tool in the field of engineering. Before
the widespread availability of computers, mathematical models of engineering
problems needed to be simplified to the point that the calculations could
be reliably performed by a single individual using a calculator or slide rule,
and, fortunately, for many engineering problems, simplified models were
adequate. However, as process complexity and engineering design complexity
increased, engineers increasingly turned to computers for help in managing
and automating the large number of calculations required.

The computational tools used by engineers have evolved considerably over
the past few decades. In the 1960s and 1970s, computers were not widely
available, and they were a specialized tool that was operated by highly trained
individuals. In the 1980s and 1990s, computers became widely available, but the
engineering software and computational tools were relatively simple compared
to what is available in the twenty-first century. The individual that was using
the computer general understood the calculations that were being performed,
and the computer was primarily a tool for automating those calculations. Many
engineering students during this time learned to program in either FORTRAN
or C, and the programs written by engineers were frequently limited to a
few hundred lines of code. More specialized and easier to use programming
environments like MATLAB and IDL were also developed during the 1980s,
and they usually helped to decrease the time required to write a computer
algorithm, but they increased the time required to execute or run the algorithm.

The trend toward greater specialization and ease of use in computational
tools continued in the twenty-first century. The various fields of engineering
saw an exponential increase in powerful and easy-to-use tools like AutoCAD,
SolidWorks, ANSYS, and Aspen. (Clearly, it is a good idea to choose a name
for your software that begins with “A” so it appears first alphabetically.) The
individual that uses these software packages may have some understanding
of the calculations that are being performed, but they almost never fully
understand the calculations and in some cases have no understanding of the
mathematics that is being performed by the computer. Today, engineering
students are typically taught to use multiple computational software packages

�

� �

�

xii Preface

during the typical undergraduate education. The irony of this situation is that
students often do not understand the calculation being performed by the
software – they do not know the limitations of the mathematical models, they
do not know the expected accuracy of the approximate solution, and they
do not always have the intuition necessary to recognize a highly incorrect
result. Another loss associated with the rise of specialized software tools for
engineers is that it is often very difficult to find a computational tool for a new
problem. The software often works well for the limited range of problems for
which it was designed, but, if an engineer wishes to analyze something new or
include some change that takes the problem just beyond the range of problems
for which the software was design, that engineer is often “out of luck” because
no computational tool is available to help.

I do not advocate abandoning modern engineering software. I do not
advocate returning to the use of custom FORTRAN computer codes for every
problem. I do advocate that engineering students get some experience writing
short computer programs. This experience teaches one to think precisely as
computers are notoriously unforgiving when we make mistakes in our logic. It
teaches one to decompose a complex process down into small, individual steps.
This experience teaches one to develop a unique solution for a new problem
that is not handled well by existing software. Finally, the experience of creating
a computer algorithm helps to develop a recognition of when computations
are likely to be reliable and when they are not – when the computational
solution is sufficiently accurate and when it is not.

The goal of this book is to provide the reader with an understanding of
standard computational methods for approximating the solution to common
problems in Chemical and Biomedical Engineering. The book does not have a
comprehensive coverage of computational methods, but it is instead intended
to provide the introductory coverage necessary to understand the most com-
monly used algorithms. The computer language used to explore the different
computational methods is Python. The advantages of using Python include
its wide and growing popularity, large library of existing algorithms, and its
licensing as free, open source software. The final and possibly greatest advan-
tage in using Python is that it is easy to learn to write general computational
algorithms and more specialized numerical algorithms are also easy to write,
thanks to the NumPy and SciPy libraries. By the end of this book, the reader
should have a solid understanding of how to write and use computational
algorithms in Python to solve common mathematical problems in Chemical
and Biomedical Engineering.

The course that motivated the creation of this textbook is one semester
of approximately 15 weeks. It is my belief that most of this material can be
covered in that length of time. Each chapter in the textbook covers a different
topic and the book was constructed so that the material in that chapter could
be covered in approximately 1 week. There are, of course, some exceptions.
The large number of topics and short amount of time associated with a single

�

� �

�

Preface xiii

semester may encourage instructors using this book to consider a slightly
different format than the traditional lecture format. For example, if two class
times per week are available, an instructor may want to consider requiring
students to read the book or watch an online lecture that presents the material
to be covered before coming to the first class meeting time each week. The
two class periods could then be used to cover example problems (the first
class each week) and a “working class” could be used for the second class
meeting of the week. When students are trying to complete the homework,
they often need support to overcome a difficult error message or unexpected
and unphysical numerical answer from the computer, and allowing students
to work on problems for one class time per week is often very beneficial.

Suggested homework problems are included at the end of each chapter.
Many of the homework problems are written so that the person answering the
problem must respond to a request from a real or hypothetical organization
such as a company or government agency. The author of this book typically
assigns one or two problems per week and requires students to submit their
solutions in the form of a memo to the organization that posed the problem.
The memo typically is about 1 page of text plus 1–3 figures for a total of 2 or 3
pages for the main body of the memo, and the Python code is included by the
student in an appendix with the memo. Requiring students to practice techni-
cal writing is a benefit of using this approach, and many students are motivated
when the problems have more of a “real world” flavor and are less abstract.

In closing, I would like to offer my sincerest thanks and gratitude to the
many unnamed individuals that have contributed to building Python and
making scientific computing using Python such a wonderful reality. To me, it
is really humbling and encouraging to see the great work that these individuals
have freely given to the world. I would like to single out two individuals by
name because of the transformative impact of their work – without their
work, I would never have started using Python as extensively as I do, and this
book would never have been written. The first individual is Travis Oliphant,
the primary creator of NumPy and the founder of Continuum Analytics,
which produces the Anaconda Python Distribution. The second individual is
Fernando Perez, a physicist, creator of iPython, and, most importantly to me,
the person that came into my office at the University of Colorado at Boulder and
told me that I should try learning Python because it made programming fun!

Bozeman, Montana Jeffrey J. Heys
July 15, 2016

�

� �

�

�

� �

�

xv

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/heys/engineeringcalculations_python

The website includes:

• Python Computer Codes.

�

� �

�

�

� �

�

1

1

Problem Solving in Engineering

In chemical and biological engineering, students find that the sequence of steps
outlined in Figure 1.1 is an effective problem-solving approach for the vast
majority of the problems they encounter.

In most courses, students practice all the steps outlined in Figure 1.1, but
the focus is usually on the construction of the system diagram and developing
the mathematical equations for every unique type of process that is described
in a particular course. Only limited attention is usually given to solving
the mathematical equations that arise in a particular course because the
assumption is that the student should have learned how to do that in their
mathematics courses or some other course. Many engineering curricula have
a course that is focused on the use of computers to solve the many different
types of equations that arise in a student’s engineering courses. The focus of
this textbook is just “using computers to solve the equation(s) that students
typically encounter throughout the engineering curriculum.”

The timing of a course on computational or numerical methods for solving
engineering problems varies considerably from one curriculum to the next.
One approach is to schedule the course near the end of the curriculum. As
an upper level course, students are able to review most of the engineering
principles and mathematics that they learned previously and develop a new
set of tools (specifically, computational tools) for solving those same problems.
Two disadvantages are associated with this approach. First, students do not
have the computational tools when they first learn a new engineering principle,
which limits the scope of problems they can solve to problems that can be
largely solved without a computer (i.e., problems that can be solved with paper
and pencil). The second disadvantage is that the third and fourth years of many
engineering curricula are already filled with other required courses and it is
difficult to find time for yet another course.

A second approach is to schedule the computational methods course early in
the curriculum, before students have taken most of the engineering courses in
which they learn to derive, construct, and identify the mathematical equations
they need to solve and that sometime require a computational approach.
There are also two problems with this approach. First, the students have

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

2 1 Problem Solving in Engineering

Problem
statement

System
diagram

Model
equations

Solution

Figure 1.1 Engineering problem-solving process.

typically not taken all the required mathematics courses, and, as a result, it is
difficult to teach a computational approach to solving a differential equation
when a student is not yet familiar with differential equations or techniques
for solving them. The second disadvantage is that the student has not taken
courses on separations, kinetics, transport, and so on in which they learn to
derive or identify the appropriate mathematical equation(s) for their particular
problem. It is, of course, difficult to teach a computational approach to
solving an equation when the importance or relevance of that equation is not
known.

A third approach for addressing this dilemma is to simply not teach a
stand-alone computational methods course and instead cover the relevant
computational approaches as they are needed in each individual course. We
will continue our listing of the “top two challenges” and identify two potential
difficulties with this approach. First, instead of learning and becoming com-
fortable with two or three computational tools (i.e., mathematical software
packages), students under this format often need to learn 4 or 5 computational
tools because every one of their instructors prefers a different tool, and the
students never really become proficient with any single tool. The second
difficulty is that there are a few important concepts that play a role in many
of the various computational methods, for example, rounding error, logical
operators, and accuracy, that may never be taught if there is not a single course
focused on computational methods.

This textbook, and the course that it was originally written to support, is
focused on the second approach – a course that appears in the first year or early
in the second year of an engineering curriculum. The main reason for adopting
this approach is simply the belief that it is critical for students to understand
both the potential power and flexibility of computational methods and also the
important limitations of these methods before using them to solve problems in
engineering. For a student to use a computational tool in a course and blindly
trust that tool because they do not understand the algorithms behind the tool
is probably more destructive than never learning the tool at all. Further, to limit
a student to only problems that can be solved with paper and pencil for most of
their undergraduate education is similarly unacceptable. Addressing the lim-
itations associated with teaching computational methods before most of the
fundamental engineering and some mathematics courses is difficult. The basic
strategy employed by this book is to teach students to recognize the type of

�

� �

�

1 Problem Solving in Engineering 3

mathematical equation they need to solve, and, once they know the type of
equation, they can take advantage of the appropriate computational approach
that is presented here (or, more likely, refer back to this book for the appropriate
algorithm for their particular equation).

There is a second, and possibly more important, reason for learning this
material early in the engineering education process. It is related to the fact that
one of the most difficult skills for many science, engineering, and mathematics
students to master is the ability to combine a number of small, simple pieces
together into a more complex framework. In most science, engineering, and
mathematics courses in high school and early in college, students learn to
find the right equation to solve the question they are asked to answer. Most
problems can be completed in one or two steps. Problems in later courses, on
the other hand, can often require 5–10 or more steps and can require multiple
pages of equations and mathematics to solve. This transition from small
problems that only require a few lines to large problems that require a few
pages can be very challenging for many science, engineering, and mathematics
students. I believe that programming in general, and numerical computations,
in particular, can be a great way to develop the skills associated with solving
larger problems. Programming requires one to combine a number of simple
logical commands and variables together into a more complex framework.
Programming develops the parts of our brains that allow us to synthesize a
number of smaller pieces into a much larger whole. A good analogy is building
something complex (e.g., the Death Star) with LEGO bricks. This process
requires one to properly and carefully combine a number of simple pieces into
a much larger structure. The entire process requires one to simultaneously
think on both the large scale (“What is my design objective?”) and the small
scale (“Will these two pieces stay connected? Are they compatible?”). This skill
is necessary for both programming and engineering. It is a skill that almost
everyone is capable of developing, but it takes practice – so, we might as well
start early!

This textbook advocates that students develop the following skills: (1) rec-
ognize the type of mathematical equation that needs to be solved – algebraic
or differential? linear or nonlinear? interpolation or regression? ordinary or
partial differential equation (PDE)?, and (2) select and implement the appro-
priate algorithm. If students are able to develop these two skills, they will be
equipped with a set of tools that will serve them well in their later engineering
courses. These tools can be used by a student to check their work, even when
they are primarily using paper and pencil to solve a problem. It is not optimal
that students learn how to approximately solve mathematical equations before
they know why the equation is relevant, but every effort is made in this book
to at least try and explain the relevance of equations when possible.

�

� �

�

4 1 Problem Solving in Engineering

1.1 Equation Identification and Categorization

We identified two categories of skills that we wish to develop throughout this
book: (1) recognizing the type of mathematical equation(s) and (2) selecting
and implementing an appropriate computational method. The first skill will be
covered in this chapter and then the remainder of the book is for developing
the second set of skills.

1.1.1 Algebraic versus Differential Equations

The distinction between algebraic and differential equations is trivial – a
differential equation is a relationship between the derivatives of a variable and
some function. Differential equations described the rate of change of a variable;
typically the rate of change with respect to space or time. Equations can have
both independent and dependent variables. It is usually simplest to identify the
dependent variables because their value depends on the value of another vari-
able. For example, in both 𝑣(t) = 2𝜋 + t2 and dv

dt
= 3 + 𝑣 ⋅ t, 𝑣 is the dependent

variable because its value depends on the value of t and t is the independent
variable. There can be multiple independent variables, for example, multiple
spatial dimensions and time, and the value of dependent variable may depended
on the value of all independent variables. The density of air, for example, varies
with location: latitude, longitude, and elevation above sea level, as well as time.
Therefore, if we have an equation that describes the density of air as a function
of location and time, then, in that equation, density is the dependent variable
and location and time are the independent variables. Similarly, the ideal gas
law can be used to calculate the density of air: 𝜌(P,T) = P

R⋅T
. For this equation,

𝜌 is a function of temperature and pressure, so 𝜌 is the dependent variable and
P and T are the independent variables. Alternatively, this equation could be
seen such that pressure, P, is the dependent variable that depends on density,
𝜌, and temperature, T , that is, P(𝜌,T) = 𝜌 ⋅ R ⋅ T .

For differential equations, there are three different notation styles that are
commonly used for derivatives.

Leibniz notation The derivative of the function, f (x), with respect to x is
written as

df
dx

and the second derivative is written:
d2f
dx2 .

The partial derivative of f (x, y) with respect to x is
𝜕f
𝜕x

.

�

� �

�

1.1 Equation Identification and Categorization 5

Lagrange notation The derivative of the function, f (x), with respect to x is
written:

f ′(x)

and the second derivative is written:

f ′′(x).

The notation is not easily extended to partial derivatives and there is no
universal standard, but one style that is used is to switch from the prime
mark, ′, to a subscript so that the partial derivative of f (x, y) with respect to
x is

fx.

Euler notation The derivative of the function, f (x), with respect to x is written:
D f

and the second derivative is written:
D2 f .

The partial derivative of f (x, y) with respect to x is
Dx f .

In summary, differential equations have at least one derivative and algebraic
equations do not. The presence of a derivative has a significant impact on the
computational method used for solving the problem of interest.

1.1.2 Linear versus Nonlinear Equations

A linear function, f (x), is one that satisfies both of the following properties:

additivity: f (x + y) = f (x) + f (y).
homogeneity: f (c ⋅ x) = cf (x).

In practice, this means that the dependent variables cannot appear in
polynomials of degree two or higher (i.e., f (x) = x2 is nonlinear because
(x + y)2 ≠ x2 + y2), in nonlinear arguments within the function (i.e.,
f (x) = x + sin(x) is nonlinear because sin(x + y) ≠ sin(x) + sin(y)), or as
products of each other (i.e., f (x, y) = x + xy is nonlinear).

For algebraic equations, it is typically straightforward to solve linear systems
of equations, even very large systems consisting of millions of equations and
millions of unknowns. Two different methods for solving linear systems of
equations will be covered in Chapter 6. Nonlinear algebraic equations can
sometimes be solved exactly using techniques learned in algebra or using
symbolic mathematics algorithms, especially when there is only a single
equation. However, if we have more than one nonlinear equation or even a
single, particularly complex nonlinear algebraic equation (or if we are simply

�

� �

�

6 1 Problem Solving in Engineering

feeling a little lazy), we may need to take advantage of a computational
technique to try and find an approximate solution. Algorithms for solving
nonlinear algebraic equations are described in Chapter 8.

It is important to note that the distinction between linear and nonlinear
equations can also be extended to differential equations and all of the
same principles apply. For example, dc

dt
= 4c and d2c

dt2 = 2 sin(𝜋t) are linear
while dc

dt
= c2 is nonlinear. In some cases, the nonlinearity will not significantly

increase the computational challenge, but, in other cases like the Navier–Stokes
equations, the nonlinearity can significantly increase the difficulty in obtaining
even an approximate solution.

Linear versus Nonlinear Examples

Linear:

• single linear equation: 5 ⋅ x + 1
3
= x

• linear system of equations:

3 ⋅ x +
y
4
= 10

x = 6 ⋅ y.

Nonlinear:

• single nonlinear equation: 5 ⋅ x − 1
3
=
√

x
• single nonlinear equation: x2 − 8 ⋅ x − 9 = 0
• nonlinear system of equations:

3 ⋅ x ⋅ y +
y
4
= 10

x − 6 ⋅ y = 0

• nonlinear system of equations:

x + y = 4
log(x) − 7 ⋅ y = 0.

1.1.3 Ordinary versus Partial Differential Equations

An ordinary differential equation (ODE) has a single independent variable. For
example, if a differential equation only has derivatives with respect to time, t,
or a single spatial dimension, x, it is an ODE. A differential equation with two
or more independent variables is a PDE. The following are examples of ODEs.

t ⋅
dp
dt

+
d2p
dt2 = sin(t) (linear, second-order ODE).

If you have not taken a differential equations course, this equation may look
a little intimidating or confusing. To solve this equation, we need to find a

�

� �

�

1.1 Equation Identification and Categorization 7

function p(t) where the first derivative of the function, multiplied by t, plus the
second derivative of the function is equal to sin(t). If that sounds difficult, do
not worry, by the end of this textbook, you will know how to get an approximate
solution, that is, a numerical approximation of the function p(t). It is also impor-
tant to emphasize that multiplying the dependent variable p by the independent
variable t did not make the equation nonlinear. A nonlinearity only arises if, for
example, p is multiplied by itself.

dx
dt

= x2 + 3 cos(t) (nonlinear, first-order ODE).

Again, if you have not had a differential equations course, solving this
equation requires finding a function x(t) that has a derivative equal to (x(t))2

plus 3 cos(t). Do not worry if that makes your head spin, we will also cover the
solution of this class of problems.

Some examples of PDEs are included below.
𝜕T
𝜕t

= 𝛼
𝜕2T
𝜕x2 (linear, second-order PDE).

This is an equation that describes unsteady, conductive heat transport in one
spatial dimension. You could use this equation to describe, for example, the
warming of the ground when the sun comes up in the morning, among many
other examples. Solving this equation requires finding a function T(x, t) of both
time t and space x where the first derivative with respect to time is equal to 𝛼

times the second derivative with respect to space.

m𝜕m
𝜕x

+ 𝜕m
𝜕y

= 0 (nonlinear, first-order PDE).

By now it is probably obvious that the standard mathematical convention is
to use 𝜕 for derivatives in a PDE while ODEs use d. The order of the equation
is determined by the order of the highest derivative.

Solving a Differential Equation

Even though you may not have taken a differential equations course, you might
be able to solve a simplified version of the first ODE example. Try to solve

d2p
dt2 = sin(t).

Notice that we have eliminated the difficult term with t multiplied by the first
derivative. Let us start by integrating both sides of the equation with respect
to t:

∫
d
dt

(
dp
dt

)
dt = ∫ sin(t)dt.

(Continued)

�

� �

�

8 1 Problem Solving in Engineering

Solving a Differential Equation (Continued)

Recalling that an integral is just an antiderivative, we get

dp
dt

+ c1 = − cos(t) + c2.

The two constants of integration can simply be combined into a single
constant, c0, which can be placed on the right-hand side giving:

dp
dt

= − cos(t) + c0.

Now, let us integrate both sides once more with respect to t:

p(t) + c3 = − sin(t) + c0t + c4,

which we can simplify once again by combining the two new constants of
integration to a single constant c, to give

p(t) = − sin(t) + c0t + c.

In order to fully determine our unknown function p(t), we need two additional
conditions to solve for the value of our two remaining unknown constants, c0
and c. Typically, this additional information would be initial conditions, that is,

the value of p when t = 0, and the value of dp
dt

at t = 0.

It is always a good idea to check the solution to your problem by substituting
p(t) back into the original differential equation and checking to make sure that
the left side (i.e., the second derivate of p(t)) is equal to the right-hand side.

1.1.4 Interpolation versus Regression

Within engineering, it is often necessary to obtain an equation, usually a
polynomial equation, that “fits” a given set of data. If we want an equation
that exactly matches the data, then we must interpolate the data so that we
obtain a function (e.g., a polynomial) that has the same value as the data for
a given value of the independent variable (Figure 1.2). In order to determine
an interpolant, the number of adjustable parameters that we determine in
the equation must equal the number of data points. For example, if we want
to interpolate three data points, we must use an equation that has three
adjustable parameters, such as a quadratic polynomial, ax2 + bx + c.

In practice, it is actually pretty rare that we want to exactly interpolate a
given set of data because we hopefully have a large amount of data (and we
do not want to use a very high-order polynomial) and that data contains some
amount of error. In most cases, we want to approximately fit our data with an
equation of some form (Figure 1.3). In order to do this, we must first decide

�

� �

�

1.1 Equation Identification and Categorization 9

Figure 1.2 An example of interpolation for a set of
data. The data is usually represented using points
(circles) and the interpolant function is usually
represented using a line.

y

x

y

x

(a) (b)

y

x

Figure 1.3 An example of linear (a) regression and nonlinear (b) regression for a set of data.

how we want to measure the “goodness” of a fit. Maybe we want to fit an
equation so that the sum of the distances from the best fit equation to each
and every point is minimized. Another option (the option that is almost always
selected) is to minimize the sum of the square of the distance between every
data point and the “best” fit approximation. This is the so- called least-squares
regression approach. The function that gives us the best fit based on our
chosen criteria is called the regression function and the process of determining
the regression function is called regression analysis. The most popular type
of regression, linear regression (Figure 1.3) using least-squares, and nonlinear
polynomial regression are both covered in Chapter 7.

�

� �

�

10 1 Problem Solving in Engineering

Problems

1.1 Determine the type (linear or nonlinear) of algebraic equation assuming
x, y, and z are unknown variables:
a) x2 + y2 = 1.0
b) x + y =

√
2

c) y = 2 ⋅ sin(x)
d) x + y + z2 = 0

1.2 Determine the type (linear or nonlinear; ordinary or PDE) of differential
equation assuming that z, x, and t are independent variables and g, , and
k are known parameters:
a) d2y

dt2 = −g (Newton’s first law)

b) 𝜕CA

𝜕t
+ 𝑣 ⋅ 𝜕CA

𝜕z
+ kCA = 𝜕

𝜕z

( 𝜕CA

𝜕z

)
c) f ′(x) = sin(x) + 4

1.3 If you want to determine the polynomial that interpolates 6 data points,
what is the minimum order polynomial that is required? Write the poly-
nomial with x as the independent variable and a, b, c,… as the unknown
coefficients.

1.4 You are asked to use regression to determine the best linear polynomial fit
for a given set of data. A colleague encourages you to determine the best
fit by minimizing the sum of the distance between each point and the line
instead of minimizing the sum of the square of the distance, which is the
standard practice. The colleague claims that this will reduce the influence
of a few outlying data points. Is the colleague correct?

1.5 You have been hired to produce an exact replacement part for a classic
Porsche because the part is no longer available. Another engineer collects
precise measurements of the location of a number of points on the surface
of the part. You need to produce a new part with corresponding points at
the same locations. Before machining the new part, you need to develop
a continuous function that fits the measurement points because the con-
tinuous function will provide a representation of the surface connecting
the points. Should you develop the continuous function using regression
or interpolation between the precisely measured locations on the surface
of the part? Why?

1.6 While studying a particular system, you collect some data on a measur-
able variable (y) versus an adjustable variable (x). Your next task is to use

�

� �

�

References 11

regression to approximately fit the data with a continuous mathemati-
cal function. Most engineers would start by trying to fit the data with a
polynomial. You are not like most engineers because you wisely start by
plotting the data. While examining the plot, you notice that the data has a
pattern that is repeated as the adjustable variable is continuously changed.
The measured variable increases and decreases regularly as the adjustable
variable is increased. Should you fit this data with a polynomial? If so, what
order polynomial? If not, what function(s) would you use instead?

Additional Resources

An understanding of how to solve differential equation problems is not required
for understanding the material in this book. However, an ability to classify or
recognize the type of equation that one is trying to solve is required. Most
differential equation textbooks include a comprehensive set of definitions that
enable the classification of mathematical equations. Some popular differential
equation textbooks for engineers are:

• Differential Equations for Engineers and Scientists by Çengel and Palm [1]
• Advanced Engineering Mathematics by Zill and Cullen [2]
• Advanced Engineering Mathematics by Kreyszig [3]

and a helpful resource for data plotting and regression using Microsoft Excel is:

• Engineering with Excel by Larsen [4].

References

1 Çengel, Y. and Palm, W. III (2013) Differential Equations for Engineers and
Scientists, McGraw-Hill, New York, NY, 1st edn.

2 Zill, D. and Cullen, M. (2006) Advanced Engineering Mathematics, Jones and
Barlett, Sudbury, MA, 3rd edn.

3 Kreyszig, E. (2011) Advanced Engineering Mathematics, John Wiley and Sons,
Inc., Hoboken, NJ, 10th edn.

4 Larsen, R.W. (2009) Engineering with Excel, Pearson Prentice Hall, Upper
Saddle River, NJ, 3rd edn.

�

� �

�

12

2

Programming with Python®

The objective of this chapter is to motivate the use of the Python programming
language for solving problems in chemical and biological engineering and then
to present a few basic principles associated with programming in Python. It is
important to emphasize that the goal is not to cover all aspects of programming
in Python because that would require an entire book (or potentially shelf of
books) by itself. Instead, the goal is to present a few important principles and
then slowly add additional Python programming knowledge throughout the
remainder of the book.

2.1 Why Python?

When it comes to solving the many different mathematical problems that arise
in engineering, many different software options exist for obtaining an exact
or approximate solution. Some options, such as COMSOL or ANSYS, are
very user-friendly and they hide most of the details of the calculations from
the user. While these software packages represent an important resource for
engineers, our goal here is, in fact, to learn and understand the calculations
that are happening in the background of these commercial packages. We will
not discuss these high-level software packages here simply because we want
to focus on and understand the actual computational details.

Another set of software options for solving engineering problems are math-
ematical software packages such as MATLAB, Mathematica, or MathCAD.
These packages give the user more control over the calculations, but they
also require more specialized knowledge than the process simulation software
described previously. These mathematical software packages are probably the
most popular options for a college-level course on engineering calculations.
They have one major disadvantage; however, they can be quite expensive,
especially if the various supporting libraries and add-on packages are also
required. It is true that many institutions have a site license for these software
packages, but the license may require students to be on the school’s network

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

2.1 Why Python? 13

to use the software. It also means that the student is unlikely to have access to
the software after they graduate.

The final option for the computational solution of engineering problems
is to simply write your own computer code in a relatively low-level language
such as FORTRAN or C++. Unfortunately, this option requires significant
specialized knowledge – knowledge that is rarely retained beyond the course
in which it is taught. Writing low-level computer code can also be a very
frustrating experience when subtle errors in the code are difficult to identify
due to obscure error messages. The result is that students spend most of
their time looking for errors in the computer code instead of learning about
computations and algorithm development.

There is not a perfect solution to the dilemma of selecting an optimal
computer environment for learning computational techniques for solving
engineering problems. However, the Python programming language has many
advantages that make it the platform of choice here. These advantages include
the following:

1) It is freely available and runs on most major computer platforms including
Windows, MacOS, and Linux.

2) It has a tremendous number of additional libraries that are also free and add
computational mathematics capabilities. For example, the Numpy library
provides Python with capabilities that are similar to those of MATLAB.

3) It is an interpreted language (defined below) and is easier and faster for
developing new algorithms than compiled languages.

4) Many libraries of previously compiled algorithms can be imported into
Python, which allows for very fast and efficient computations.

5) It is worth repeating – it is free!

2.1.1 Compiled versus Interpreted Computer Languages

The first high-level programming languages that were developed, such as
FORTRAN or C, were compiled languages. This meant that the programmer
would type source code into the computer, this code was compiled into
assembler code, and this was ultimately linked to produce a final executable
file (Figure 2.1). The advantage of this approach is that the executable that
was produced was relatively optimized and efficient for the platform on which
it was built. Even today, most numerical software that requires significant
computations, for example, meteorological software, is written in a compiled
language. The disadvantage of this approach is that significant expertise and
training are required to write computer programs in a compiled language,
identifying errors in the source code is often a very difficult and time consum-
ing process, and the resulting program can only be run on the platform or
operating system for which it is compiled.

These disadvantages associated with compiled programming languages
can largely be addressed through the use of interpreted languages. Common

�

� �

�

14 2 Programming with Python

Source
code

(a)

(b)

Assembler
code

Executable
(platform specific)

Compiling Linking

Compiled languages:

Interpreted languages:

Source
code

Intermediate
representation

Virtual machine (available
on many platforms)

Compiling
(runtime)

Figure 2.1 The process of going from source code (i.e., a set of instructions) into a running
computer program is different for compiled programming languages (a) versus interpreted
programming languages (b).

interpreted programming languages include Java, Python, and JavaScript. Even
MATLAB can be seen as an interpreted programming language. The source
code for these languages is not compiled and linked to form a platform-specific
executable but is, instead, compiled to an intermediate language (or bytecode)
that is run on a “virtual machine.” The virtual machine is a piece of software that
interprets the bytecode and executes the instructions contained in the original
source code. One obvious advantage of this approach is that the source code
can be run on any computer that has the required virtual machine. Since
Python and many associated libraries are available for all the major operating
systems, you can execute Python source code almost anywhere. Interpreted
languages also tend to be easier to program with because the syntax is more
forgiving and the error messages are more informative (although you will
still see cryptic error messages and frustrating syntax requirements in all
computer languages). The disadvantage of interpreted languages is that they
tend to execute instructions more slowly than compiled languages – often by
a factor of 10 or more. If we need to multiply 1014 numbers by 𝜋, a factor of 10
can mean the difference between a 1 h computation and a 10 h computation.
Interpreted languages are getting faster all the time, however, and they are
starting to close the gap between compiled and interpreted languages. One
common strategy is “just-in-time” (JIT) compilation. The basic idea here is
that the virtual machine can actually compile important and frequently run
source code all the way to a platform-specific executable (just like a compiled
language). Of course, this “on-the-fly” compiling slows down the execution
of the rest of the computer program, but, if a particular set of instructions is
executed frequently, it may be more than worth the cost of JIT compilation.

2.1.2 A Note on Python Versions

In 2008, a new version of Python, Python 3.0, was released. This new version
contained a few significant changes from the previous Python 2.x series.

�

� �

�

2.2 Getting Python 15

In particular, programs written for the Python 3.x series would normally not
run on the Python 2.6 and earlier series of virtual machines, and existing
programs written for Python 2.x virtual machines would not run on Python
3.x series virtual machines. Probably, the biggest change impacting the Python
codes in this book has been to the “print” function notation. In Python 2.6 and
earlier versions, the format was
print “Hello World"

and for Python 3.0 and later versions, the format was
print(“Hello World")

Those parentheses may look like a small change, but the new format is not
compatible with Python 2.6 and earlier versions, and the old format is not com-
patible with Python 3.0 and later versions. Interestingly, Python 2.7 supports
both versions. It should also be noted that there were other, more significant
changes beyond the print function when the change was made to Python 3,
but those changes rarely impact the codes and types of algorithms written in
this book.

As of 2015, most numerical python libraries are available for Python 2.7 or
Python 3.x virtual machines. The examples in this textbook were written for
a Python 3.x series virtual machine but have also been tested on a Python 2.7
series virtual machine. It is inevitable that all Python computations will even-
tually transition to Python 3.x or later virtual machines. In the meantime, it is
important to recognize the version of Python that you are using and select the
appropriate virtual machine for the code that is being executed.

If you ever need to determine the version of Python that you are currently
using, you can type the following two Python commands:
import sys
print(sys.version)

The system that I am currently using prints out

Python 3.4.0 (default, Jun 19 2016, 14:20:21)
[GCC 4.8.2] on linux

2.2 Getting Python

The process of learning numerical methods for engineering requires writing
and executing computer programs. This book advocates the use of Python for
writing and executing these computer programs so it is highly recommended
that the reader have access to at least Python 2.7 (although Python 3.4 or later
is recommended) plus the following libraries:
• Numpy (www.numpy.org) – array operation library
• Scipy (www.scipy.org) – scientific algorithm library that uses numpy

�

� �

�

16 2 Programming with Python

• Matplotlib (www.matplotlib.org) – provides the pyplot and pylab plotting
libraries

• SymPy (www.sympy.org) – symbolic mathematics library (optional, used
primarily in Chapter 5)

• Pandas (http://pandas.pydata.org/) – easy to use data structures and data
analysis tools including data import (optional, used primarily in Chapter 9)

It is also recommended that an integrated development environment (IDE)
be used to facilitate the writing of Python Source code. One particularly good
IDE is called Spyder (https://pythonhosted.org/spyder/). Figure 2.2 shows the
basic layout of the Spyder IDE interface. The input window on the left side of
the Spyder program window shows the Python source code that is currently
being edited. The code in the source window can be executed or run by
selecting “Run” from the “Run” menu or simply pressing F5 on most platforms.
The upper right-hand screen usually shows documentation when it is available
for different functions included with Python or imported libraries. The lower
high-hand screen shows a Python console or Python prompt, “>>>”. Basically,
the Python prompt is an actively running Python virtual machine and different
Python commands can be tested at the prompt.

When writing a new Python program, it is often helpful to “try out” a
command or line of code at the Python prompt to observe the result. Having
an active virtual machine for testing ideas helps to make Python an efficient
language for writing new programs.

Figure 2.2 A screenshot of the Spyder IDE for Python programming including source code
window on the left size, documentation window on the upper right side and Python
console for rapid testing and executing the source code in the lower right side.

�

� �

�

2.2 Getting Python 17

2.2.1 Installation of Python

For computers running Windows, three good options for installing Python
include the following:
• Anaconda Scientific Python (store.continuum.io/cshop/anaconda/)
• pythonxy (code.google.com/p/pythonxy)
• winpython (winpython.sourceforge.net)

All of these packages include Python plus all the required libraries such as
numpy and scipy plus they include the Spyder IDE. As of 2015, only Anaconda
Scientific Python supported Python3. Presumably, the other options will
eventually support Python3, but care should be taken when installing Python
to select the desired Python version – 3.x or 2.x.

For computers running MacOS, it is easiest to install the Anaconda Scientific
Python package (https://store.continuum.io/cshop/anaconda/).

For computers running a Debian-based version of Linux, the following
command will install all required libraries:
sudo apt-get install python3-numpy python3-scipy
sudo apt-get install python3-matplotlib ipython3

The FEniCS program, which is used in Chapter 14, is only available for
Debian-based versions of Linux (i.e., Ubuntu or Mint Linux) or Docker and
can be installed on Debian systems using
sudo apt-get install fenics

It should be noted that as of 2016, FEniCS requires Python 2.7, but it is expected
to move to Python 3.x in the near future.

First Python Commands!

Open a Python console or open the Spyder IDE and move the cursor down to
the lower right corner. At the Python prompt, “>>>” type,

>>> print('Hello World')

and the console should print “Hello World” back to the screen. Note that you do
not type the “>>>” prompt as it should automatically appear within the open
console. If you are using an iPython console, the prompt will look like:In [#]:
where # is an integer, and the program above would be:

In [1]: print('Hello World')

In general, the regular Python prompt: “>>>” and the iPython prompt:
In [#]: give the some behavior although the iPython prompt supports more
commands.

(Continued)

�

� �

�

18 2 Programming with Python

First Python Commands! (Continued)

For a slightly fancier version of the example above, set the variable “a” equal to
the string “hello,” set the variable “b” equal to the string “world” (note the space
and the beginning), and then ask Python to “print(a+b)”. The exact sequence of
instructions should give

>>> a=’hello’
>>> b=’ world’
>>> print(a+b)
hello world

Congratulations if you just executed your first Python program!

2.2.2 Alternative to Installation: SageMathCloud

If a Windows, Mac, or Linux computer is not available for installing Python
and the important scientific libraries, most of the material covered in this
book, including examples, exercises, and problems, can be completed using
SageMathCloud. SageMathCloud is a web-based computing platform for
computational mathematics, and it is part of the Sage project. Basically,
the SageMathCloud project has installed a large number of software pack-
ages, including Python and the libraries used in this book, on computers
connected to the internet, and then they provided a web-based interface to
this software. The result is that users can visit the SageMathCloud website,
cloud.sagemath.com, create an account, and then start writing scientific
software in Python (or other languages including Julia, R, and Octave) within
the webpage. The website can be used from almost any web-browser, including
smartphones, tablets, and chromebook (ChromeOS) computers.

The web-based interface is based on the Jupyter project. Users start by
creating a new project, then creating a new Jupyter notebook. An example of a
Jupyter notebook is shown in Figure 2.3. Jupyter notebooks consist of cells that
contain one or more lines of Python code. The code within a cell is executed
by pressing “Shift-Enter”, and once the code is executed, the results and other
output are displayed below the cell and stored in memory (more precisely,
all python objects are retained and can be used when executing other cells).
Overall, the style of Jupyter notebooks is similar to Mathematica Notebooks
for individuals that are familiar with that software.

With all the benefits associated with SageMathCloud, including the ability
to write and execute scientific Python code from anywhere, including a tablet,
one might ask why Python should ever be installed on a computer? Why not
always use SageMathCloud? There are a few reasons. First, SageMathCloud
requires an internet connection and if that connection is lost, work can be
lost. Second, at times of heavy use, the internet-connected computers that are

�

� �

�

2.3 Python Variables and Operators 19

Figure 2.3 A screenshot of the Jupyter notebook on SageMathCloud. Two different cells are
populated with Python code, and the cells are executed using “Shift-Enter”. The results of
code execution are shown below each cell.

actually running the Python code for SageMathCloud can become slow – up to
a factor of 10 slower than a modern laptop running Python. Finally, and this is
the biggest reason, it can be difficult or impossible to use a Python library that
is not already on SageMathCloud. For example, the finite element library FEn-
iCS that is covered in the last chapter of this book is not available on SageMath-
Cloud. If you are using your own computer, you can install it yourself, but, if
you are using a web-based interface into some other computer, that may not be
possible.

2.3 Python Variables and Operators

Programming frequently requires us to assign a variable to a specific piece of
data (or something more complex). For example, typing:
a = "hello"

into the console or a Python script file results in the variable “a” being assigned
to character string “hello”. The word assigned is emphasized here because
it better reflects the role being played by the equal sign. Whenever Python
code contains “=”, the object on the right is being assigned to the variable
on the left.

�

� �

�

20 2 Programming with Python

Variable Assignment

In Python (and most other programming languages) we should see:

a = “hello”

as

a ← “hello”

The role of the assignment operator may seem obvious, but many novice
programmers have struggled when the following code did not work:

>>> a=4
>>> a=b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'b' is not defined
>>>

The novice programmer may believe that the second line (“a=b”) will result
in “b” being set to 4 since “a” was previously set to 4. This will not happen,
and, instead, we get an error because the result of executing the code is that
“a” is assigned to something that is not defined (the variable “b” has not been
assigned). Notice that the end of the Python error message is telling us the
problem.

Simultaneous Assignment

Python also allows the simultaneous assignment of multiple variable to the
same value. For example,

a = b = 0

is the same as

a ← b ← 0

and both a and b are assigned the value of 0.

Python uses strong-typing for variables, which means that every variable is
a specific type, for example, an integer, floating point number, and character.
There is a built-in function in Python called type(), which will return the type
for a given variable. In some cases, it is possible to convert from one variable
type into another variable type as is illustrated in the example below where a
string (“str”) variable is converted into an integer (“int”).

�

� �

�

2.3 Python Variables and Operators 21

>>> a=’5’
>>> print(type(a))
<class ’str’ >
>>> c=int(a)
>>> print(type(c))
<class ’int’ >
>>> print(type(3.1415))
<class ’float’ >

The Python code above was entered into a Python console. If you try this
example for yourself, do not type the “>>>” prompt, it should be part of the
console. The output from the print statement might vary slightly depending
on the operating system, Python version, and type of Python console you are
using, but the results should contain “str”, “int”, and “float”. You can also enter
the above code into a text file or script. For example, you could enter the code:
a = 5
print(type(a))
c = int(a)
print(type(c))
print(type(3.1415))

into the left half of the Spyder IDE window (or any other program that can edit
text files), save the file, and then run it through the Python virtual machine. The
output should be the same as the previous series of commands at the console:
“str”, “int”, and “float”. Examples of both types of code entry: at the console or in
a script, are shown in Figure 2.4.

2.3.1 Updating Variables

When writing a computer program, it is often necessary to update the value of
a variable. For example, we may want to count something by initially setting a
variable to zero, and then adding one to the value of the variable as we count, for
example, the number of words in a paragraph. In order to add one to a variable,
we could type:
>>> w = w + 1

where w is the variable that holds the number of words as we count. The
line of Python code above is clearly completely invalid from a mathematical
standpoint. It “looks” like an equation where w is equal to itself plus one – a
mathematically unsolvable equation (unless zero equals one!). However, it
is NOT a mathematical equation, it is NOT a statement of equality, it IS an
assignment: w is assigned a value of the previous value of w plus one. This line
should be viewed as:

wnew ← wold + 1
This type of variable update – where a variable’s value is updated by adding
something to it – is so common in programming, that a special notation is

�

� �

�

22 2 Programming with Python

Figure 2.4 A screenshot of the Spyder IDE showing the two different methods for entering
the example Python code: at the console in the lower right corner or into a script (i.e., text
file) in the left half. The script on the left is run using the green, triangular “play” button
along the upper part of the window.

available in Python for it. To add the value of v to the value of w and store the
result in w, we may write
>>> w += v

and this is identical to
>>> w = w + v

The new value for w will equal the old value for w plus the value of v in either
case.

Mathematical Operations

Now that we know how to assign variables, we are in position to explore oper-
ators like “+” and “*”, which allow us to effectively use Python like a calculator.
The following example illustrates some features of operators.

The following can be typed into the Python console:

>>> a=4
>>> b=2
>>> print(a+b)
6
>>> print(a-b)
2

�

� �

�

2.3 Python Variables and Operators 23

multiplication and division:

>>> print(a*b)
8
>>> print(a/b)
2.0

exponent, floor division, and remainder:

>>> print(a**2)
16
>>> print(b%a)
2
>>> print(a%b)
0
>>> print(9//b)
4

2.3.2 Containers

It is often useful in programming to collect multiple objects together into a
single container and assign them to a variable. Python includes a number of
different types of containers including tuples, lists, and dictionaries. The focus
here is on numerical computations and the most useful type of container for
these algorithms is a list container. In Python, a list has one or more objects
(usually numbers for numerical computations) separated by commas and sur-
rounded by square brackets. Lists may be heterogeneous – containing different
objects types, but in practice, most lists only contain one type of variable. Lists
should remind us of vectors. The construction of lists is illustrated below.
>>> myList = [1, 2, 3]
>>> print(myList)
[1, 2, 3]
>>> secondList = ['a', 'b', 'c', 1, 2, 3]
>>> print(secondList)
['a', 'b', 'c', 1, 2, 3]

The two lists created above were stored in two different variables, “myList” and
“secondList”. It is common to store lists in variables. We often wish to modify
lists that have already been created. Some examples of list modification are
shown below.
>>> vec1 = [2, 3, 5]
>>> vec2 = [24, 2, 10]
>>> vec1.append([8,2])
>>> print(vec1)
[2, 3, 5, [8, 2]]

�

� �

�

24 2 Programming with Python

>>> vec1[3] = 87
>>> print(vec1)
[2, 3, 5, 87]
>>> vec2.extend([9,3])
>>> print(vec2)
[24, 2, 10, 9, 3]
>>> print(vec1+vec2)
[2, 3, 5, 87, 24, 2, 10]
>>> print(vec1+"what?")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (not "str") to
list

Two lists are defined at the console and assigned to the variables “vec1” and
“vec2.” To access an item in a list, use square brackets after the name of
the variable, for example, vec1[3] accesses the fourth item in the list. It is
important to emphasize that in Python (and many other modern programming
languages, the first item is a list has the index zero. To access the first item
in vec1, use vec1[0]. Counting from zero can be awkward at first, but most
experienced programmers appreciate the subtle advantages that will hopefully
become apparent later.

After defining the lists, a nested list is then appended onto the end of “vec1”
and then the nested list is replaced with 87 (programmers like to say that
Python lists are mutable and can be changed). Lists can also be extended as
“vec2” is extended, or lists of the same type can be concatenated as “vec1” and
“vec2” are combined together. A list cannot be concatenated with a string or
almost anything other than another list as evidenced by the error message at
the end.

Tuples are another type of container in Python that are, in practice, very
similar to lists, they are an ordered collection of objects that may be hetero-
geneous. The main difference is that tuples may not be changed. They are
immutable. A simple demonstration of tuples is shown below:

>>> mytuple = ('a', 1, 'c')
>>> print(mytuple[2])
c
>>> (x,y,z) = mytuple
>>> print(x)
a
>>> (j, h) = mytuple
Traceback (most recent call last):

(j, h) = mytuple
ValueError: too many values to unpack (expected 2)

�

� �

�

2.4 External Libraries 25

Notice how the individual objects within the tuple are still accessed with
square brackets. In addition, observe that the individual objects within the
tuple can be assigned to a set of individual variables, in this case named “x”, “y”,
and “z”. This is only practical for tuples with small numbers of objects, but it
can be useful as we will see in the next chapter. Of course, if you try to assign
three individual objects to only two variables, the result is an error.

One final type of Python container that is only briefly mentioned here is the
dictionary container. With lists and tuples, the objects in the container were in
a specific order, and we could access the objects using an integer corresponding
to the location of the desired object within that order. The first and third objects
in a list or a tuple are accessed using “name[0]” and “name[2],” respectively, if
the list or tuple is stored in variable “name.” Dictionaries are containers that
contain a potentially heterogeneous collection of objects, but dictionaries are
not ordered. Instead, a key is assigned to access the object. The key can be a
string or an integer or other descriptor, and when building the dictionary, the
key is followed by a colon (:) and then the object that the key is referencing. To
access the object referenced by the key, square brackets containing the key are
used. The example below builds two dictionaries, one uses strings for the keys
and the other uses integers for the keys:
>>> myDict = {’class’:’102’, ’instructor’:’Heys’}
>>> print(myDict[’instructor’])
Heys
>>> secondDict = {0:’zero’, 2:4}
>>> print(secondDict[0])
zero

Notice that dictionaries are constructed using curly brackets, “{” and “},” and
every entry is a “key:object” pair. Using integers as keys in the second example
causes the dictionary to look a little like an ordered list or tuple but that is not
the cases. If one tried to access secondDict[1], for example, an error would
result. Dictionaries are much less common in engineering computations and
are not used in this book for the algorithms presented.

2.4 External Libraries

Imagine that we want to calculate sin(1.2). If we try typing that into the Python
console or a simple piece of source code, this is what we are likely to see:
>>> sin(1.2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name ’sin’ is not defined

We get an error message because the sin() function is not a built-in function
in Python. In order to use the sin() function, we need to import the “math”

�

� �

�

26 2 Programming with Python

library into Python. This can be accomplished two different ways and both are
shown below.

To import a library, use the import command

>>> import math
>>> math.sin(1.2)
0.9320390859672263

This is the preferred approach. The first command imports the entire math
library, and any functions, methods, or data contained within that library can
be accessed by typing: math.name or math.name() where name() is the
name of a function in the library. A complete list of functions and values within
the math library can be found at docs.python.org/3/library/math.html.

The other approach to importing a library uses the from command

>>> from math import *
>>> sin(1.2)
0.9320390859672263

This approach loads the entire math library into the global Python namespace,
which can be thought of as a list of reserved words that are already defined.
For example, import is a reserved word that is part of the global Python
namespace and we should never use import for any other purpose. For
example, do not try to use “import” as a variable name. Whenever we load a
library into this same global namespace, we greatly increase the number of
global terms and invite the possibility of conflict. For example, if we tried to
load two libraries that both contain the sin() function (both the math library
and the Numpy library, which we use frequently both contain a sin() function),
Python would give us an error. There are times when it is easier to use the
from name import * option for loading libraries, but it is usually better
to use import name.

If you tried to run >>> sin(1.2) at the console and were successful, this
was a result of using an IDE that was smart enough to load the math library
for you.

There are hundreds of libraries that have been written by others that increase
the power of Python and save us from having to rewrite code that has already
been written by others. In this book, we will use the math, numpy, scipy, and
matplotlib libraries extensively. Two libraries that are not covered in great
depth in this book but maybe helpful in further developing engineering algo-
rithms are the “sys” library and the “timing” library. The sys library provides
information and functions for connecting with the computer’s operating
system. For example, print(sys.platform) will print out a string that
identifies the underlying operating system. The sys.float_info data
structure has information about floating point precision and computational
roundoff for the computer currently being used. The “time” library can be
useful for measuring the time required to run various parts of an algorithm.

�

� �

�

2.4 External Libraries 27

The function time.clock() returns the current processor time (in seconds),
and by storing the time in different variables and then calculating the difference
between those variables, it is possible to determine the processor time required
to execute a series of commands. For example, the following code:

t0 = time.clock()
...Python code to be timed...
print(time.clock() - t0, "seconds process time")

will print out the time required to run the Python code in between the two calls
to time.clock(). This information can be especially helpful in determining
how an algorithm’s computational cost scales with the change in a parameter
or in determining the slower sections of an algorithm’s execution.

2.4.1 Finding Documentation

One of the challenges associated with external libraries (and one of the general
challenges associated with programming) is finding documentation that
describes how to use the various functions, methods, and data associated with
the library or programming language. For example, where can we find data
about the sin() function that is part of the math library? For most program-
mers, the easiest answer is just to perform an internet search. To search for
documentation about the sine function, a search for “python math sin” would
probably yield abundant documentation.

Python has the benefit of supporting docstrings, which often provide
additional help for the use of functions and methods in external libraries. The
use of the help() function to access docstrings is illustrated below.

>>> import math
>>> help(math.sin)
Help on built-in function sin in module math:

sin(...)
sin(x)

Return the sine of x (measured in radians).

Another challenge when using external libraries is that we sometime wish
to have a list of available functions and data that are part of the library.
A directory or list of items in a library can be accessed through the dir()
function. For example, a list of functions and data available in the math library
can be accessed as shown below.

>>> import math
>>> dir(math)
[’__doc__’,’__name__’,’__package__’,’acos’,’acosh’,
’asin’, ’asinh’, ’atan’, ’atan2’, ’atanh’, ’ceil’,

�

� �

�

28 2 Programming with Python

’copysign’, ’cos’, ’cosh’, ’degrees’, ’e’, ’erf’,
’erfc’, ’exp’, ’expm1’, ’fabs’, ’factorial’, ’floor’,
’fmod’, ’frexp’, ’fsum’, ’gamma’, ’hypot’, ’isinf’,
’isnan’, ’ldexp’, ’lgamma’, ’log’, ’log10’, ’log1p’,
’modf’, ’pi’, ’pow’, ’radians’, ’sin’, ’sinh’, ’sqrt’,
’tan’, ’tanh’, ’trunc’]

Note that some of the items in the math library are functions, like “sqrt” or
“exp,” and some of the items are constants, like “pi”.

Problems

2.1 Using Python, calculate 5/16, 5.0/16, and 0.52. Include all Python
commands and results (using a cut-and-paste approach is recom-
mended). Are the results correct. For Python versions before Python
3.x, integer division returned an integer result. As a result, 5/16 would
return 0 instead of the floating point answer (0.3125). Whenever you use
division in a Python algorithm, it can be important to make sure that one
of the numbers is a floating point number or multiple the numerator by
1.0 to convert it into a floating point number. Alternative, in Python 2.6
and 2.7 codes, you will often see the line: from__future__ import
division to get the same behavior as Python 3.x where the result is
always returned as a floating point number.

2.2 When using containers in Python, variable assignment can give some
interesting behavior. Begin by creating a list of integers from 1 to 5, and
store the list in variable “a”. Next, assign the variable b to be equal to a.
Finally, change the value of the second entry in the list of integers to the
number 20. The code below summarizes the steps necessary.
>>> a=[1,2,3,4,5]
>>> print(a)
>>> b=a
>>> b[1]=20
>>> print(b)
>>> print(a)

Summarize the output of the code above and describe the behavior of
assigning variable “b” equal to “a”.
For the second part of the problem, repeat all the steps in first part, except
assign “b” to all the values within “a” using
>>> b=a[:]

Again, summarize the output of the code and describe the assignment
behavior.

�

� �

�

Problems 29

2.3 Another type of Python container that is less common in engineering
computations is the tuple. Tuples use rounded brackets: “(” and “)”
instead of square brackets, “[” and “]” like lists. The main difference
between tuples and lists is that tuples are immutable, that is, they cannot
be changed. Try to repeat the first few commands from the previous
problem using a tuple instead of a list:
>>> a=(1,2,3,4,5)
>>> print(a)
>>> print(a[1])
>>> b=a
>>> print(b)
>>> b[1]=20

What did you observe? Can you think of a way to get a new tuple from
an previous tuple with a number that is changed?

2.4 Assign a variable to a string that is your name. For example, I would
perform the following assignment:
a=’jeff’

Write the Python command that will print the second letter (e.g., for me,
it should print the letter “e”). Now, try to replace the second letter in your
name with the letter “z”. Describe and explain what you observe.

2.5 While writing a Python program, you decide to assign a new variable
“class” to the value of 1,2,3, or 4 depending on the current class year for a
group of students. In Python, try to assign the variable “class” to a value
of 1. Describe what you observe. Next try to assign the variable “pass” to
a value of True. Describe what you observe.
To better understand what is happening, type “help()” at the Python
prompt (i.e., the >>> prompt). This should bring up the help prompt
(i.e., “help>”). At this prompt, type “keywords” to get a list of reserved
keywords that cannot be used as variables. Print this list of Python
keywords.

Additional Resources

Books on general programming in Python:
• Learning Python by Lutz [1]
• Python in a Nutshell by Martelli [2]
• Think Python by Downey [3].

�

� �

�

30 2 Programming with Python

References

1 Lutz, M. (2013) Learning Python, O’Reilly Media, Inc., Sebastopol, CA,
4th edn.

2 Martelli, A. (2009) Python in a Nutshell, O’Reilly Media, Inc., Sebastopol,
CA, 2nd edn.

3 Downey, A. (2012) Think Python, O’Reilly Media, Inc., Sebastopol, CA,
1st edn.

�

� �

�

31

3

Programming Basics

The objective of this chapter is to continue learning the basics of programming
in Python. In the previous chapter, we learned how to assign variables to dif-
ferent values, including integers, floating point numbers, and strings. We also
learned how to import additional functionality from external libraries like the
math library. This chapter covers additional, standard topics in programming
like logic, looping, conditionals, and developing our own functions.

3.1 Comparators and Conditionals

As described previously, the equal sign does not actually compare two objects
to see if they are equal. If we wish to compare two objects for equality, we need
to use == as illustrated:
>>> a=4
>>> b=4
>>> a==b
True
>>> a<b
False
>>> a != 2
True

Beyond the equality comparator, the less than, “<”, greater than, “>”, less than
or equal to, “<=”, greater than or equal to, “>=”, and NOT equal, “!=”, compara-
tors are frequently helpful. In all cases, the comparator should return a Boolean,
True or False.

While the focus in this textbook is on numerical programming, it can be
interesting to try out some of the same principles on strings of characters.
Consider the following:
>>> a="hello"
>>> b="world"

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

32 3 Programming Basics

>>> a==b
False
>>> a<b
True
>>> b<a
False

Here, the comparator compares two strings to determine which is first alpha-
betically.

Comparators can be extremely helpful in constructing conditional state-
ments. For example, if we want a block of code to only execute when a certain
condition is true, we can use an if statement:
>>> a=4
>>> if a<5:
... print("smaller")
...
smaller

or, in the form of a script:
a=4
if a<3:

print("smaller")
else:

print("larger")

where the code will, of course, print “larger” upon execution. From these two
examples, we can make an INCREDIBLY IMPORTANT OBSERVATION (note
that I wish that I could make the next sentence flash). In Python, blocks of
code are designated using indentation. Every if statement has a condition
followed by a colon. If the conditional is True the following block of text is
executed, and the scope or length of the block is determined by the fact that
all lines of code within the block MUST be indented EXACTLY the SAME
amount. If the first line in the block is indented four spaces (and four spaces is
the standard Python style), then every line must be indented four space. If you
mess up and indent one line with only three spaces or a tab, error messages
and chaos will follow. Most people find indentation at the Python prompt
(>>>) awkward and difficult. Any algorithm that requires indenting a block of
code is probably sufficient long that it should be developed using a script and
not simply entered at the Python prompt. The same consistent indentation
requirement for one block of code following a conditional statement also
extends to nested conditional statements, as shown in the example below.
a=input(’Enter an integer (0-10): ’)
convert the input to an integer if possible
a = int(a)
if a<5:

print("a is less than 5")

�

� �

�

3.1 Comparators and Conditionals 33

print("adding 1")
a += 1 # this is identical to a=a+1
if a<4:

print("a is still less than 4")
print("adding 1 more")
a += 1

print("a = ", a)

The goal of this simple code is to increase the value entered if it is “small”. If
the value is less than 5, then 1 is first added to the original input value. If the
value is still less than 4, a second 1 is added. Upon execution with an input of
“4”, this code generates
a is less than 5
adding 1
a = 5

and an input of “2” generates
Enter an integer: 2
a is less than 5
adding 1
a is still less than 4
adding 1 more
a = 4

In the previous example, we can see an example of a “comment” being
include with the Python script. The comment, “# this is identical
to a=a+1”, is included in the program to make it more readable and easier
to understand. The use of frequent and descriptive comments is highly
recommended. A good rule of thumb is that one comment should be included
for every two lines of regular Python code. Another good rule of thumb is to use
roughly an order of magnitude more comments in your own code compared
to what you will find in this book! In Python, a comment is initiated by the
“#” character and all following characters are not interpreted or executed by
the Python virtual machine – it is as if they do not exist. Optionally, multiline
comments can be initiated use three consecutive double quotes and ended
using three consecutive double quotes. One final note, the comment character,
“#”, can also be helpful for temporarily removing a line of code from execution.

One new Python function used in the previous example is the input()
function for getting input from the keyboard. The input from the keyboard
is stored in the variable a in the example. It is always a good programming
practice to check the validity of input each and every time. In the above
example, it would be good to check that a is between some minimum and
maximum integers before using the variable any further.

Whenever a comparator is used, Python returns a Boolean (i.e., True or
False in Python). The Boolean can be stored in a variable as is illustrated in a
simple example:

�

� �

�

34 3 Programming Basics

j = 3 < 4
print(j)
if j:

print(’true’)

and we note that the result can be used in a conditional if statement. The
output of this script should be

True
true

because the if j: comparator is identical to if 3<4: in this example.

3.2 Iterators and Loops

When creating computer algorithms, we often need to repeat a series of
commands or instruction a number of times. For example, we might want
to compare the value of a variable to each individual in a list of values. In
numerical algorithms, we might need to take the sin() of each number in a list
of numbers. For all these situations (and many more), we need to use iterators.
The most common types of iterators (or loops) that are used in this book are
the for loop and the while loop.

“for” Loops

An extremely simple for loop is

for n in [2,3,4]:
print(n)

and the output from running this loop is

2
3
4

Notice that the structure of the for command is

for variable in list:

where the variable takes the value of each item in the list in order. Also notice
that the for command ends with a colon (:) and the block of code to be
executed each iteration through the loop is indented.

The simple example above illustrates the basic elements of a for loop, but
what if you wanted a loop that repeated 50 times or 50 million times? Would
we need to type out a list of 50 million numbers? The answer is, of course, “No!”

�

� �

�

3.2 Iterators and Loops 35

Python conveniently provides the range() function for iteratively generating
lists of numbers of any desired length. If a single number is passed into the
range(n) function, it will iteratively generate a list of integers from 0 to n − 1
or 1 less than the number that is passed into the function. Since the list starts
at 0, the command range(5) will generate a list of five integers: 0, 1, 2,
3, 4.

Let us illustrate this by constructing a for loop that executes 5 times and
calculates the sin() of each integer between 0 and 4.

import math

for i in range(5):
i is 0, 1, 2, 3, 4
j = math.sin(i) # input in radians
print(i, j)

print("finished")

Upon execution, the output from this code should be

0 0.0
1 0.8414709848078965
2 0.9092974268256817
3 0.1411200080598672
4 -0.7568024953079282
finished

It is also possible to have a for loop that iterates through a list of something
other than integers. Consider the following example:

for color in ["red", "yellow", "green"]:
signal = color + "light"
print("The signal shows:", signal)

When this script is run, the output should be

The signal shows: red light
The signal shows: yellow light
The signal shows: green light

Similarly, you can iterate through a list of lists, and even store the results in two
different temporary variables, as illustrated in this example:

for m,n in [[1,2],[3,4],[5,6]]:
notice change of order for m,n below
print("n = ",n," and m = ",m)

and the output from this loop is

n = 2 and m = 1
n = 4 and m = 3
n = 6 and m = 5

�

� �

�

36 3 Programming Basics

Python makes it easy to iterate through any list and perform various operations
each iteration.

It is often necessary to nest a conditional within an iterator. The outer loop
consists of some list that we are iterating through, and the inner loop consists of
a condition that is executed whenever the condition is met. A simple example
of this would be to iterate through a list of integers and then print out the value
of integers if they have 7 as a factor (i.e., they are evenly divisible by 7). The
simple Python code below performs this task.

for i in range(100):
if i%7 == 0:

print(i)

The output is a list of integers, starting with zero and then counting by 7 up to
98. We could also try the slightly more complicated task of determining all the
integers between 0 and 150 that have 5 or 7 as factors. This change requires the
use of a logical or in the if statement. We also wish to count the total number
of integers that meet these criteria.

counter = 0
for i in range(150):

if (i%7 == 0) or (i%5 == 0):
counter += 1 # increment the counter
print(i)

print(’Total: , counter)

The total number of integers between 0 and 150 that have 5 or 7 as factors is 47,
which is printed out at the last line in the script. A very common mistake made
by novice programmers is to indent that last line. Whenever you are iterating
and accumulating or totaling something as the iterations occur, it is critical that
no action be taken until the iteration has completed. If that last line is indented,
Python does not know that the programmer really wanted to wait till the end
to print the result to the screen.

Next is an example of a while loop that continues until a specific condition
is met. Two warnings regarding while loops: (1) make sure that all variables
in the stopping condition are initialized to starting values before the while
statement and (2) make sure that the loop cannot repeat for an infinite number
of times.

import math

x=0.0
while x < 10.0:

y = 2.0
x += y
print(x,y)

�

� �

�

3.2 Iterators and Loops 37

Upon execution, the output from this code should be

(2.0, 2.0)
(4.0, 2.0)
(6.0, 2.0)
(8.0, 2.0)
(10.0, 2.0)

While loops are often used in situations where an unknown number of
iterations is required. It is critical in these situations, however, to have some
type of stopping condition to prevent the loop from iterating or executing
forever. Imagine that we wanted to generate random numbers between 0.0
and 1.0 and then count the total number of random values generated before
generating a random value that exceeds some threshold. These types of
calculations are common when developing mathematical models of stochastic
or random processes like chemical kinetics. The Python code below allows us to
count the number of random values generated before exceeding a set threshold.

import random

maxIter = 10
currentIter = 1
val = random.random() # returns a random number 0-1
print(val)

while (currentIter < maxIter) and (val < 0.75):
currentIter += 1 # increment the counter by 1
val = random.random() # new random number
print(val)

if (currentIter < maxIter):
print(’Iterations required for a random number’)
print(’greater than 0.75? ’, currentIter)

else:
print(maxIter, ’ iterations reached before a ’)
print(’value greater than 0.75!’)

The variable currentIter is a counter for the total number of random
numbers generated, and val is the value of the most recent random number.
The key line in this code is the while-loop line. The block of code (3 lines
total) below the while is repeated as long as two different conditions are
both true: (1) the iteration counter is less than the variable maxIter and
(2) the most recent random number is less than 0.75. Since one out of every
four random numbers should be larger than 0.75, it is rare that the maximum

�

� �

�

38 3 Programming Basics

number of allowed iterations is reached, but it can and does happen. A typical
output from the code is shown below:
0.3469218564154297
0.052444292456515496
0.31212308088974927
0.031893177151028684
0.63273646126271
0.8911860542672484
Iterations required for a random number (0-1)
greater than 0.75? 6

The output is different every time the code is executed because different
random numbers are generated each time, although it is possible to modify
the code so that the same set of “random” numbers is generated each run. In
addition, as we will see in the next chapter, it is probably more efficient to
generate a list of 10 random numbers in a single call to a random number
generator and then loop through the list until we reach one larger than the
threshold (0.75 for the example above).

It is possible to use iterators to generate more complex lists. For example, if
we want a list of perfect squares, then we can put an iterator inside the square
brackets normally used for defining a list. For example,
x2 = [x*x for x in range(6)]
print(x2)

will generate the list [0, 1, 4, 9, 16, 25]. These types of operations
are called list comprehensions. They can also be useful for generating sublists
using comparators. For example, the list of factors of 3 from the full list of inte-
gers:
x2 = [x for x in range(20) if x % 3 == 0]

will generate the list [0, 3, 6, 9, 12, 15, 18]. Finally, the Python
keyword inmay be used to check for membership in a list. The previous script
can be used to check if specific values are in the resulting list.
x2 = [x for x in range(20) if x % 3 == 0]
print(9 in x2)
print(10 in x2)

The script will generate True and then False.

The range() Function

The range function in Python supports the following arguments:
range(start, stop, step). If only one input is given, it is treated as the
stop value and the function returns the integers from 0 tostop-1. If two values

�

� �

�

3.3 Functions 39

are given, they are treated as start and stop values, and three values are treated
as start, stop, and step size. Using this information, try to construct a loop that
prints out the odd integers from 7 to 17, including 17.

We need to set start to 7, step should be set to 2 so that we only have odd
integers, but how do we get the loop to include 17, but exclude 19?

The following will not work:

for i in range(7, 17, 2):
print(i)

print("finished")

This code will stop at 15. Instead, because range does not include the value
of stop in the sequence, we need to set stop to 18 or 19. You may also want to
try setting the value of start to 7.5 or some other non-integer. The result will
not be good because range requires all input values to be integers.

3.2.1 Indentation Style

Before leaving the topics of loops and conditionals, it is worth revisiting an
important issue that was introduced in this section – indentation. In Python,
blocks of code are designated by a common level of indentation. If we have mul-
tiple lines of code that should be executed as part of a for loop or as part of
an if statement, then those lines must have a uniform level of indentation.
While Python is agnostic about the type – spaces or tabs – and the quan-
tity used for indentation, I recommend that novice programmers follow the
style recommended in the Style Guide for Python Code, also known as Python
Enhancement Proposal #8 or PEP 8 [1]. Specific style guidelines include the
following:

• use spaces instead of tabs for indentation,
• use four spaces for each level of indentation,
• try to keep lines to 79 characters or less,
• do not put spaces around list or array indices, that is, use a[5] instead of
a[5], and

• put one, and only one, space before and after the equal sign (“=”) in variable
assignments.

Additional Python style guidelines, including best Python programming prac-
tices, can be found in Effective Python by Slatkin [2].

3.3 Functions

We have already used a number of built-in functions and functions from
external libraries, include the math.sin() and range() functions. In

�

� �

�

40 3 Programming Basics

many situations, it is very helpful to write our own functions. Advantages of
writing functions include the fact that it becomes easier to reuse the code
you have written previously, and functions help to break our programs up
into manageable pieces, which makes programming easier. The keyword
def is used to define a function in Python. This keyword should be followed
by the name of the function and variable names for any inputs. The set of
instructions that make up the function appear in the block below the fist line.
The construction of a function is illustrated through the following examples.

We want to write a function that will print out the area of a triangle given the
size of the base and the height.

def triangle(base,height):
two floating point inputs required:
length of the triangle base
height of the triangle
area = 0.5*base*height
no return value
print(area)

triangle(2,3)

Upon execution, this code should print “3.0” to the console output. The script
first contains the code that defines the function. When run, the Python virtual
machine loads the function but does not execute the function. It is not until the
last line is reached that the function is called with two values that are passed
into the function.

Of course having a function that just prints something to the screen after
a calculation is probably not that useful. Instead, we should try to construct a
function that returns the results of the calculations whenever possible. This can
be illustrated by rewriting the function in the abovementioned example so that
it returns the area (and then prints it to the screen).

def triangle(base,height):
two floating point inputs required:
length of the triangle base
height of the triangle
area = 0.5*base*height
one return value
return area

size = triangle(2,3)
print(size)

Note the use of the keyword return at the end of the triangle function.
It can be helpful think of functions as virtual machines that take inputs,

perform some operations on those inputs, and then return the results when
they are finished. Figure 3.1 shows a visual representation of this process.

�

� �

�

3.3 Functions 41

Step 1:
Build the function

Base Height

def triangle():

Return (if included)

Step 2:
Call the function

Figure 3.1 A visual representation of the construction of the triangle function that acts as a
machine that takes in two inputs, base and height, and returns the area of a triangle after
performing the appropriate mathematical operations on the inputs.

The execution of the previous script starts by building a function. Then, the
function is called in the second to last line and inputs are passed into the
previously defined function. The return value from the function is stored in
the variable size, which is printed to the screen in the final line.

Any variables declared inside a function are only defined within that specific
function. A common mistake made by new Python programmers is to try to
use a variable that was previously declared in a function somewhere outside
the function. Some of the principles for accessing variables are illustrated in
the example below.

The code below contains a global variable called everywhereVariable
that is declared outside the function triangle, and a second variable, area,
that is only defined within the scope of the function triangle.
everywhereVariable = 102
def triangle(base=1,height=1):

two floating point inputs required:
length of the triangle base
height of the triangle
area = 0.5*base*height
area = 0.5*base*height
print(everywhereVariable)
one return value
return area

triArea = triangle(3)
print(triArea)

�

� �

�

42 3 Programming Basics

next line gives an error
print (area)

Upon execution, this program should first define the variable everywhere-
Variable and then it should load, but NOT execute the function triangle.
Then, the function triangle should be executed when Python reaches the line
where the function is first called (triArea = triangle(3)). The code
should print “102” and “1.5” to the screen when the two print statements are
executed. However, when we try to execute “print(area)” we should get
an error message telling us that the variable “area” is not defined because the
variable is only defined within the function – not outside the function.

One other Python feature to note in this example is the use of default values
for the two input parameters of the triangle function. By setting default values,
we can now call the function with or without values for base and height.
If one value is passed into the function, that value is used for setting the first
variable, (base). If a second value is passed into the function, both of the
default values are replaced with the values passed into the function. Default
values are very helpful in situations where parameters are unlikely to change
in most situations.

The quadratic formula is used to find the roots of a quadratic polynomial of
the form: a ⋅ x2 + b ⋅ x + c = 0 where a, b, and c are given constants. The roots
of the polynomial are

x =
−b ±

√
b2 − 4 ⋅ a ⋅ c
2 ⋅ a

(3.1)

and there may be up to two unique roots due to the ±-sign. Further, if the term
under the radical sign (i.e., square root sign) is negative, the roots are complex.
We would like to develop a Python function that will calculates the roots of a
quadratic polynomial given a, b, and c as inputs, assuming that the roots are
real numbers, and it should print an error message if the roots are complex. An
example function is shown below.

import math

def myquad(Ain, Bin, Cin):
check for complex roots
if Bin**2 < 4.0*Ain*Cin:

if complex, print error
print("Complex results not allowed")
return (0,0)

else:
if not complex, calculate roots
x1 = -Bin + math.sqrt(Bin**2 - 4.0*Ain*Cin)
x1 = x1 / (2.0*Ain)
calculate second root (plus/minus change)
x2 = -Bin - math.sqrt(Bin**2 - 4.0*Ain*Cin)

�

� �

�

3.3 Functions 43

x2 = x2 / (2.0*Ain
return (x1,x2)

small program to call and test myquad()
a = 1.0; b = 4.0; c = 2.0
(out1, out2) = myquad(a,b,c)
print(out1, out2)

The myquad() function must be passed three numbers when it is called and
these numbers are set to the variables Ain, Bin, Cin. The function then
checks for complex roots using the term under the radical. If the roots are going
to be complex, a warning is printed to the screen and zeros are returned for the
values of the two roots. If the term under the radical is positive, the two roots,
x1, x2, are returned as a tuple.

The final three lines in the code above allow one to test the myquad()
function. Values are specified for the inputs to the function and then the
function is called. Note that defining the function, which is done in the top
half of the code, is not the same as calling or executing the function, which is
done in the second to last line. You must call the function after it is defined if
you actually want to run it. The call to the myquad() function in the second
to last line has variables specified, out1, out2, in a tuple for receiving the
return values. Alternatively, a single return variable could have been set and
that variable would be set to a tuple with the two return values. For example,
the function could have been called with the line out = myquad(a,b,c)
and out would have been equal to a tuple with two values. If a tuple with
three variables was used for receiving the returned values, that is, if the line
was (out1, out2, out3) = myquad(a,b,c), a ValueError would
result.

Potential changes to the myquad() function to make it easier to use
include setting default values for the input variables, checking that the input
variables are floating point numbers or integers using the type() function,
and returning the complex roots for the case of a negative value under the
radical. The interested reader is encouraged to modify the code above with
these suggested changes.

As we will see later, it is often useful to combine related functions together
into a single file with a filename.py extension. These functions can then be
imported into other programs later on using import filename and called
using filename.function. This is a great way to recycle code we have
already written.

3.3.1 Pizza Example

The function below, given the number of people at a table, calculates the arc
length for a slice of pizza if a single 16-inch diameter pizza is divided evenly
among the people at the table and everyone receives just one slice.

�

� �

�

44 3 Programming Basics

import math
def arclength(numPeople):

circumference = 16*math.pi
if(numPeople < 1):

print("Error: must have at least one person")
return 0

else:
length = circumference/numPeople
return length

print(arclength(6))

The code above should return 8.3776, indicating that each of the 6 people in
the test problem should receive a slice with an arc length of 8.4 inches. You
may want to try modifying the code so that it calculates the arc length when
everyone receives more than one slice, but they all still receive the same number
of slices.

3.3.2 Print Function

With the transition to Python version 3, the “print” command became a func-
tion, print(). The previous examples used basic forms of the print function,
such as print(x) or print("hello world"). The print function is
much more powerful and flexible than these simple examples, and this versatil-
ity can be very useful for producing more professional looking output from our
programs. The examples below illustrate a few features of the print function.

>>> import math
>>> print("The value of pi is %lf" % math.pi)
The value of pi is 3.141593
>>> print("The value of pi is %le" % math.pi)
The value of pi is 3.141593e+00
>>> print("The value of pi is %d" % math.pi)
The value of pi is 3
>>> print("The value of pi is %.2lf" % math.pi)
The value of pi is 3.14
>>> print("The value of pi is %s" % "cherry")
The value of pi is cherry
print("Favorite pi? %.2lf or %s" % (math.pi, "cherry"))
Favorite pi? 3.14 or cherry

In the above example, the initial string in the print function contains
formatting specifiers (e.g., %lf), and the string is followed by a percentage
sign and then one or more variables (a tuple is used for multiple variables) to
be printed in place of the format specifiers. Frequently used specifiers include
floating point number, %f; long floating point number, %lf; long exponential
number, %le; integer, %d; and string, %s. It is also possible in many cases to
specify the number of digits that are printed using %n.mlf, where n is the

�

� �

�

3.5 Top 10+ Python Error Messages 45

number of digits before the decimal point and m is the number of digits after
the decimal point. Both n and m are optional.

3.4 Debugging or Fixing Errors

Probably, the single greatest challenge that a novice programmer faces is
correcting or fixing errors in their programs. The processes of correcting
errors in computer code is commonly referred to as “debugging”. The origin
of the term debugging is frequently attributed to Grace Hopper, an early
computer pioneer who discovered a moth stuck in a computer relay that was
causing errors. The topic of debugging is very broad and a large number of
books have been written that are dedicated to the topic of debugging. Expe-
rienced computer programmers almost always use debugger software to help
with the process of finding errors. Debugging software allows programs to be
executed one or a few steps at a time while the value of various variables can be
continuously tracked. This ability to run a program in “slow motion” and with
full variable exposure is very powerful. Debuggers for Python are included with
most IDE’s include the Spyder IDE. While the use of debuggers is not described
here, a few important strategies for finding and correcting errors are listed
below.

1) The single most common mistake made by novice programmers is trying to
write 10 or more new lines of code without testing the code. Experienced
programmers try to test their programs after writing just a few (2 to 5) new
lines of code. Ideally, programmers like to start with a similar, working code
that can be modified a few steps at a time to reach the desired code. TEST
OFTEN!!

2) Print out the value of variables whenever possible during the initial writing
of the code to ensure that the code is behaving properly. These “print()”
statements are easy to remove later.

3) If a piece of code is not working, try to add a comment character, “#”, before
as many lines as possible. Hopefully, this will allow the code to run. Then,
remove the comment characters one line at a time to find the line causing
the problem.

4) Use the documentation available for the software libraries you are using to
verify that the correct variables are being passed to functions in the library.

3.5 Top 10+ Python Error Messages

We end this chapter with a list of the most commonly encountered error
messages and some common causes for those messages.

�

� �

�

46 3 Programming Basics

1) TypeError – this error is caused by trying to use a variable of one type in a
situation that requires a different type. For example, trying to combine an
“int” and a “str”. The TypeError message is usually followed by the actual
variable type followed by the required variable type.

2) IndexError – this error is caused by trying to access part of a list or array
that is beyond the existing range. A frequent cause is forgetting that a list or
array is indexed starting with zero. If an array (e.g., myarray) has 5 entries,
then the 5th and final entry is accessed using an index of 4 (e.g., myarray[4]).
In diagnosing the problem, it is often good to print the length of the array
to the screen. The length of an list or container can be obtained using the
len() function.

3) SyntaxError – this is caused by a violation of the Python syntax or
formatting requirements. The most common cause is forgetting a colon
(“:”) at the end of a line that requires one (e.g., lines starting with “if”,
“while”, and “for”)

4) SyntaxError: EOL while scanning string literal – this is a special syntax
error that is usually caused by forgetting a quotation mark or using a
mixture of single (‘) and double (“) quotation marks.

5) NameError – happens when you try to use a variable that has not been
defined. This frequently occurs when we forget to initialize a variable to a
value.

6) ZeroDivisionError – probably, the easiest error message to understand, but
it can be difficult to solve. It is always a good idea to print the values of
variables to the screen to better understand when/how a variable is being
set to zero instead of a nonzero value.

7) IndentationError – caused by inconsistent indentation in a block of code
that should have been uniformly indented. Visual inspection can often
reveal the problem unless the problem is caused by a mixture of “spaces”
and “tabs”. The solution is to not use “tabs” or use an editor that converts
“tabs” into “spaces”.

8) AttributeError – happens when we try to call a function that does not exist
(or we misspell a function that does exist) in a library (e.g., math.sine()
instead of math.sin()).

9) KeyError – only occurs with dictionaries when we use a key that does not
exist.

10) SyntaxError: invalid syntax – can happen if we try to use one of the reserved
Python keywords as a variable. The Python 3 keywords are: and, as, assert,
break, class, continue, def, del, elif, else, except, False, finally, for, from,
global, if, import, in, is, lambda, None, nonlocal, not, or, pass, raise, return,
True, try, while, with, yield. Many chemical and biological engineers have
struggled to fix this error when they tried to use “yield” as a variable name.

11) ValueError – frequently occurs when the wrong number of variables is
specified for receiving the return values from a function.

�

� �

�

Problems 47

Problems

3.1 The vapor pressure of a pure liquid, written p∗, is a strong function of
temperature. To calculate the vapor pressure at a given temperature, T , it
is common to use Antoine’s equation:

log10 p∗ = A − B
T + C

, (3.2)

where A, B, and C are constants that can be looked up for different liquids.
Write a function that has A, B, C, and T (in ∘C) as inputs and returns the
vapor pressure, p∗. Hint: 10log10x = x.

3.2 Starting with Antoine’s equation (see previous problem), write a function
that has A, B, C, and p∗ (in mm Hg) as inputs and returns the temperature,
T , for the given vapor pressure, p∗.

3.3 Write a function that compares items sequentially between two lists, for
example, list a and list b, and calculates the total number of times that the
item in list a is larger than the item in list b. If the lists are of different
length, the comparison should only be performed for the total items in
the shorter list (i.e., ignore items in the longer list that are beyond the end
of the shorter list). The Python function len() is very useful for getting
the length of a list as an integer.

3.4 Write a function called FtoC(T) that receives a temperature in Fahrenheit
as the input and returns the temperature in Celsius as the return value.
Write a second function called CtoF(T) that does the opposite – receives
a temperature in Celsius as the input and returns the temperature in
Fahrenheit. Demonstrate one of the functions by inputting the current
temperature at the location of your birth using the standard temperature
measurement unit at that location and print out the temperature in the
other system of units. For example, I was born in Bozeman, Montana,
USA, so my input would be the current temperature in Fahrenheit, and I
would print out the temperature in Celsius.

3.5 Write a script that stores each line of the song “Happy Birthday” as a
separate string in a list. Then, input from the user a number corresponding
to the number of lines that they would like printed to the screen. Check
the number to determine that it is valid before printing the lines to the
screen.

3.6 Write a function that receives a single word (i.e., a string of text) as input
and then prints out that word in Pig Latin. For anyone unfamiliar with Pig
Latin, this requires moving the first letter to the end and then adding “ay”.

�

� �

�

48 3 Programming Basics

A couple hints: (1) specific letters within a string can be accessed just like
a vector of numbers – for example, if myString = “jeff”, then myString[0]
returns “j” and myString[2:3] returns “ff”, and (2) you can concatenate
strings with the plus sign, so myString + “heys” gives “jeffheys”. Finally,
write the function so that it can receive a sentence as the input and then
translate each word – hint: use the string.split() function.

3.7 Write a function that receives a string as the only input. The function
should then iterate through each letter in the string (note that the length
of the string can be obtained using len() and the individual characters
for string a can be accessed using a[i]) and count the number of each
type of vowel, a, e, i, o, or u. The function should also count the vowel
regardless of case: both upper and lower case vowels should be counted
(hint: character x or string x can be forced to be lower case using x.lower(),
which makes counting easier). The function should return five integers,
the number of vowels of each type, a, e, i, o, and u. The function should be
tested using the string “Alphabet” as the input.

3.8 The decision tree shown below (Figure 3.2) has been developed by Chaste
Bank after they analyzed the probability of prepayment on each mortgage
they have issued over the past few years. You have been hired by Chaste to
implement the decision tree in Python so that the answers to the questions
can be entered by a bank representative to determine the probability of
prepayments. The code should ask “yes” or “no” questions and accept “Y”,
“y”, “N”, or “n” as the answer (i.e., you will want to convert the string to

Interest rate
< 8%

Income
< $75,000

Mortgage
< $183,000

YES NO

Risk of
prepayment

2.6%

Risk of
prepayment

6.4%

Risk of
prepayment

13.9%

Risk of
prepayment

36.0%

YES NO YES NO

Figure 3.2 A decision tree for assessing prepayment risk on a mortgage [3].

�

� �

�

References 49

upper- or lower case to ensure that the case is known). The code should
then print the prepayment probability to the screen.

3.9 You are planning to purchase a new car and you are suddenly concerned
about the annual operating costs. Your list of car choices has been nar-
rowed down to

Car (2015 model year) mpg
Chevrolet Silverado 15.0

Chevrolet Corvette 20.0

Chevrolet Spark 30.0

where the fuel efficiency (in miles per gallon) was obtained from www
.fueleconomy.gov/feg/pdfs/guides/FEG2015.pdf. Create a Python script
that stores the model name (e.g., “Silverado”) and fuel efficiency for each
vehicle in two separate lists. Then, loop through the cars and calculate
the annual operating cost using the current price of gas at a station near
you and assuming that you will drive 10,000 miles per year. The program
should print the annual operating cost for each vehicle to the screen as
well as the model name of the vehicle.

Additional Resources

Reference books on programming in Python:

• Python Pocket Reference by Lutz [4]
• Python Programming by Zelle [5]
• Introduction to Computing Using Python by Perkovic [6]

Books on numerical programming in Python:

• Numerical Methods in Engineering with Python by Kiusalaas [7]
• Python Scripting for Computational Science by Langtangen [8]

References

1 van Rossum, G., Warsaw, B., and Coghlan, N. (2015) Style Guide for Python
Code, http://www.python.org/dev/peps/pep-0008/.

2 Slatkin, B. (2015) Effective Python. 59 Specific Ways to Write Better Python,
Addison-Wesley, Upper Saddle River, NJ.

3 Siegel, E. (2013) Predictive Analytics, John Wiley & Sons, Inc., Hoboken, NJ.

�

� �

�

50 3 Programming Basics

4 Lutz, M. (2014) Python Pocket Reference, O’Reilly Media, Inc., Sebastopol,
CA, 5th edn.

5 Zelle, J. (2010) Python Programming: An Introduction to Computer Science,
Franklin, Beedle & Associates Inc., Portland, OR, 2nd edn.

6 Perkovic, L. (2015) Introduction to Computing Using Python: An Application
Development Focus, John Wiley & Sons, Inc., Hoboken, NJ, 2nd edn.

7 Kiusalaas, J. (2010) Numerical Methods in Engineering with Python,
Cambridge Press, New York, NY, 2nd edn.

8 Langtangen, H.P. (2010) Python Scripting for Computational Science, Texts in
Computational Science and Engineering, Springer-Verlag, Berlin, 3rd edn.

�

� �

�

51

4

External Libraries for Engineering

Now that we have covered the basics of programming in Python over the
past two chapters, including variable assignments, functions, loops, and
conditionals, we are now ready to examine some external libraries that are
used frequently in engineering and scientific computing. The exploration will
begin with numpy, which forms the foundation of numerical array storage
in Python. Numpy forms the foundation of much of the Scipy library and
matplotlib library for plotting. The use of Matplotlib for basic plotting is also
covered in this chapter.

4.1 Numpy Library

The numpy library adds powerful linear algebra data structures to Python.
It allows us to construct and manipulate vectors and tensors very efficiently,
and it is also widely used by other libraries that provide, for example, plotting,
data science algorithms, and linear algebra solvers. The goal of this section
is to provide a very brief introduction to a few important features of numpy.
Throughout the rest of the book, additional features and options will be
demonstrated. The online documentation and tutorials for numpy are also a
very valuable source of information about the numpy library.

4.1.1 Array and Vector Creation

There are a number of different interfaces provided by numpy for
constructing vectors and arrays. The simplest approach is to simply pass
the numpy.array() method a Python list:
myvector = numpy.array([5,3,7])
myarray = numpy.array([[2,3],[6.7,1.0]])
print(myvector)
print(myarray)
print(myvector.dtype)
print(myarray.dtype)

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

52 4 External Libraries for Engineering

and the output is
[5 3 7]
[[2. 3.]
[6.7 1.]]
int64
float64

If a single, one-dimensional list is passed into the numpy.array()
method, a one-dimensional vector is created. If a nested list is passed into
the numpy.array() method, a two-dimensional tensor is created. Every
numpy array has a “data type” or “dtype” and this parameter specifies both the
numerical type and precision of the values stored in the array. In the previous
example, the first array, “myvector”, was constructed using a list of integers so
numpy automatically set the dtype as “int64” or 64-bit integers. The second
array, “myarray”, was constructed using a mixture of integers and floating point
numbers so the dtype was set as “float64” or 64-bit floating point numbers.

In engineering calculations, we typically want to work with floating point
numbers and floating point arithmatic, so it is desirable to specify the data
type when it is first created. This can be accomplished by setting the dtype
parameter at construction. The construction of “myvector” in the previous
example can be slightly modified to specify the desired dtype:
myvector = numpy.array([5,3,7], dtype=numpy.float64)
print(myvector)
print(myarray.dtype)

and now the output is:
[5. 3. 7.]
float64

Note the decimal points after the values in the vector, which denote floating
point values instead of integers. The integers in the list used for construction
were converted to floating point values.

Using a list for array construction works great for very small arrays where
we already know the values. In practice, however, we will usually construct an
array of zeros of the size we want and then use loops to insert the desired values
into the array. This approach is illustrated in the following example:
import numpy

size = 3
myarray = numpy.zeros((size,size))

for i in range(size):
for j in range(size):

myarray[i,j]=1.0/(i*j+1.0)

print(myarray)

�

� �

�

4.1 Numpy Library 53

The program constructs a square, two-dimensional array to the size specified
by the first argument passed into the numpy.zeros() function. If a vector
or one-dimensional array of zeros is desired, then the function call can be
numpy.zeros(size). If a two- or higher-dimensional array is desired, a
tuple should be passed into the numpy.zeros() function as is done in the
example above. The zeros within the array are then replaced by the values
calculated inside the nested loop. This approach to first allocating space for an
array and then overwriting the initial values is typically more computationally
efficient than first constructing an empty array and then appending values.

We need to make a very important observation from the previous example:
numpy arrays are the same as other Python containers (lists, tuples, etc.) and
are indexed starting with zero! In other words, if we have a numpy vector that
contains 5 numbers (i.e., it has length 5), those numbers are accessed with the
indices 0, 1, 2, 3, and 4. Notice how if we loop from 0 to a number less than
the size of the vector (in this case we loop from 0 to 4), we loop through all the
indices without including 5. This observation is important, and forgetting how
numpy arrays are indexed leads to many troublesome bugs in the code.

It is sometimes helpful in array construction to build an array where the
values increase incrementally. For example, we might wish to construct an
array of length 10 that contains the integers from 1 to 10. One good feature of
such a vector is that it also allows us to demonstrate how to access a subsection
of the vector using array slicing

import numpy

myarray = numpy.arange(1,11)
print(myarray)
myarray[3:6] = numpy.array([300,400,500])
print(myarray)

The code in this example begins by constructing a vector from 1 to 10, but
then, we replace 3 of the values within the vector with much larger values.
Notice how we replace the values stored at indices 3, 4, and 5 because the
slicing command – 3:6 – does not include the last index (6) in the slice. Also
recall the first entry in the vector (in this case “1”) is at index zero. Therefore,
index 3 initially contains the value 4, which is replaced with 300. Then, the
value at index 4, which is initially 5, is replaced with 400. The result of running
the example code should be

[1 2 3 4 5 6 7 8 9 10]
[1 2 3 300 400 500 7 8 9 10]

More general functions for constructing numpy arrays that consist of floating
point numbers that vary between two end values are thenumpy.linspace()
and numpy.logspace() functions. The two functions are demonstrated
below.

�

� �

�

54 4 External Libraries for Engineering

import numpy

lin = numpy.linspace(1.0,3.0,6)
print(lin)
logger = numpy.logspace(1.0,3.0,num=5)
print(logger)

The linspace() function requires a minimum of two numbers as inputs: a
starting value and a stopping value. The function creates a numpy vector with
a starting value as the first number and a final stopping value as the second
number. The entries in the vector between the starting and stopping values
are linearly (or evenly) spaced and the total number of entries in the vector
can be specified using a third number passed to the function (the default is a
vector of length 50). The vector constructed by the linspace(1.0, 3.0,
6) function above is [1. 1.4 1.8 2.2 2.6 3.]. The logspace()
function is very similar, but instead of specifying a starting and a stopping
value, the exponent for the starting and stopping values are specified. The
default base is 10, so the logspace(1.0, 3.0, num=5) call above creates
a vector starting at 101 and ending at 103 with length 5. The intermediate
entries in the vector are not linearly spaced but are based on linearly spaced
exponents. As a result, the logspace() function above creates the numpy
vector: [10. 31.62 100. 316.2 1000.].

Fibonacci Sequence

The Fibonacci sequence is an important mathematical series that is frequently
found in nature (e.g., the arrangement of sunflower seeds). The first two values
in the sequence are defined as 0 and 1. Additional terms in the sequence are
calculated by summing the previous two terms in the sequence. The function
below stores the Fibonacci sequence in a numpy array.

import numpy

seqLength = 10
seq = numpy.zeros(seqLength,dtype=numpy.int32)

seq[0]=0
seq[1]=1
for i in range(2,seqLength):

seq[i]=seq[i-1]+seq[i-2]

print("Final sequence: ",seq)

�

� �

�

4.1 Numpy Library 55

4.1.2 Array Operations

To review, we have discussed the construction of numpy vectors and arrays,
and we have discussed how to access the various entries within the vectors and
arrays. Now let us explore a few different operations that can be performed on
matrices and vectors with the following example.

Try running the code below:

import numpy

myarray = numpy.arange(5)
print(myarray) # output: [0 1 2 3 4]
print(myarray.shape) # output: (5,)
myarray = myarray*4
print(myarray) # output: [0 4 8 12 16]
yourarray = numpy.ones(5)
theirarray = myarray - 3*yourarray
print(theirarray) # output: [-3. 1. 5. 9. 13.]
print(numpy.dot(myarray,theirarray)) # 360.0
itsarray = numpy.outer(myarray,theirarray)
print(itsarray)
print(itsarray.shape) # output: (5,5)

This code segment begins by building a sequential vector of length 5. The
“shape” property of that vector should return “(5,)”, which tells us that the array
has 5 rows and no additional columns. This initial vector is then multiplied by
4 and a second and a third array are built. The third array, called “theirarray,” is
actually built by taking the first array, “myarray,” and subtracting an array of 3s
from it. Note that adding or subtracting one array from another requires that
the arrays have the same size and shape – that is why it is often a good idea to
print the value of the size and shape to the screen so that you can confirm that
the sizes are the same. The example continues by taking a dot product of two
vectors (they must have the same length) and an outer product.

This example barely scratched the surface of what is possible with numpy. For
example, we have not yet covered matrix inversion or eigenvalue calculations,
but many of these topics will be discussed in later chapters.

4.1.3 Getting Helping with Numpy

One function that we briefly saw earlier is numpy.logspace(), and it might
be helpful to learn a little more about this function. Begin by using the help()
function to read the description:
>>> help(numpy.logspace)
Help on function logspace in module numpy.core...

�

� �

�

56 4 External Libraries for Engineering

logspace(start, stop, num=50, endpoint=True, base=10.0)
Return numbers spaced evenly on a log scale.

...

Most of the help document was trimmed here to save space. The start and
stop values that are passed into this function represent the exponent for the
actual starting and stopping values, that is, the actual starting value for the array
is basestart or 10start if the default base value of 10.0 is used. The actual ending
value for the array is basestop. An example of building an array from 0.1 to 100.0
of length 8 is as follows:
>>> import numpy
>>> print(numpy.logspace(-1,2,8))
[0.1 0.26826958 0.71968567 1.93069773 5.17947468
13.89495494 37.2759372 100.]

4.1.4 Numpy Mathematical Functions

Numpy also has built in functions for performing mathematical operations on
numpy vectors and arrays. For example, the following Python script:

import numpy
import math

g = numpy.arange(2,4,0.5)
print(g)
h = math.sin(g)
print(h)

will generate an error because the sin() function in the math library is expect-
ing a single number and not an array of numbers. Instead, the code should be
written using the sin() function that is part of numpy:

import numpy

g = numpy.arange(2,4,0.5)
print(g)
h = numpy.sin(g)
print(h)
j = numpy.power(g,2.5)
print(j)

which gives the output:

[2. 2.5 3. 3.5]
[0.90929743 0.59847214 0.14112001 -0.35078323]
[5.65685425 9.88211769 15.58845727 22.91765149]

In the abovementioned example, the numpy.power() function is not strictly
necessary for raising every number in the vector to the power 2.5, and, instead,
we could have just used g**2.5.

�

� �

�

4.1 Numpy Library 57

4.1.5 Random Vectors with Numpy

The numpy library contains functions for generating arrays of random num-
bers. These functions are in numpy.random, the random sampling part of the
library. Some of the most useful functions are demonstrated below.
import numpy as np

a = np.random.randint(0,10, size = 5)
print(a)
b = np.random.random(size=(2,2))
print(b)
print(b*10.0)
c=np.arange(5)
np.random.shuffle(c)
print(c)

The numpy.random.randint(low,high,size) function returns a
numpy array of the specified size (a vector of length 5 for the example above)
with the random integers drawn from between the low and (high – 1), that
is, all the random integers will be greater than or equal to the low value and
strictly less than the high value. Random integers can and do repeat. For
example, the function above generated: [3 0 0 9 8] on one occasion.
The numpy.random.random(size) function generates random floating
point numbers greater than or equal to zero and strictly less than 1.0. The
example above generates a 2 × 2 array of random floating point numbers. If
random floating point numbers larger or smaller than 1.0 are desired, they
can be obtained by multiplying a random array by a scaler. In the example
above, random floating point numbers between [0, 10.0) are obtained simply
by multiplying the array by 10.0. The final function discussed here is the shuffle
function. The numpy.random.shuffle() function will simply shuffle the
locations of values in a numpy vector or array. Note that a new array is not
returned, but, instead, the original array passed into the function is forever
shuffled. In the example above, a sequential array of integers is shuffled. The
original array of [0 1 2 3 4] was shuffled into [0 4 2 1 3], in one
instance.

4.1.6 Sorting and Searching

The sorting of numpy vectors can be performed using the numpy.sort()
function. This is demonstrated in the script below where a vector of random
floating point numbers is generated and then sorted.
import numpy as np

a = np.random.random()
print(a)
b = np.sort(a)
print(b)

�

� �

�

58 4 External Libraries for Engineering

The results of running this script are different every time it is run due to the
generation of random numbers, but the output from one example run is shown
below.

[0.46118278 0.00577888 0.95539835 0.652181]
[0.00577888 0.46118278 0.652181 0.95539835]

Sorting two or higher dimensional arrays is also possible. Typically, the axis for
sorting is specified when the sort() function is called.

In engineering, we are often interested in the maximum or minimum
value from a list of values. For example, we might want to know the maxi-
mum stress in a fluid or structural beam because that value often needs to
remain below some threshold. Two different pairs of function are useful for
locating and obtaining extreme values. The first pair: numpy.amax() and
numpy.argmax() return the maximum value in a numpy vector and the
index or location of that maximum value, respectively. These two functions
are used in the example below to find the maximum value and its index for a
vector of random values.

import numpy as np

a = np.random.random(4)
print(a)
print(np.amax(a))
print(np.argmax(a))

and the output from one random run was

[0.75992421 0.47808563 0.9004158 0.26679892]
0.900415801936
2

Since numpy vectors are indexed starting with 0, the maximum value
occurs at index 2 or the third value in the vector. The minimum value and
index of the minimum value may be found using numpy.amin() and
numpy.argmin(), and they have an identical input/output format as the
maximum value functions.

One final function for searching numpy vectors that is frequently useful is
the numpy.nonzero() function, which returns the index of all elements (or
entries) in a numpy vector that are nonzero. The length of the returned array
corresponds to the total number of nonzero values.

4.1.7 Polynomials

Polynomials are represented on computers by storing the coefficients of the
different terms in the polynomial within a vector. Numpy includes some
functions for building, managing, manipulating, and evaluating polynomials.
The first rule that we need to recognize, however, is that in numpy (and most

�

� �

�

4.1 Numpy Library 59

other computational tools that support polynomials), the polynomial must
be written with the zero-order term first and then progressing sequentially to
higher-order terms. For example, if we want to use the polynomial:

f (x) = x2 − 2x − 3,

we must begin by reordering the terms in the polynomial as

f (x) = −3 − 2 ⋅ x + 1 ⋅ x2.

This polynomial can be represented in numpy using thenumpy.polynomial
package. The use of this package to build and evaluate the example polynomial
from above is demonstrated below.
import numpy.polynomial as np

f = np.Polynomial([-3., -2., 1.])
print(f.roots())
(x,y) = f.linspace(8,domain=[-2,5])

The variable f holds the coefficients of the polynomial, starting with the
zero-order term. The polynomial package includes a roots() function
that returns the roots of the polynomial (in this case, the function returns
[-1. 3.]). Finally, the linspace() function evaluates the polynomial
at 8 points in the domain x ∈ [−2, 5]. The linspace() function returns
two arrays, one containing the x-values and the other containing the y-values
resulting from the evaluation of the polynomial. These arrays can be plotted to
visualize the polynomial as shown in Figure 4.1 and described in Section 4.2.

4.1.8 Loading and Saving Arrays

Numpy includes extensive support for writing vectors and arrays into files and
then loading those files at another time. Here, we are only going to explore the
reading and writing of files using numpy’s binary format and the traditional
ASCII text format. The use of both formats is illustrated in the script below.

Figure 4.1 A figure of the
polynomial f = −3 − 2x + 1.
Polynomial evaluation used
the numpy polynomial
package, and the plot was
generated using matplotlib.

12

10

8

6

4

2

0

–2

–2 –1 0 1 2 3 4 5
–4

�

� �

�

60 4 External Libraries for Engineering

import numpy as np

x = np.arange(5)
print(x)
np.save(’binFile’,x) # .npy extension auto added
y=np.load(’binFile.npy’) # binary file load
print(2.0*y)
np.savetxt(’txtFile.out’,x) # extension required
z = np.loadtxt(’txtFile.out’)
print()

The script begins by creating a vector of five sequential integers. The vec-
tor is then saved to a binary file with the filename binFile.npy using the
numpy.save() function and passing the function the filename and the array
variable name. Note that the numpy.save() function automatically adds
the proper filename extension. The binary file is read using the np.load()
function (note that the correct file extension is required), and the array is set
to a new variable name. The second half of the script repeats this same process
but the numpy.savetxt() function is used to save the original array to an
ASCII text file. The same file is then read and the array stored to a new variable.

One obvious question from this example is: which storage format is better,
binary or text? The binary storage format is more computationally efficient. The
file is smaller and reading or writing large arrays is faster. The text file storage
format is easier for humans. The values in the file can be read and edited by a
huge array of software packages, include MATLAB, Excel, and others. For most
applications, text files are simpler and the better choice. Only in cases of very
large arrays should binary files be used.

4.2 Matplotlib Library

Matplotlib is one of many libraries that adds plotting capabilities to Python.
It is a particularly good choice here because it is well integrated with numpy
and it provides a relatively high-quality output. To use Matplotlib within a
Python script, it is recommended that the user import matplotlib.pyplot. It
can become cumbersome to type matplotlib.pyplot repeatedly in our codes,
so consider using the command: import matplotlib.pyplot as plt,
which allows functions within the plotting library to be called using the
“plt.function()” format. Matplotlib also support the “pylab” interface, which
can be imported as import pylab. The two interfaces are nearly identical
and both provide plotting functionality and an interface that is similar to
MATLAB. The pylab interface is older so it is recommended that users move
toward the pyplot interface.

Let us begin with a simple example. The following script builds a vector
with 100 entries that span from 0 to 10.0 using numpy’s linspace() function.
Then, pyplot is used to generate a scatter plot, where x is from 0 to 10 and y is
cos(x).

�

� �

�

4.2 Matplotlib Library 61

1.0

0.5

0.0

–0.5

–1.0

1.0

0.5

0.0

–0.5

–1.0
0 2 4 6 8 10 0 2 4

(b)(a)

6 8 10

Figure 4.2 A figure of a cos()-wave generated using pylab with (a) a solid line (and (b) circles.

import numpy
import matplotlib.pyplot as plt

x=numpy.linspace(0,10, num=100)
y = numpy.cos(x)
plt.plot(x,y)
plt.show()

The resulting figure is shown in Figure 4.2(a). The final line of example code
(plt.show()) is required because it causes the figure to persist on the screen
and become interactive. If this line is omitted, the figures may never be plotted
to the screen or is plotted for a fraction of a second before it disappears on some
operating systems. Think of theplt.show() function as causing the program
to pause and wait for the user to decided what they want to do with the plot.
The plt.show() function is not required on all operating systems.

If the function call to plt.plot(x,y) is replaced with plt.plot(x,y,
’bo’), the plot is constructed with circles instead of a solid line, as shown in
Figure 4.2(b).

It is also possible to place multiple curves on the same plot and include axis
labels and figure titles as illustrated in the following example of polynomial
curves.
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2, 200)

plt.plot(x, x, label=’linear’)
plt.plot(x, x**2, ’.’, label=’quadratic’)
plt.plot(x, x**3, ’--’, label=’cubic’)

plt.xlabel(’x-axis label’)
plt.ylabel(’y-axis label’)

plt.title("Polynomials")

�

� �

�

62 4 External Libraries for Engineering

plt.legend()

plt.show()

This example illustrates how every call to functions in the matplotlib library
are applied to the current, active figure. This behavior is similar to Matlab.
Notice that axis labels are added to the figure using the plt.xlabel() and
plt.ylabel() function calls with the desired string of text being passed into
the function. A title is added to the figure using plt.title() function call,
but, in common engineering practice, titles are not included for figures. In the
future, we will use plt.figure() in the matplotlib library to generate addi-
tional figures and avoid having everything on the same figure. The result of
running the example code is shown in Figure 4.3.

Polynomials
8

7

6

5

4

3

2

1

0
0.0 0.5 1.0

x-axis label

y-
ax

is
 la

be
l

1.5 2.0

Linear
Quadratic
Cubic

Figure 4.3 A plot showing a linear, quadratic, and cubic polynomial all on the same plot
with a legend identifying each curve.

Before ending this section, the power of Matplotlib is illustrated through a
slightly more complex example that shows a contour plot of a function with
two independent variables.

import pylab
import numpy

def f(x,y):
return (1-x/2+x**2+y**3)*numpy.exp(-x**2-y**2)

n = 256
x = numpy.linspace(-2,4,n)
y = numpy.linspace(-2,4,n)
X,Y = numpy.meshgrid(x,y)

�

� �

�

4.3 Application: Gillespie Algorithm 63

C = pylab.contour(X, Y, f(X,Y), 8)
pylab.clabel(C,inline=1)
pylab.colorbar(C,orientation=’vertical’)
pylab.show()

The function that is plotted is defined by the function f (x, y). The inde-
pendent variables, x ∈ (−2, 4) and y ∈ (−2, 4), are stored in vectors created
using numpy’s linspace() function. The numpy meshgrid function extends
the one-dimensional vectors over a two-dimensional array. The contour plot
consists of eight contour lines, which are labeled, and a colorbar is added to
the right of the plot. Color bars are largely unnecessary and unattractive for
this style of contour plot, but one is included here to illustrate the simplicity
with which it can be added. The resulting figure is shown in Figure 4.4.

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

4

3

2

1

0

–1

–2
–2 –1 0

–0.200

1 2 3 4

0.200

0.600

0.400

1.000

0.000

0.800

Figure 4.4 A contour plot of a function, f (x, y) = (1 − x∕2 + x2 + y3) exp (−x2 − y2) for
x ∈ (−2, 4) and y ∈ (−2, 4).

Matplotlib is a comprehensive plotting library, large enough that an entire
book has been written to document all of the many different style of figures
and options. For more information about the library as well as documentation
describing the interfaces into the library, see the tutorials posted on the
Matplotlib library website: matplotlib.org.

4.3 Application: Gillespie Algorithm

This chapter introduced two important libraries for solving chemical and
biological engineering problems using Python. Before ending this chapter, let
us explore the use of these two libraries when implementing an important
algorithm in modeling biochemical reactions: the Gillespie algorithm.

�

� �

�

64 4 External Libraries for Engineering

Classical chemical reaction kinetic models are derived by assuming that a
system has 106 or more well-mixed molecules. When one remembers that
one mole of a material has more than 1023 molecules, the assumption that a
reactor contains more than 106 molecules is almost always valid. However,
if we want to model biochemical reactions in a single cell, the number of
reacting molecules present is often on the order of 100 or 1000 molecules.
Hence, using classical chemical reaction kinetics to model reactions within a
cell may not be valid. The Gillespie algorithm, in contrast, is not based on the
assumption of a large number of molecules. Instead, the algorithm is stochastic
and based on tracking a discrete number of molecules. Briefly, the algorithm
is based on the generation of random numbers (i.e., analogous to rolling a
dice) for two calculations: (1) using the reaction rate and a random number,
the algorithm determines whether or not a reaction occurred for a random
molecular collision and (2) using a random number to discretely approximate
the time until the next collision. Detailed derivation and description of the
algorithm are beyond the scope of this brief presentation, but the interested
reader is referred to the original Gillespie paper [1] or any of the thousands of
papers on the algorithm written in the past few decades. A Python library for
modeling discrete, stochastic reactions using a number of different algorithms,
including the Gillespie algorithm, is StochPy (stochpy.sourceforge.net).

To illustrate the Gillespie algorithm, consider the chemical reaction

A
k1−⇀↽−
k2

B,

where k1 is the forward rate constant (units are per time) and k2 the backward
rate constant (same units). Classical chemical reaction kinetics would predict
that this reaction will proceed toward equilibrium and behave like a first-order
reaction. Alternatively, the Gillespie algorithm for this reaction is:
import numpy
import matplotlib.pyplot as plt

k1 = 1.0 # forward rate constant
k2 = 0.1 # reverse rate constant

maxReact = 1000 # maximum number of reactions
numMol = numpy.zeros((2,maxReact),dtype = numpy.float)
timePt = numpy.zeros(maxReact, dtype = numpy.float)
numMol[0,0] = 175 # initial number of A’s
numMol[1,0] = 25 # initial number of B’s
timePt[0] = 0.0 # initial time

rands = numpy.random.rand(2,maxReact)

for i in range(maxReact-1):

�

� �

�

4.3 Application: Gillespie Algorithm 65

proB = k1*numMol[0,i] # probability of forming B
proA = k2*numMol[1,i] # probability of forming A
calculate time till next reaction
dt = -numpy.log(rands[0,i])/(proB+proA)
timePt[i+1] = timePt[i] + dt
if rands[1,i] < (proB/(proA+proB)): # form B?

numMol[0,i+1] = numMol[0,i] - 1.0
numMol[1,i+1] = numMol[1,i] + 1.0

else: # else we form A
numMol[0,i+1] = numMol[0,i] + 1.0
numMol[1,i+1] = numMol[1,i] - 1.0

plt.plot(timePt,numMol[0,:], label="A")
plt.plot(timePt,numMol[1,:], label="B")
plt.xlabel('time')
plt.ylabel('number of molecules')
plt.legend()
plt.savefig('gillespie.png')

The first 20 lines of the algorithm are setting up the problem to be solved. The
script begins by loading the numpy and matplotlib libraries and then the rate
constants for the reaction are specified. Note that the forward rate is much
faster than the reverse rate so we should have more B than A at equilibrium.
The Gillespie algorithm is based on counting the exact number of molecules in
the system for a preset number of reactions. In this case, we choose to simulate
1000 reactions and an empty numpy array, numMol, is constructed to later
store the number of molecules of A (column 0) and molecules of B (column 1)
after each of the 1000 reactions. A second empty numpy array is constructed
to store the time at which each reaction occurs. Recall that the time between
reactions is stochastic – that is, a role of the dice. The setup phase ends with
the construction of a numpy array full of random numbers. The array has two
columns, one for each reaction.

After the setup phase, the main part of the algorithm is an iterative for loop
that contains the calculations for each of the 1000 reactions. Each iteration
begins by calculating the probability of the forward reaction (forming B) and
the reverse reaction probability (forming A). The time till the next reaction is
also calculated and using a random value and the reaction probabilities, that
is, smaller probabilities imply more time till the next possible reaction. On the
basis of the probabilities of forming A and B, the number of molecules of A and
B is updated in the numMol array. Finally, after stochastically simulating 1000
reactions, matplotlib can be used to plot the number of molecules of A and B
in the system as a function of time. While every simulation result is different
due to the stochastic nature of the algorithm, an example of a single simula-
tion is shown in Figure 4.5. The curve resembles a noisy version of a classical
first-order reaction.

�

� �

�

66 4 External Libraries for Engineering

0 50 100 150

Time

200

A

B

250 300

200

150

100

50N
um

be
r

of
 m

ol
ec

ul
es

0

Figure 4.5 Number of molecules of A and B for a first-order equilibrium reaction simulation
using the Gillespie algorithm. Forward rate is k1 = 1.0 and the reverse rate is k2 = 0.1 (both
per time).

Problems

4.1 You have been hired by NASA to develop a short Python script that
when executed, asks the user to input their weight on earth and then
select the planet that they are currently occupying. The program should
then calculate and print out to the screen the individual’s weight on their
current planet. Use a relative weight table such as that reproduced below
to simplify the calculation. Three notes: (1) the input() function in Python
returns a string, which you will need to convert into an integer using the
int() function, (2) it is easiest to ask the user to input a number for the
planet selection (i.e., enter 1 for Mercury, 2 for Venus, etc.), and (3) you
should check the planet selection using an “if” statement to ensure that it
is valid.

Mercury 0.38
Venus 0.91
Earth 1.0
Mars 0.38
Jupiter 2.34
Saturn 1.06
Uranus 0.92
Neptune 1.19

�

� �

�

Problems 67

4.2 You have been hired as a consulting engineering to answer a question
from the Engineering Department at Mosure University. The department
would like to determine the probability of two students in the same class
having the same birth date. We are only considering the day of the year
(e.g., February 3) and not the year of birth. Warning, you probably will not
believe the result.
Because we are engineers and not statisticians, you are being hired to
develop a computer program that is capable of generating students with
random birth dates for a specified class size. The program will simulate
a specified number of classes and determine the fraction of classes that
contain at least two students with the same birthday.
The program should have the following attributes:
a) The user can set a variable “NumTrials” equal to the number of virtual

classes they wish to simulate. I initially set this variable to 1000.
b) The user can set a variable “ClassSize” equal to the size of the class

(e.g., 40, 60, 80, and 200).
c) You should write a function that receives as input a numpy vector of

length ClassSize that contains the birthday for every member of the
class. The function should then determine if any two students have the
same birthday (and return 1 or True in this case) or not (and return 0
or False in this case).

d) The program should run multiple trials. For each trial, you should
construct a numpy vector of length ClassSize containing randomly
assigned birthdays. I recommend using a number between 0
and 364 to represent the birthday, and I recommend using the
numpy.random.randint() function to construct the vector of random
birthdays.

Your final report to the department as a consultant should consist
of a discussion of your findings and, most importantly, a plot of the
probability of a class containing two students with the same birthday
versus class size for classes between 20 and 200 students. Note that you
should not simulate every possible class size between 20 and 200, just
pick 5 or 6 class sizes over that range. The report should be in the form
of a memo to the department from you. Hint: in a class of 40 students,
there is a 89% probability of two students having the same birthday – see,
I told you that you would not believe the result.
One final warning – you will need to calculate the probability, that is,
the fraction of trials where two students had the same birthday divided
by the total number of trials. Calculating this fraction is easy, I used
“successes/NumTrials”. However, both of these variables were integers
(e.g., 891/1000), and Python 2.x reports the result as an integer (i.e., 0
or 1) instead of a fraction (i.e., 0.891). To ensure a floating point result, I
used “(1.0*successes)/NumTrials”.

�

� �

�

68 4 External Libraries for Engineering

4.3 The “Monty Hall Problem” poses following challenge: imagine you are on
a game show and are faced with three doors. Behind one of the doors is
a great prize, and behind the other two doors is something of little value.
The game show host asks you to pick one of the doors, which you do. On
the basis of your choice, the game show host open one of the other two
doors and reveals something of little value. At this point, two doors remain
closed, one of them concealing the prize. The game show host offers to let
you switch your choice of doors. You fear that the host is trying to trick
you. Should you switch.
Determine the answer to this question by writing a Python algorithm that
can simulate a large number of virtual games (e.g., n = 10,000 games).
Create a numpy array that holds a random integer: 1, 2, or 3, correspond-
ing to the winning door for each game. An easy way to build this array
is the function: numpy.random.randint(1,4,n). Without loss of
generality, it is possible to have the contestant select the same door every
game for all n games. Next, allow for the selection of whether to switch
the door selected or not. On the basis of the door selection and the
switch selection (“yes” or “no”), the algorithm should be able to iterate
through the n games and determine the fraction won. Does the fraction
won depend on whether you switch or not?

Additional Resources

Recommended books on the external libraries covered here:

• Matplotlib for Python Developers by Tosi [2]
• Learning SciPy for Numerical and Scietific Computing [3]
• High-Performance Python by Gorelick and Ozsvald [4]

Recommended book on linear algebra:

• Introduction to Linear Algebra by Strang [5]

References

1 Gillesphie, D.T. (1977) Exact stochastic simulation of coupled chemical
reactions. J. Phys. Chem., 81, 2340–2361.

2 Tosi, S. (2009) Matplotlib for Python Developers, Packt Publishing,
Birmingham, UK.

�

� �

�

References 69

3 Rojas, S.J., Christensen, E.A., and Blanco-Silva, F.J. (2015) Learning SciPy for
Numerical and Scientific Computing, Packt Publishing Ltd., Birmingham, UK,
2nd edn.

4 Gorelick, M. and Ozsvald, I. (2014) High Performance Python: Practical
Performant Programming for Humans, O’Reilly Media, Inc., Sebastopol, CA,
1st edn.

5 Strang, G. (2009) Introduction to Linear Algebra, Wellesley-Cambridge Press,
Wellesley, MA, 4th edn.

�

� �

�

70

5

Symbolic Mathematics

5.1 Introduction

When we have a mathematical equation or equations that describe some
phenomena, there are basically two approaches that we can adopt to solve the
problem. First, the method that we are probably most familiar with involves
using the principles we learned in algebra, calculus, and other mathematics
courses to manipulate the equations to determine the value(s) of the variable(s)
of interest. For example, you have hopefully learned previously that when
faced with the equation 2 + x = 5, you simply subtract 2 from each side of
the equation and establish that x = 3. This algebraic process that we have
previously learned requires us to symbolically manipulate the equation until
we arrive at the desired solution, hopefully.1 This approach has the advantage
of giving us an exact solution, but the disadvantage that it is limited to the set
of problems where it is possible to obtain a solution through symbolic manip-
ulations. The other approach involves determining an approximate solution,
usually through an automatic iterative process on a computer. This approach
is typically referred to as obtaining a numerical solution (although the careful
reader may note that a better name is numerical approximate solution). The
advantage of a numerical approach is that approximate solutions to a larger
range of equations are possible, but the disadvantage is that the solutions are
only approximate, the approach usually requires a computer, and the approach
sometimes fails to find the desired solution.

It may be unusual to include a chapter on symbolic mathematics in a book
that is focused on numerical methods, but for equations that can be solved
by a symbolic approach, it is usually the preferred approach. Experienced
engineers and mathematicians can usually determine relatively quickly if
a set of mathematical equations is likely to be solvable using a symbolic
approach. For novices, however, it is usually a good idea to try out a symbolic

1 An interesting historical example of mathematicians trying to use algebra and symbolic
manipulation to solve the quintic equation can be found in “The Equation that Couldn’t Be
Solved” by Livio [1]. The roots of a quintic equation are typically easy to determine using a
numerical process.

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

5.2 Symbolic Mathematics Packages 71

approach, such as the one described in this chapter just to check-and-see if a
symbolic solution is easily available. This chapter on symbolic computations
also provides a good review of some Python principles that were covered
previously, including the use of external libraries.

5.2 Symbolic Mathematics Packages

A large number of software packages have been developed for symbolic
mathematics, and the capabilities of the various packages are not the same.
As of 2014, Wikipedia listed over 30 different software packages for symbolic
mathematics. The packages listed below are all commercial software, but they
are among the most popular and site licenses are available on many university
campuses.

Maple One of the oldest software packages for symbolic mathematics, and it
was originally written at the University of Waterloo in the early 1980s. The
name is a reference to Maple’s Canadian heritage. While it was quite popular
before 1995, its popularity declined due to a user interface that was difficult
to use. The new user interface, introduced in 2005, is significantly better and
similar to the other packages available for symbolic mathematics.

Mathcad One of the first mathematics software packages with a graphical user
interface and support for SI units. The software is popular for producing
reports and documentation that include mathematical calculations. The
symbolic mathematics capabilities are sufficient for most purposes, but not
as strong as some of the other packages listed here.

Mathematica Initially released in 1988, Mathematica was one of the
first symbolic mathematics packages with a graphical user interface,
which is referred to as the “front end”. While the creation of custom
algorithms remains difficult in Mathematica, it is still one of the most
popular platforms for computational mathematics. Some of the func-
tionality is available free-of-charge through the Wolfram Alpha website
(https://www.wolframalpha.com/).

MATLAB’s Symbolic Mathematics Toolbox MATLAB is primarily used for
numerical computing, but the Symbolic Mathematics Toolbox provides
some symbolic capabilities. Depending on the type of license, this is one of
the most expensive options listed here.

One additional package that should be highlighted here is the Sage
(previously SAGE, System for Algebra and Geometry Experimentation)
mathematics software, which is free and licensed under a GNU General Public
License. Of particular interest here is the fact that Sage uses the Python
programming language, so individuals familiar with Python will have a more
modest learning curve. Sage makes extensive use of Python libraries, including
NumPy, SciPy, and SymPy, in order to avoid having to reimplement large

�

� �

�

72 5 Symbolic Mathematics

amounts of existing code. While Sage is an excellent resource for mathematical
computing, it is not covered in detail in this book because of the large size of
the platform. The curious reader is encouraged to explore the Sage software
and its features. The browser-based notebook interface available for Sage
(SageMathCloud) may be of particular interest and was briefly discussed in
Chapter 2.

The focus in this chapter is on the use of the SymPy library, which adds
support for symbolic mathematics to Python [2]. SymPy is written entirely
in Python and does not require any external libraries. SymPy is included
with many distributions of Python that are focused on scientists or engineers
including the Anaconda Python distribution and Pythonxy. Installation on
Linux systems is also straightforward. Further information related to down-
loading and installing SymPy as well as comprehensive documentation is
available on the SymPy website: www.sympy.org.

5.3 An Introduction to SymPy

The SymPy library is imported into any Python program that we write using
the command: import sympy. As a result, all methods associated with the
library are accessed using standard sympy.method() format. Alternatively,
the entire library maybe imported as from sympy import * command,
but use of this format is discouraged.

Once the SymPy library has been imported, the next step is to declare
the symbolic variables or parameters that will be present in the equations
that we plan to manipulate or solve symbolically. The sympy.symbols()
class transforms a string that lists the variables or parameters into instances
of the SymPy Symbol class. For example, the command: E, m, c =
sympy.symbols(’E m c’) or E, m, c = sympy.symbols(’E,
m, c’) converts the string “E m c” into three different symbolic variables
that maybe used later to define mathematical expressions or equations or
in future symbolic mathematics functions. It is strongly recommended that
the symbol name (i.e., the variable on the left side of the “=” sign) be the
same as the variable name in the string that is passed into the symbols()
function.

Let us begin by demonstrating the SymPy library on a classic algebraic
problem, factoring a quadratic polynomial, a ⋅ x2 + b ⋅ x + c = 0, to determine
its roots. As taught in a typical algebra course, the roots of a quadratic
polynomial can be determined using the quadratic equation, x = −b±

√
b2−4ac

2a
.

The derivation of the quadratic equation only requires straightforward alge-
braic manipulation of the quadratic polynomial to solve for x. The quadratic
equation, that is, the roots of the quadratic polynomial, can also be derived
using SymPy as is illustrated in the example below.

�

� �

�

5.3 An Introduction to SymPy 73

Determine the roots of the quadratic polynomial, a ⋅ x2 + b ⋅ x + c = 0, using
SymPy:

import sympy

a,b,c,x = sympy.symbols(’a b c x’)
expr = a*x**2 + b*x + c
print(sympy.solve(expr,’x’))

The quadratic polynomial is stored in the variable expr, and using the
solve() function in the SymPy library allows for the determination of the
roots of the polynomial. The output from the example code should be

[(-b+sqrt(-4*a*c + b**2))/(2*a), -(b+sqrt(-4*a*c +
b**2))/(2*a)],

which is a Python list containing the two roots of the polynomial.
If the values of a, b, and c are known, then the SymPy library may still be used.

For example, the following modification to the code above solves for the roots
of 3x2 + 4x + 5 = 0.

import sympy

x = sympy.symbols(’x’)
expr = 3*x**2 + 4*x + 5
print(sympy.solve(expr,’x’))

In this case, the output should be [−2/3 − sqrt(11)*I/3, −2/3 +
sqrt(11)*I/3] where I =

√
−1. Note that the sympy.solve() function

assumes that all terms in the equation have been moved to one side of the
equal sign. If the equation in the following example had initially been written:
3x2 + 5 = −4x, it would have been necessary to first rearrange the terms so that
they were all on the same side of the equal sign.

Another very helpful function in SymPy is the subs() method, which sub-
stitutes one expression for another. A simple example of this is replacing x in a
polynomial with a specific value as illustrated below.

import sympy

x = sympy.symbols(’x’)
expr = 3*x**2 + 4*x + 5
print(expr.subs(x,2.0))

Here, 2.0 is substituted for x in the expression and the result is simplified to
25.000. The conversion of expressions into floating point numbers can use
evalf(), and the desired precision can be passed into the function. For
example, replacing the last line in the previous example with print(expr.
subs(x,2.0).evalf(16)) evaluates the result after substitution to 16
digits of precision.

�

� �

�

74 5 Symbolic Mathematics

The solve() function was previously used for solving an algebraic
equation. The syntax of this function is solve(equations,variables)
where equations may be a single equation or a list of equations (a list in
enclosed in square brackets, [item, item, item]). The number of variables
listed, of course, must equal the number of equations. In the example below,
the solve() function is used to solve a common problem in describing the
behavior of gases.

The van der Waals equation of state is a common equation for relating the
temperature (T), pressure (P), and specific volume (V̂) of a nonideal gas. The
equation may be written as

P = RT
V̂ − b

− a
V̂ 2

,

where

a =
27R2T2

c

64Pc
,

b =
RTc

8Pc
,

R = 0.08206L ⋅ atm/(mol ⋅ K).

and Tc and Pc are the critical temperature and pressure of the gas, respectively.
Our goal is to calculate the specific volume of ammonia (Tc = 405.5 K and Pc =
111.3 atm) at T = 420 K and P = 43.4 atm. Before using SymPy to solve for the
specific volume, we need to rewrite our equation(s) so that all terms are on one
side of the “=” sign. Thus, we will write the van der Waals equation as

0 = P − RT
V̂ − b

+ a
V̂ 2

.

We are now ready to solve for the specific volume.

import sympy

R = 0.08206 # L atm /(mol K)
P = 43.4 # atm
T = 420.0 # K
Tc = 405.5 # K
Pc = 111.3 # atm

a = 27*(R**2 * Tc**2 / Pc)/64
b = R * Tc / (8 * Pc)

V = sympy.symbols(’V’)
f = P - R*T/(V-b) + a/(V**2)

print(sympy.solve(f,V))

�

� �

�

5.3 An Introduction to SymPy 75

The output from this example is
[0.70088, 0.06531 - 0.02985*I, 0.06531 + 0.02985*I]

The equation is cubic with respect to V̂ so we should not be surprised by getting
three solutions (i.e., three roots). In this case, it is simple to determine the
correct solution as two of the solutions are complex and obviously not physical.
We should also note that neither Python nor SymPy supports units, so the onus
is on the user of the software to ensure that consistent and correct units are used
in all calculations.

5.3.1 Multiple Equations

The solve() function is not limited to a single algebraic equation; it
also supports multiple equations and unknowns. However, large systems of
equations and unknowns are typically solved more efficiently using a numerical
approach. The use of solve() for a relatively small and simple system of
equations is demonstrated in the example below.

Use the solve() function to solve the following system of equations for x
and y.

x3 + y + 1 = 0,
y + 3x + 1 = 0.

It is important to note that both equations already have all terms on one side
of the “=” sign.
import sympy

x, y = sympy.symbols(’x y’)
eq1 = x**3 + y + 1
eq2 = y + 3*x + 1
sol = sympy.solve([eq1, eq2], [x,y])
print(sol[0])
print(sol[1][0].evalf(), sol[1][1].evalf())
print(sol[2][0].evalf(), sol[2][1].evalf())

We should first observe that the solution is a list-of-lists: it is a list of three
solutions and each solution is a list of the x, y-pair that satisfies the equations.
In addition, note the use of evalf() to simplify the three solutions to this
system of equations: ((0,−1), (−1.732, 4.196), and (1.732,−6.196)). We might
be surprised that there are three different (x, y) pairs that satisfy this system of
equations, but if we rearrange the equations slightly into

y1 = −x3 − 1
y2 = −3x − 1

and plot the two curves using matplotlib.pylot, we can see that the two curves
cross three times at the three solutions given previously (Figure 5.1).

�

� �

�

76 5 Symbolic Mathematics

8

6

4

2

0

–2

–4

–6

–8

–10
–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0

Figure 5.1 x, y-diagram of the two equations that were simultaneously solved in the
multiple equations example.

5.4 Factoring and Expanding Functions

One of the more tedious and error-prone routine tasks in mathematics
is expanding and factoring polynomial equations. SymPy can usually per-
form this task automatically. We can use SymPy to expand the function
f (x) = (x + 2)3 + 3 using the following code.

import sympy

x = sympy.symbols(’x’)
f = (x+2)**3 + 3
print(sympy.expand(f))

Running this short program gives us the expanded polynomial: x3 + 6x2 +
12x + 11. This expansion can also be performed by humans, but the error rate
and time required are both high.

An even more useful feature of SymPy is its ability to factor polynomials.
A student could spend hours trying to factor the polynomial 27x3 + 135x2 +
225x + 125, but SymPy can factor it in a few seconds using the following code.

import sympy

x = sympy.symbols(’x’)
f = 27*x**3 + 135*x**2 + 225*x + 125
print(sympy.factor(f))

Running this code block prints the factorization, (3x + 5)3 to the standard
output. Using SymPy to expand and factor polynomials is simple enough that

�

� �

�

5.4 Factoring and Expanding Functions 77

it can often be done straight from the Python prompt without the construction
of a complete script.

5.4.1 Equilibrium Kinetics Example

In equilibrium kinetics, it is often necessary to expand and factor polynomial.
Consider the water-gas shift reaction

CO + H2O ⇌ CO2 + H2

proceeding to equilibrium at a temperature where the equilibrium coefficient is

K =
yCO2

yH2

yCOyH2O
= 1.4.

(This example is adapted from an example in Felder and Rousseau [3].) If the
feed to this reactor is 2.0 mol of CO and 2.0 mol of H2O and the extent that
this reaction proceeds to the right (i.e., the extent of reaction) is 𝜉, then we can
write the mole fraction of each species as

yCO = 2 − 𝜉

yH2O = 2 − 𝜉

yCO2
= 𝜉

yH2
= 𝜉

and the equilibrium equation as

K = 𝜉 ⋅ 𝜉
(2 − 𝜉)(2 − 𝜉)

= 1.4,

or

𝜉2 − 1.4(2 − 𝜉)2 = 0.0.

The goal is to determine the extent of reaction, 𝜉, which is relatively straightfor-
ward but requires expanding out the polynomial. The following code illustrates
the use of SymPy to either help us expand the polynomial or solve for 𝜉.
import sympy

xi = sympy.symbols(’xi’)
f = xi**2/((2-xi)*(2-xi)) - 1.4
g = xi**2 - 1.4*(2-xi)*(2-xi)
print(sympy.expand(g))
print(sympy.simplify(g))
print(sympy.factor(g))
print(sympy.solve(f))

The first three lines printed by the program all generate the simplified
quadratic polynomial associated with the equation for 𝜉, specifically, they give
−0.4𝜉2 + 5.6𝜉 − 5.6, which can be solved for 𝜉 using the quadratic equation.

�

� �

�

78 5 Symbolic Mathematics

The last line prints out the solution, 1.084 or 12.92. Since we start with only
2.0 mols of CO and H2O, the only physically possible solution is 1.084 mol.

5.4.2 Partial Fraction Decomposition

A challenging algebraic exercise that arises frequently in Process Controls (the
area of Chemical and Biological Engineering that studies the automated control
of process operations, including the use of sensors and valves) is the partial
fraction decomposition of rational functions, which have the form:

f (x) =
p(x)
q(x)

,

where p(x) and q(x) are polynomials with q(x) being the higher degree poly-
nomial. The objective of partial fraction decomposition is to decompose this
rational function into one of the form:

f (x) =
p(x)
q(x)

= A
x − k1

+ B
x − k2

+ · · ·

by determining the roots of q(x), which gives k1, k2, and so on, and the values
for A, B, and so on. These rational functions are common when analyzing
feedback control loops using Laplace transforms in process controls. The
partial fraction decomposition is required for transforming the analysis from
the Laplace domain into the real-world time domain.

The function sympy.apart() can automatically perform many partial
fraction decompositions, and the use of this function is demonstrated in the
example below, which decomposes the rational function 1

s⋅(s+0.5)
:

import sympy

s = sympy.symbols(’s’)
f = 1/(s*(s+0.5))
print(sympy.apart(f))

The output from this example is
-2.0/(1.0*s + 0.5) + 2.0/s

and the interested reader can confirm that
1

s ⋅ (s + 0.5)
= −2

s + 0.5
+ 2

s
.

In this example, k1 = −0.5, k2 = 0, A = −2, and B = 2.

5.5 Derivatives and Integrals

It is also possible, and often very helpful, to use symbolic mathematics software
when taking derivatives and integrals. Symbolic derivatives can be obtained

�

� �

�

5.5 Derivatives and Integrals 79

using the sympy.diff() function. Let us begin by taking the derivative of a
sin(x) function.

import sympy

x = sympy.symbols(’x’)
print(sympy.diff(sympy.sin(x),x))

The output from this code is cos(x), as expected. Passing in additional
symbols (i.e., variables) into the sympy.diff() function causes additional
derivatives to be taken. For example, if the last line in the previous code
block is replaced with print(sympy.diff(sympy.sin(x),x,x)), the
second derivative with respect to x is determined and the output is − sin(x).
Alternatively, adding “y” to the symbols list and asking for the derivative with
respect to “y”, print(sympy.diff(sympy.sin(x),x,y)), gives the
expected result of zero.

SymPy is especially helpful when taking derivatives of more complex
functions because humans are more likely to make an error as the number
of algebraic steps increases. The script below is used to take the derivative of
f (x) = x2 ⋅ tan(x) + x ⋅ log(x):

import sympy

x = sympy.symbols(’x’)
f = x**2 * sympy.tan(x) + x * sympy.log(x)
print(sympy.diff(f,x))

and the output is the derivative:

x**2*(tan(x)**2 + 1) + 2*x*tan(x) + log(x) + 1

Note that in SymPy (and Python, in general), log (x) is the natural logarithm
function.

5.5.1 Reaction Example

When designing a chemical reactor, we sometimes have a mathematical
expression that relates the concentration of a species in the reactor to time.
For example, assume that we know that

CA = CA0 exp(−k ⋅ t),

where CA is the concentration of species A, CA0 the initial concentration of A, k
a constant, and t time. We would like to take the derivative of CA with respect
to time to determine the rate of the reaction. The following Python code will
determine the derivative:

import sympy

Ca0, k, t = sympy.symbols(’Ca0 k t’)

�

� �

�

80 5 Symbolic Mathematics

Ca = Ca0 * sympy.exp(-k*t)
print(sympy.diff(Ca, t))

The output from the script is −CA0 ⋅ k ⋅ exp (−k ⋅ t), which the observant
reader will recognize can be simplified to dCA

dt
= −k ⋅ CA.

5.5.2 Symbolic Integration

Symbolic integration tends to be even more helpful than symbolic differ-
entiation, probably because integration by hand is often more difficult than
differentiation. The sympy.integrate() function is used for symbolic
integration. The following code block demonstrates both the single and double
integrations of a simple sin(x) function.

import sympy

x,y = sympy.symbols(’x y’)
print(sympy.integrate(sympy.sin(x),x))
print(sympy.integrate(sympy.sin(x),[x,0,1.0]))
print(sympy.integrate(sympy.sin(x),x,x))
print(sympy.integrate(sympy.sin(x),x,y))

Upon execution, the code outputs the expected result of − cos(x) for the
first print() function call. The second print() function call is nearly
identical to the first, but this time a list is given for the second argument. The
list contains the symbolic variable to be integrated and the bounds on that
variable. The result is a definite integral, and the output is 0.4597. The third
print() function call results in sin(x) being integrated twice with respect
to x, that is, this is a double integral, and outputs the expected result: − sin(x).
What should we expect from the final print statement, which integrates sin(x)
first against x and then against y? Well, the first integration will yield − cos(x),
and the second integration will treat any function of x as a constant and, as a
result, integration against y will give −y ⋅ cos(x).

5.5.3 Reactor Sizing Example

As students learn in a reactor design course, the sizing of a batch reactor
containing an irreversible second-order reaction A → B requires that we
evaluate the integral:

∫
X

0

1
(1 − X)2 dX.

While this integral is still relatively simple, it never hurts to check our work
with a symbolic mathematics program. The following script will evaluate this
integral using SymPy.

�

� �

�

5.6 Cryptography 81

import sympy

X = sympy.symbols(’X’)
t = sympy.integrate(1/((1-X)**2), (X, 0, X))
print(t)
print(sympy.simplify(t))

A couple interesting observations can be made from this block of code.
First, notice the function interface for definite integrals: (variable,
lower_bound, upper_bound), which, for the problem of interest here
is (X,O,X). Second, the result of symbolic integration is initially (i.e., the first
print statement): −1 − 1

X−1
, which is correct but not the simplest form possible.

To obtain the more common, and simpler result, the sympy.simplify()
function is used to get the standard result: − X

X−1
.

5.6 Cryptography

The sympy.crypto library has a basic set of ciphers that allow for a gentle
introduction to some classic cryptography. The one major constraint that the
user of this library needs to be aware of is that the library only supports upper-
case strings without spaces. Thus, before using any of the provided ciphers
on a “secret message”, it is necessary to convert the string into uppercase
letters (using, e.g., the upper() function) and removing any spaces (using,
for example, the replace(" ","") function where the first set of quotes
encloses a single space and the second set of quotes is empty and without any
spaces).

The first and simplest cipher is the shift cipher or Caesar cipher, after Julius
Caeser, a purported user of the cipher. With this cipher, all the letters in the
message are shifted n letters forward in the alphabet. If n = 2, for example, then
“A” is replaced with “C” and “B” is replaced with “D”. The key to reversing or
deciphering the message is to reverse the shift, which only requires knowing
n. The “key” for encoding and decoding shift cyphers is a single integer. The
Python algorithm below demonstrates the use of the shift cipher.
import sympy.crypto.crypto as cipher

message = "secret code"
cleanMessage = message.upper().replace(" ","")
print(cleanMessage)
Replace every letter with the next letter
print(cipher.encipher_shift(cleanMessage,1))

The output from the algorithm is:

SECRETCODE
TFDSFUDPEF

�

� �

�

82 5 Symbolic Mathematics

It is easy to confirm that every letter in the secret code was shifted to the next
letter in the alphabet, and the key for this example is 1. Different keys can be
specified in the call to the shift() function.

A slightly more complex cipher is the affine cipher, which requires two
integers for the key that is used in encrypting and decrypting messages. The
two integers, a and b, are used to map every letter, x, represented as an integer
(0–25) to a new letter, y, also represented as an integer (0–25) using the linear
function:

y = a ⋅ x + b (mod 26).

If a = 1 and b = 1, then y = x + 1, which means that every letter is replaced
with the same letter plus one, that is, this is identical to a shift cipher with a shift
of 1. If a = 2 and b = 2 then y = 2 ⋅ x + 2, and the letter “E”, x = 4 is replaced
with y = 10 or the letter “K”. The use of the affine cipher is demonstrated with
the script below.

import sympy.crypto.crypto as cipher

message = "secret message"
cleanMessage = message.upper().replace(" ","")
print(cleanMessage)
print(cipher.encipher_affine(cleanMessage,(2,2)))

The output of this script is

SECRETMESSAGE
MKGKKOAKMMCOK

confirming that “E” is replaced by “K” and the other letters are replaced as
expected.

The final cipher explored here is the Vigenère cipher, named after Blaise de
Vigenère. This cipher is similar to the shift cipher, but instead of shifting every
letter by the same amount, a series of unique shift values are used instead.
Further, instead of trying to remember a sequence of integers, the cipher’s key
is a string of letters, that is, a word, that is converted to a string of integers
(0–25). Therefore, if the key is “CAB”, it is converted to a series of integers:
2, 0, 1, and that series of integers is used repeatedly to shift the message. The
use of this cipher is demonstrated in the Python script below.

import sympy.crypto.crypto as cipher

message = "secret message"
cleanMessage = message.upper().replace(" ","")
print(cleanMessage)
key = 'cab'# note 'cab' --> 2, 0, 1
result = cipher.encipher_vigenere(cleanMessage,key)

�

� �

�

Problems 83

print(result)
print(cipher.decipher_vigenere(result,key))

The output from the script is:

SECRETMESSAGE
UEDTEUOETUAHG
SECRETMESSAGE

Some of the letters are not shifted due to the use of “a” in the key. The same key
can be used to decipher or reverse the cipher and recover the original message.

None of the ciphers presented here is particularly secure or difficult for com-
puters to decipher even without the key provided that the secret message is
sufficiently long, but they demonstrate some of the basic concepts and they
show the importance of lengthy keys or passwords, that is, do not use “cab” as
a password.

Problems

5.1 You have been hired by the Mountain Chip company to analyze a new
product they are bringing to market: Square chips! The Square chip has a
similar shape to the traditional chip, but its exterior (perimeter) is square
so it fits into a square box instead of a round can. The company expects
to save millions on more efficient packaging and shipping.
The shape of the Square chip is described by the function: f (x, y) = x2

1.0
−

y2

2.0
, where −1.0 ≤ x ≤ 1.0 and −1.0 ≤ y ≤ 1.0. The following Python algo-

rithm plots the shape of the Square chip.
import sympy
x,y = sympy.symbols(’x y’)
z = x**2/1.0 - y**2/2.0
sympy.plotting.plot3d(z,(x,-1.0,1.0),(y,-1.0,1.0))
Note that sympy.plotting.plot3d() calls
matplotlib

You have been hired as a consultant to answer two questions about the
new Square chip by the Mountain Chip company.
a) The company believes that the Square chip is most likely to break where

the curvature is greatest, and they would like you to determine the
location(s) with the greatest curvature. Curvature is approximated by
C(x, y) = ||| 𝜕

2f
𝜕x2

||| + ||| 𝜕
2f

𝜕y2

|||. Determine the location(s) and magnitude of the
greatest curvature. The company made it very clear that they do not
trust human calculations and they require an answer from computer
using symbolic mathematics software.

b) In pursuit of ever greater packing efficiency, the company is concerned
about the volume of air below the lowest chip in the stack of chips in the

�

� �

�

84 5 Symbolic Mathematics

box. You need to determine the volume of air below the chip (i.e., the
volume between the chip and a flat surface) by integrating the function
describing the shape of the chip over the domain −1.0 ≤ x ≤ 1.0 and
−1.0 ≤ y ≤ 1.0. It is probably necessary to modify the function so that
the minimum value of the function f (x, y) over the domain −1.0 ≤ x ≤
1.0 and −1.0 ≤ y ≤ 1.0 is zero. This modified function will represent
the chip resting on a flat surface (the flat surface is f (x, y) = 0.0). If you
run the plotting function in the box above, you will see that the current
function appears to possibly be less than zero for some values of−1.0 ≤
x ≤ 1.0 and −1.0 ≤ y ≤ 1.0.

5.2 You have been hired by a specialty chemical company that has been
researching the physical properties of acetone (a common chemical
for removing nail polish). The company observed that at an unknown
temperature, acetone exhibited the same heat capacity as water. The
company found the following quadratic equation for the heat capacity of
acetone as a function of temperature [4]:

Cp = 26.63 + 0.183T − 45.86 × 10−6T2 J∕(mol ⋅ K)

You have been hired to determine the temperature at which acetone has
the same heat capacity as water (assume that water has a constant heat
capacity of 75.6 J/(mol ⋅ K)) on a per mol basis. Finally, the company has
two additional requirements: (1) you need to determine an equation for
the change in heat capacity as a function of temperature, that is, dCp

dT
, and

(2) plot the heat capacity as a function of temperature over the full range of
temperatures where the heat capacity of acetone might equal the constant
head capacity of water. The company is notoriously skeptical of people
that perform mathematical analysis “by hand” and is requiring that you
perform all calculations using symbolic mathematics software.

5.3 You have been hired by the recently reformed La Vie Claire cycling team
(this is the team that Greg LeMond won the Tour de France with in
1986 – see the ESPN 30 for 30 documentary, “Slaying the Badger”). The
new team manager knows a little physics and made an interesting obser-
vation while studying the standard fluid dynamics equation describing
the drag force on a body moving through air (or any Newtonian fluid):

FD = CDA𝜌V 2

2.0
where FD, the drag force, is approximately equal to the force the rider is
applying to the pedals (neglecting mechanical resistance) when riding on
a flat surface. The team manager claimed that for a given force from the
rider, the equation should have two solutions for the velocity, V , because
it is quadratic. The manager further asserted that if riders could change

�

� �

�

Problems 85

their velocity somehow, they could shift their velocity to the other, faster
solution to the equation without having to change the force on the pedals.
You have been hired by the team owner to investigate this claim. Using
symbolic mathematics software, show that there is only one positive
velocity solution to the equation if FD, the force, CDA (the drag coefficient
multiplied by the rider’s frontal or cross-sectional area), and 𝜌 (the
density of air, 1.0 kg∕m3) are all positive.
The second half of the owner’s request is that you calculate the cyclist’s
velocity (in meters per second and miles per hour) using the following
assumptions:
• Professional cyclists perform 10,000 kJ/day of work
• In a major race, cyclists ride 250,000 m/day
• Work is force times distance (i.e., force is work over distance)
• CDA for a cyclists alone on the road is 0.7–0.9 m2

Finally, estimate the velocity of the same cyclist in a group where each
cyclist can draft off the person in front of them, thus reducing CDA to
0.5–0.7m2.

5.4 Have you ever looked at that little hole at the bottom of windows on
commercial aircrafts and wondered, “Why is it there?” (answer: search
‘holes in airplane windows’ on http://www.slate.com). Commercial
airplanes have three layers for each window: the inner layer to catch snot
from sneezes, a middle layer that contains the tiny hole at the bottom, and
an outer layer. It turns out that the hole in the middle layer is designed to
be large enough to keep moisture from accumulating between the two
outer layers while at the same time being small enough to prevent a total
loss of cabin pressure in the event that the outer window layer completely
fails.
You have been hired by a major airplane manufacturer to estimate the
flow rate of air through the small hole in the event that the outer most
layer of glass fails. The manufacturer needs to be sure that the airplane
cabin pressurization system has the ability to prevent the total loss of
cabin pressure.
The flow through the small, cylindrical hole should be estimated by
assuming Poiseuille flow:

𝑣 = ΔP
4 ⋅ 𝜇 ⋅ L

(R2 − r2),

where ΔP = 60 kPa is the pressure difference between the inside and
outside of the airplane, 𝜇 = 1.8 × 10−5 kg/(m ⋅ s) the viscosity of air,
L = 1.0 mm the length of the cylindrical hole, and R = 0.5 mm the radius
of the hole. The velocity of air through the hole, 𝑣, is a function of the
distance, r from the center of the hole. Hence, the velocity is maximum
along the center of the hole and it decreases closer to the edges of the

�

� �

�

86 5 Symbolic Mathematics

hole. At the edge of the hole, r = R and the velocity is zero. The air near
the edge is slowed down by friction with the glass of the window.
The first part of your contract with the airplane manufacturer is to use
symbolic mathematics software to obtain an equation for the total flow
through the hole, Q, by integrating the velocity across the cross section of
the hole:

Q = 2𝜋 ∫
R

0
𝑣 ⋅ r ⋅ dr.

Then, determine the total flow rate in m3∕s and m3∕h using the properties
given above.

5.5 In the field of Process Controls, it is sometimes necessary to perform what
is called a partial fraction decomposition. Consider the equation

F(s) = s + 1
s2(s + 2)

.

The process of partial fraction decomposition requires that we determine
the constants c1, c2, and c3 such that the following equation is satisfied:

s + 1
s2(s + 2)

=
c1

2s2 +
c2

4(s + 2)
+

c3

4s
.

Fortunately, SymPy includes the function sympy.apart() that can
usually take a partial fraction decomposition automatically. Write a
script that determines the value of c1, c2 and c3 using a partial fraction
decomposition.

References

1 Livio, M. (2006) The Equation that Couldn’t be Solved: How Mathematical
Genius Discovered the Language of Symmetry, Simon & Schuster, New York,
NY.

2 Team, S.D. (2014) SymPy: Python library for symbolic mathematics, http://
www.sympy.org.

3 Felder, R.M. and Rousseau, R.W. (2005) Elementary Principles of Chemical
Processes, John Wiley & Sons, Inc., Hoboken, NJ, 3rd edn.

4 Fogler, H.S. and Gurmen, M.H. (2015) Elements of Chemical Reaction Engi-
neering. Companion CD, http://umich.edu/~elements/.

�

� �

�

87

6

Linear Systems

A single, linear, algebraic equation is trivial to solve. In engineering, however,
we are often faced with the more difficult challenge of solving for multiple
unknowns (e.g., x1, x2, and x3) that are related by multiple, linear algebraic
equations. In the previous chapter on symbolic mathematics, we explored
an approach, sympy.solve(), that gave an exact solution. This approach,
however, is limited to problems with only a few equations and a few unknowns
(typically <10). Our goal in this chapter is to learn methods that can handle
thousands or even millions of unknowns.

If the equations are truly linear – the unknowns are not multiplied by each
other or themselves, nor are there nonlinear terms within the equations, such
as sin(x1), then we can write the system of equations as

a1x1 + a2x2 + · · · + anxn = f1

b1x1 + b2x2 + · · · + bnxn = f2

⋮ = ⋮

z1x1 + z2x2 + · · · + znxn = fn,

where a, b,… , z, and f each represent n-constants. The system has n-equations
and n-unknowns. It is often simpler to write our this system of equations in the
form of a matrix:

⎡⎢⎢⎢⎣

a1 a2 … an
b1 b2 … bn
⋮ ⋱ ⋮
z1 z2 … zn

⎤⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

f1
f2
⋮
fn

⎤⎥⎥⎥⎦
. (6.1)

The matrix on the left-hand side and the right-hand-side vector both contain
given constants, and the vector, x, in the middle contains the unknowns.
This problem is often written A ⋅ x = f . Our goal in this chapter is to learn
different approaches for solving for x whenever we have a system of linear
equations.

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

88 6 Linear Systems

Note on Notation

Throughout this book, a bold lowercase variable (e.g., x) is used to represent a
vector. A bold uppercase variable represents a matrix (e.g., A).

6.1 Example Problem

Distillation columns are used to separate mixtures of compounds based on
differences in boiling points. The development of a mathematical model of
a distillation column typically results in hundreds or thousands of linear and
nonlinear equations. Let us explore a simplified mathematical model for a
distillation column where the input is known: 30 kg/s of methane, 25 kg/s
of ethane, and 10 kg/s of propane. The input mixture is separated into three
outflow streams: a overhead stream that is rich in methane (90%) and does
not contain any propane, a middle stream that is rich in ethane (50%) and
a bottom stream that is rich in propane (70%). Propane is the least volatile
of the three components in the distillation column and, hence, is the most
likely to be separated into the bottom stream. Figure 6.1 contains additional
information on the composition of the outflow streams – note that x is
used for mass fractions (i.e., the fraction of a total stream that is a specific
compound) and m is used for mass flow rates (in kg/s). Subscripts denote
specific compounds – methane (M), ethane (E), and propane (P), or numerical
subscripts represent different stream numbers so m1 is the total mass flow rate
of the entire stream 1.

Ideally, distillation columns are operated at steady state, and every kilogram
of each compound that enters the column is matched by a kilogram of that
same compound leaving the column. This must be true due to the conservation
of mass. Using this principle, an equation that equates the mass flow rate of
methane into the column to the mass flow rate of methane leaving the column
can be written.

min = mout

30 kg/s = 0.9m1 + 0.3m2 + 0.1m3. (6.2)
The second equation utilizes the fact that the mass flow rate of methane in
stream 1 must equal the total mass flow rate of that stream (m1) multiplied
by the fraction of the stream that is methane (xM = 0.9). Since there are
three outflow streams, the mass flow rate into the column must equal the
combined mass flow rate from each of the three outflow streams – mass must
be conserved!

Similarly, we can write mass conservation equations on ethane and propane
also:

25 kg/s = 0.1m1 + 0.5m2 + 0.2m3, (6.3)

�

� �

�

6.1 Example Problem 89

10 kg/s = 0.0m1 + 0.2m2 + 0.7m3. (6.4)

Figure 6.1 Diagram of a
distillation column for the
coarse separation of methane
(M), ethane (E), and propane (P).
The composition of the product
streams is given, but the mass
flow rate of each stream is
unknown.

mM = 30 kg/s
mE = 25 kg/s
mP = 10 kg/s

xM = 0.9
xE = 0.1

m1

xM = 0.1
xE = 0.2
xP = 0.7

xM = 0.3
xE = 0.5
xP = 0.2

m2

m3

Note that there is no propane in stream 1, but we can still include stream 1
in the mass balance for propane (equation 6.4) by setting the fraction of the
stream that is propane to 0.0. The result is a final system of three linear, alge-
braic equations with the same three unknowns. For simplicity, the system of
equations (6.2–6.4) can be written in matrix form as

⎡⎢⎢⎣
0.9 0.3 0.1
0.1 0.5 0.2
0.0 0.2 0.7

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣
m1
m2
m3

⎤⎥⎥⎦
=
⎡⎢⎢⎣
30.0
25.0
10.0

⎤⎥⎥⎦
. (6.5)

For review, let us use SymPy to solve for the flow rates of the three outflow
streams.
import sympy

m1, m2, m3 = sympy.symbols('m1 m2 m3')
eq1 = 0.9*m1 + 0.3*m2 + 0.1*m3 - 30
eq2 = 0.1*m1 + 0.5*m2 + 0.2*m3 - 25
eq3 = 0.2*m2 + 0.7*m3 - 10
print(sympy.solve([eq1,eq2,eq3],[m1,m2,m3]))

�

� �

�

90 6 Linear Systems

SymPy symbolically solves this small system of equations and gives a solution
of m1 = 17.9 kg/s, m2 = 46.0 kg/s, and m3 = 1.2 kg/s. It is always a good idea to
check a solution to make sure that the original equations are indeed satisfied.

Instead of symbolically solving this system, which is something that does
not scale well to larger systems of equations, let us instead solve the system
numerically. We will use the Numpy library (www.numpy.org) to build the
required matrices and vectors for this process. The first step is to build the
matrix A, and the right-hand side, f , and store them as numpy arrays.

import numpy

A = numpy.array([[0.9,0.3,0.1],[0.1,0.5,0.2],
[0.0,0.2,0.7]])

f = numpy.array([30.0,25.0,10.0])
print(A)
print(f)

Notice that the entire A matrix is contained in a list, and the individual rows
of the matrix are sublists (or nested lists) within the larger list.

Line Breaks in Python

Python supports two methods for breaking a long line of code up onto multiple
lines (this is referred to as line wrapping or line continuation):

• parentheses, brackets, and braces can be used for automatic continuation
because if the Python interpreter does not find a closing parenthesis on the
same line as the opening parenthesis, it will automatically continue reading
onto the next line as if the two lines are a single line. An example is

a = [1, 2, 3, 4,
5, 6]

• placing a backslash, “\”, at the end of a line causes the Python interpreter to
continue reading the next line as if it were on the same line. An example is

a = ‘‘Hello’’ + \
‘‘World’’

To solve this system of equations numerically, we need to import an
additional library that contains common linear algebra functions. There
are a number of linear algebra libraries available for Python, but one
easy to use library is distributed with numpy and can be imported using
import numpy.linalg. Note that this library is not automatically loaded
when we import numpy and must be imported separately. Most people tire
of typing numpy.linalg.function() over-and-over, so it is common to

�

� �

�

6.2 A Direct Solution Method 91

import this library using a shorter name such as “nl”. This is possible using
the command import numpy.linalg as nl. The following code uses
the nl.solve() function to solve the matrix problem and determine the
unknown flow rates.

import numpy
import numpy.linalg as nl

A = numpy.array([[0.9,0.3,0.1], [0.1,0.5,0.2],
[0.0,0.2,0.7]])

f = numpy.array([30.0,25.0,10.0])
x = nl.solve(A,f)
print(x)

The output is a vector containing the three unknown flow rates: [17.88
45.96 1.15].

The nl.solve() function computes the “exact” solution of a well-
determined linear matrix equation, A ⋅ x = f . The term “exact” is in quotes
because the solution is only “exact” up to computer round-off error. In other
words, the solution will typically have 8–12 digits of accuracy depending on
the condition of the matrix, type of computer, and other factors. Methods
that compute an “exact” solution to a linear matrix equation are called direct
methods. In the next section, we will examine some of the principles behind
direct methods and discuss their scaling. Direct methods are a good choice
for systems of 2 to 10,000 equations (although this range changes with
available computational power). The computational algorithm used by the
numpy.linalg.solve() function is a common LAPACK routine that
is written in FORTRAN. Because the underlying algorithm is written in a
compiled language instead of Python, it is more computationally efficient and
scalable.

6.2 A Direct Solution Method

The goal of this section is to briefly examine a simple algorithm for directly
calculating the “exact” solution to a matrix problem. Even though the algorithm
presented here is significantly simpler than the more complex algorithms
contained in LAPACK and used by numpy, it will still be the most complex
Python code written up to this point in this book. The direct solver will actually
be split into two different functions – a Gaussian elimination function and a
backward substitution function. It is recommended that the reader create an
empty Python file (a suggested filename is bobcatSolver.py) that contains both
of the functions. This file or module can then be imported into other Python
codes and the functions within it called using import bobcatSolve and
then bobcatSolve.functionname().

�

� �

�

92 6 Linear Systems

The first function that will be written implements Gaussian elimination. To
illustrate the process of Gaussian elimination, recall the example matrix prob-
lem from the distillation example that was derived previously.

⎡⎢⎢⎣
0.9 0.3 0.1
0.1 0.5 0.2
0.0 0.2 0.7

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣
m1
m2
m3

⎤⎥⎥⎦
=
⎡⎢⎢⎣
30.0
25.0
10.0

⎤⎥⎥⎦
. (6.6)

In the linear equation system, each row of A and f represents an equation
or equality. It is perfectly mathematically reasonable to multiply an entire
equation by a constant or add/subtract one equation from another without
changing the solution. Our goal is to multiply equations by a constant and then
add or subtract equations from each other so that the lower triangular part of
the matrix is zero – in other words, we want a matrix that is all zeros below
the main diagonal. For the matrix in equation 6.6, the main diagonal has the
values: 0.9, 0.5, and 0.7. Let us start by eliminating the value in the first column
that is directly below the main diagonal – the value is currently 0.1. Observe
that if we multiple the first equation (row 1) by 0.1

0.9
and then subtracting the

resulting equation from the second row, we will eliminate the 0.1 value in the
first column and directly below the main diagonal. Specifically, if R1 and R2

represent rows 1 and 2, respectively, then replacing R2 with R2 − R1 ⋅
0.1
0.9

gives

⎡⎢⎢⎣
0.9 0.3 0.1
0.0 0.4667 0.1888
0.0 0.2 0.7

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣
m1
m2
m3

⎤⎥⎥⎦
=
⎡⎢⎢⎣

30.0
21.667

10.0

⎤⎥⎥⎦
. (6.7)

Notice that row 1 (representing equation 6.6) did not change at all; the only
change was to row 2. This process can now be repeated for all nonzero terms
below the main diagonal – a process called Gaussian elimination. The second
step would normally be to eliminate the term in column 1, row 3, but that term
is already 0.0 in this example so no action is required. The third and final step
for this example is to eliminate the term in column 2, row 3, which currently
has a value of 0.2. This term is eliminated by multiplying row 2 by 0.2

0.4667
and

replacing row 3 by row 3 minus row 2 times this value (i.e., replacing R3 with
R3 −

0.2
0.4667

⋅ R2). Note that row 1 is not used in this elimination step because its
use would introduce a nonzero value into column 1, row 3 of the matrix – a
term that was just eliminated in step 2. In Gaussian elimination, the nonzero
terms below the main diagonal are eliminated using same row as the column
where terms are being eliminated. For example, the nonzero terms below the
main diagonal in column 2 are eliminated using row 2.

A similar process is called LU-decomposition, which refers to the
decomposition of a matrix into a lower triangular matrix (L) and an
upper triangular matrix (U). The terms “Gaussian elimination” and
“LU-decomposition” are frequently used interchangeably, although they

�

� �

�

6.2 A Direct Solution Method 93

are not exactly the same algorithm. For the current example problem, the
result after Gaussian elimination is

⎡⎢⎢⎣
0.9 0.3 0.1
0.0 0.4667 0.1888
0.0 0.0 0.619

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣
m1
m2
m3

⎤⎥⎥⎦
=
⎡⎢⎢⎣

30.0
21.667
0.714

⎤⎥⎥⎦
. (6.8)

Examination of the linear matrix system 6.8 shows that solving for the
vector of unknowns, [m1,m2,m3], is now relatively trivial. Starting with
the last equation, which is now 0.619m3 = 0.714, we can easily solve
for m3 = 1.15. Once m3 is determined, it becomes trivial to solve for
m2 = (21.667 − 0.188m3)∕0.4667. This process of solving for the final solution
after Gaussian elimination is referred to as backward substitution.

Python code for a simple Gaussian elimination function, called bobcatLU, is
given below.

import numpy

def bobcatLU(A,f):
n = f.size
check for compatible matrix and rhs sizes
if (A.shape[0] != n or A.shape[1] != n):

print("Error! Incompatible input sizes.")
return f

Loop through the columns of the matrix
for i in range(0,n-1):
Loop through rows below diagonal for each column

for j in range(i+1,n):
if A[i,i] == 0:

print("Error: Zero on diagonal!")
print("Need algorithm with pivoting")
return f

m = A[j,i]/A[i,i]
A[j,:] = A[j,:] - m*A[i,:]
f[j] = f[j] - m*f[i]

return A,f

The function receives a matrix, A, and a right-hand side, f , as inputs. The first
few lines of the code check to ensure that the matrix and the right-hand side
have a compatible size. Next, a loop through the columns of the matrix (with
the exception of the last column that does not have any terms below the main
diagonal) is initiated. For each column, i, there is a second loop (j) through the
rows below the main diagonal. For every terms below the main diagonal, the
term is eliminated using row i (i.e., equation i) multiplied by the appropriate
multiplier, m. After Gaussian elimination is complete, the modified matrix A
and the right-hand side, f , are returned.

�

� �

�

94 6 Linear Systems

Multiple Return Variables

The bobcatLU function returned multiple variables with: return A,f, which
can also be written as return (A,f). In either case, a Python container,
specifically a tuple, is returned that contains both variables. When a function
returns multiple arguments, it is recommended that enough variables are
defined to hold the individual return arguments. When calling bobcatLU, for
example, use:

M,n = bobcatLU(A,f)

whereA,f are passed into the function, andM,n are the variables returned from
the function.

Backward substitution is an algorithm of similar complexity and is given
below.

import numpy

def bobcatBS(A,f):
n = f.size
Check for compatible matrix and rhs sizes
if (A.shape[0] != n or A.shape[1] != n):

print("Error! Incompatible input sizes.")
return f

initialize the solution vector, x, to zero
x = numpy.zeros((n,1))
solve for last entry first
x[n-1] = f[n-1]/A[n-1,n-1]
loop from the end to the beginning
for i in range(n-2,-1,-1):

sum = 0
for known x values, sum and move to rhs
for j in range(i+1,n):

sum = sum + A[i,j]*x[j]
x[i] = (f[i] - sum)/A[i,i]

return x

The backward substitution algorithm begins by checking the dimensions of
the input parameters and initializing a vector, x, that will ultimately hold the
solution. Then, starting with the last row in the linear matrix system, the
algorithm calculates the corresponding value for the x-vector. The algorithm
proceeds from the last row to the first row before completing.

It is simplest to combine the Gaussian elimination and backward substitution
algorithms into a single file. Note that only a single import numpy command

�

� �

�

6.2 A Direct Solution Method 95

is required at the start of the file. The resulting file is called a module in Python
programming, and it can be imported and used with other code. This is a
very simple and efficient mechanism for recycling code. As an example, if
the bobcatLU() and bobcatBS() algorithms are saved in a file called
bobcatSolve.py, then the algorithms can be used to solve the previous
distillation column example in a straightforward manner as illustrated in the
example below.

6.2.1 Distillation Example

Use the bobcatLU() and bobcatBS() functions to solve the distillation
column example problem.

import numpy as np
import bobcatSolve as bS

A = np.array([[0.9,0.3,0.1], [0.1,0.5,0.2],
[0,0.2,0.7]])

f = np.array([30.0,25.0,10.0])

A,f = bS.bobcatLU(A,f)
x = bS.bobcatBS(A,f)

print(x)

The solution should be the same as obtained using the numpy.linalg.
solve() function: [17.9, 46.0, 1.2].

6.2.2 Blood Flow Network Example

A large number of mathematical models of blood flow have been developed.
Some of these models are highly complex and account for the flexibility of
the blood vessel walls, the impacts of blood cells, and the effects of reflected
pressure waves on flow. Other models of blood flow are less accurate because
a large number of assumptions have been made to simplify the mathematical
model. The simplest model of blood flow assumes that the flow is steady
(not pulsatile), the vessel walls are rigid, and the blood vessels are straight
cylinders. Under these assumptions, the flow can be approximated using the
Poiseuille flow solution [1], which states that the flow rate through the vessel
is proportional to the pressure decrease, given by the equation:

ΔP =
(

128 ⋅ 𝜇 ⋅ L
𝜋 ⋅ d4

)
⋅ Q, (6.9)

where ΔP is the pressure decrease, 𝜇 the viscosity of blood (4 dyn ⋅ s/cm2),
L the length of the vessel, and d the diameter of the vessel.

�

� �

�

96 6 Linear Systems

P0 P1

P2

P3

Q1

Q2

Q3

Figure 6.2 Diagram of a simple network of three blood vessels: the flow is into vessel 1 (left)
at pressure P0, and at the end of vessel 1, there is a bifurcation or branch and the flow is
divided between vessels 2 (upper right) and 3 (lower right). The pressures, Pi , at the ends of
each vessel as well as the flow rate, Qi , in each vessel are potential unknowns that need to
be determined.

Our goal is to model flow through the three vessels shown in Figure 6.2.
Vessel 1, on the left, represents the femoral artery, and it has an unknown flow
rate, Q1, and pressure drop, ΔP = P0 − P1. Vessel 1 then branches (or bifur-
cates) into two smaller vessels: the upper vessel (vessel 2) has an unknown flow
rate Q2 and pressure drop, ΔP = P1 − P2, and the lower vessel (vessel 3) has an
unknown flow rate Q3 and pressure drop, ΔP = P1 − P2.

The blood pressure at the entry to the femoral artery, P0 = 5000 dyn∕cm2,
is relative to the pressure at the outflow, P2 = P3 = 0 dyn∕cm2. Table 6.1
summarizes the available geometric data on the three vessels. Starting with
the femoral artery (vessel 1), the value of most variables in the Poiseuille flow
equation (6.9) can be specified, and the equation can be simplified to

128 ⋅ 𝜇 ⋅ L1

𝜋 ⋅ d4
1

⋅ Q1 = 637 ⋅ Q1 = 5000 − P1. (6.10)

Similarly, the Poiseuille flow equation for the upper and lower branches can
be simplified to

128 ⋅ 𝜇 ⋅ L2

𝜋 ⋅ d4
2

⋅ Q2 = 2121 ⋅ Q2 = P1 − 0, (6.11)

128 ⋅ 𝜇 ⋅ L3

𝜋 ⋅ d4
3

⋅ Q3 = 2121 ⋅ Q3 = P1 − 0. (6.12)

Table 6.1 Properties of the femoral artery and
upper and lower branches.

Vessel Diameter (cm) Length (cm)

1 (femoral artery) 0.4 10
2 (upper branch) 0.28 8
3 (lower branch) 0.28 8

�

� �

�

6.2 A Direct Solution Method 97

Examining the three equations (6.10–6.12), we should note that there are four
unknowns: Q1,Q2,Q3, and P1, so we need one additional equation to have a
solvable system of linear equations. The final equation recognizes that the flow
through the femoral artery must equal the sum of the flow through the two
branches, that is, Q1 = Q2 + Q3, using the assumption that blood in this system
has constant density.

The system of equations given above for determining blood flow in the three
vessels can be written as a matrix, a vector of unknowns, and a right-hand side.
It is critical that the equations above be rearranged slightly by moving all terms
with unknowns to one side of the equal sign. Hence, the P1 term in the first
three equations must be moved to the left side, and the Q2 and Q3 terms in the
fourth equation must be moved to the left side.

⎡⎢⎢⎢⎣

637 0.0 0.0 1.0
0.0 2121 0.0 −1.0
0.0 0.0 2121 −1.0
1.0 −1.0 −1.0 0.0

⎤⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎣

Q1
Q2
Q3
P1

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

5000
0.0
0.0
0.0

⎤⎥⎥⎥⎦
. (6.13)

The Python code below solves the linear system of equations using both
the “bobcatLU()” function and the numpy.linalg.solve() function. The
reader should note that even though the original matrix has a term on the
main diagonal that is equal to zero, the term becomes nonzero during the
Gaussian elimination process and the “bobcatLU()” function does not give an
error.

import numpy
import bobcatSolve as bS
import numpy.linalg as nl

P0 = 5000.0 # dynes/cm ̂ 2
L1 = 10.0 # cm
L2 = L3 = 8.0 # cm
d1 = 0.4 # cm
d2 = d3 = 0.28 # cm
mu = 0.04 # dyn*s/cm ̂ 2
R1 = (128 * mu * L1) / (numpy.pi * d1**4)
R2 = (128 * mu * L2) / (numpy.pi * d2**4)
R3 = (128 * mu * L3) / (numpy.pi * d3**4)
Unknowns: Q1, Q2, Q3, P1 with Q in mL/s

A = numpy.zeros((4,4), dtype=numpy.float)
A[0,0] = R1
A[0,3] = 1.0
A[1,1] = R2
A[1,3] = -1.0
A[2,2] = R3
A[2,3] = -1.0

�

� �

�

98 6 Linear Systems

A[3,0] = 1.0
A[3,1] = A[3,2] = -1.0
f = numpy.array([P0, 0.0, 0.0, 0.0])
print(nl.solve(A,f))
A,f = bS.bobcatLU(A,f)
x = bS.bobcatBS(A,f)
print(x)

The solution after solving for the unknowns is Q1 = 2.9 mL/s, Q2 = Q3 =
1.5 mL/s and P1 = 3100 dyn ⋅ s/cm2. These values are consistent with
experimental measurements [2].

6.2.3 Computational Cost

Gaussian elimination and backward substitution are much more computa-
tionally efficient than symbolic computing, but the computational scalability
is still not optimal. A very rough approximation of the computational cost can
be made by examining the Gaussian elimination algorithm. The elimination
of all nonzero terms below the main diagonal requires looping through on
the order of n-columns and n-rows. For each entry, there are approximately
n-multiplications, so the total computational cost is on the order of n3 opera-
tions. It is common to use the shorthand notation: O(n3) for something that is
on the order of n3.

To test this estimate of computational cost, the code below was used to
measure the computational time for solving an increasing number of linear
equations. The code uses the Python time library to determine the solve
time by calculating the difference between the start time and stop time of a
calculation. The problem is based on a dense matrix of random numbers, and
a random right-hand-side vector, and the smallest problem is 100 equations
and the largest is 6400 equations.

import numpy
import numpy.linalg as nl
import time
import pylab

mag = 4
cputime = numpy.zeros((mag,1))
cpusize = numpy.zeros((mag,1))
n=100
for i in range(mag):

print(n)
A = numpy.random.random((n,n))
b = numpy.random.random((n,1))
start = time.clock()

�

� �

�

6.2 A Direct Solution Method 99

x = nl.solve(A,b)
stop = time.clock()
cputime[i]=stop-start
cpusize[i]=n
n = n*4

pylab.loglog(cpusize,cputime)
pylab.xlabel('Number of Equations')
pylab.ylabel('CPU time (sec.)')

The CPU time measurements versus number of equations are summarized
in Figure 6.3, which was obtained on a Dell laptop with a Core i5 CPU. The
smallest problem size (100 equations) required only 0.0006 s. Assuming that
the scaling of the algorithm is n3, increasing the problem size by a factor of 4
should increase the computational time by a factor of 43 = 64. The observed
CPU time increase is closer to a factor of 36 when going from 100 to 400
equations, but the observed increase is exactly a factor of 64 when going from
1600 to 6400 equations. For this particular computer, 6400 equations required
about 1 min, which is why direct methods are rarely used for problems larger
than approximately 10,000 equations (unless the matrix is sparse, that is,
contains mostly zeros).

The n3 scaling of direct methods motivates the development of alternative
approaches that give up the goal of obtaining an “exact” solution in exchange
for improved scaling. In the final section of this chapter, iterative methods that

102

101

100

10–1

10–2

10–3

10–4

102 103

Number of equations

C
P

U
 ti

m
e

(s
)

104

Figure 6.3 The CPU time required to solve a dense system of linear equations using
numpy.linalg.solve(). If n is the number of equations, the CPU time scales with n3.

�

� �

�

100 6 Linear Systems

can, in some cases, improve the scaling of CPU time relative to problem size
will be briefly examined.

6.3 Iterative Solution Methods

The basic motivation behind iterative methods is the observation that the
computational cost of multiplying a matrix and vector is on the order of
n2-multiplications for a dense matrix and on the order of n-multiplications
for a matrix that is sparse (i.e., a matrix that contains mostly zeros). If we
have a guess at the solution vector, which we can refer to as x0, then it is
computationally inexpensive to calculate what is referred to as the residual:
res = f − A ⋅ x0. Notice that the residual is a measure of how close our guess,
x0, is to satisfying the original matrix problem, A ⋅ x = f . If the values in the
residual vector are “small”, the guess is close to the solution. In order to define
“small” in more specific or quantitative terms, we need to briefly discuss norms.

6.3.1 Vector Norms

A norm is a single number that reflects the size of a vector. The most commonly
used norm is the L2-norm or Euclidean norm and it is calculated as

|x| =
√√√√ n∑

k=1
(xk)2.

The L2-norm of a Numpy vector, x, is calculated using numpy.norm(x,2),
where the “2” denotes the L2-norm. One other norm of notable relevance to the
calculations of interest in this book is the infinity norm, which is calculated by
finding the term in a vector with the largest absolute value. The infinity norm
of a Numpy vector is calculated using numpy.norm(x,numpy.inf).

6.3.2 Jacobi Iteration

To illustrate our first iterative method, let us return to the system of equations
that represent mass balances around a distillation column.

30 kg/s = 0.9m1 + 0.3m2 + 0.1m3,

25 kg/s = 0.1m1 + 0.5m2 + 0.2m3,

10 kg/s = 0.0m1 + 0.2m2 + 0.7m3.

One approach to determine values for the unknowns: m1 – m3, would be
to make an initial guess, for example, that m1 = 20 kg/s, m2 = 20 kg/s, and
m3 = 20 kg/s. This is not the most reasonable of guesses since total mass is not
conserved (i.e., more mass is flowing into the column than out based on our
crude guess), but the goal is to illustrate that our guess does not necessarily
need to be really close to the actual solution. Now, let us solve the first equation

�

� �

�

6.3 Iterative Solution Methods 101

for m1, using our guess for the values of m2 and m3. It is trivial to calculate
a new guess for m1,new = (30 − 0.3 ⋅ 20 − 0.1 ⋅ 20)∕0.9 = 24.44. Repeating this
process and solving for a new guess for m2 using the second equation and the
old guess for both m1 and m3 results in m2,new = 38 and, finally, m3,new = 8.6
using the third equation. Notice that the new guess is indeed closer to the
solution determined previously in this chapter than our initial guess of 20 kg/s
for every stream. If we repeated this process a “few” more times, always using
our improved guess, we might converge toward the “exact” solution.

The Python script below will help us to perform these calculations quickly
and automatically (and we will learn some new Python programming practices
as well!).

import numpy
import numpy.linalg as nl

def jacobi(A,f,x,maxIter = 100, tol = 1.0e-4):
inputs:
A is a nxn matrix
f is a right-hand-side vector of length n
x is initial guess at the solution to A x = f
maxIter (optional) is maximum iterations
tol (optional) is desired accuracy in terms
of the L2-norm of the residual (= f - Ax)
n = f.size
Begin by checking for compatible sizes
if (A.shape[0] != n or A.shape[1] != n):

print("Error! Incompatible sizes.")
return f

Loop to iterate until we converge to solution
or we reach the maximum number of iterations
xnew = numpy.copy(x)
for iter in range(maxIter):

calculate residual
res = f - numpy.dot(A,x)
check L2-norm for convergence
if (nl.norm(res,2) < tol):

print(’Converged after ’, iter,
’ iterations’)

return x
start of Jacobi iteration
for i in range(n):

sum=0.0
for j in range(n):

if(i != j):
sum += A[i,j]*x[j]

xnew[i] = (f[i] - sum)/A[i,i]

�

� �

�

102 6 Linear Systems

x = numpy.copy(xnew)
print(’Failed to converge after ’, iter,

’ iterations’)
return x

A = numpy.array([[0.9, 0.3, 0.1], [0.1,0.5,0.2],
[0.0,0.2,0.7]])

f = numpy.array([30.0,25.0,10.0])
x = numpy.array([20.0, 20.0, 20.0])
sol = jacobi(A,f,x)
print(sol)

The code begins with the definition of a function, called jacobi, but, it is
important to emphasize that when we execute or run this code, execution
actually begins with the line that constructs the matrix A. The function
definition is read by Python and stored for later use, but the function is not
executed until it is called in the second to the last line of the script. The
function definition must appear before the function is first called because,
otherwise, Python will return an error stating that the function has not been
defined when it is first called. The function itself requires that at least three
variables be passed into the function, a matrix, a right-hand-side vector, and
a vector containing a guess at the solution. However, the function allows two
additional, optional arguments to be passed when it is called. The first optional
argument is the maximum number of Jacobi iterations, and the default value
is set to 1000 if another value is not passed into the function. The second
optional argument is the desired tolerance, that is, the maximum L2-norm of
the residual vector for acceptable convergence. The jacobi function iterates
until either the maximum number of iterations is reached or the desired
tolerance is achieved, whichever is reached first. A helpful comment at the top
of the function reminds the user of the input variable requirements.

The lines of Python code for the first half of the function are largely comments
or code that we have used before. An iteration loop is initiated to run for at
most the maximum number of iterations allowed and then the residual vector
and its L2-norm are calculated. Before performing the calculations associated
with the Jacobi iteration, the L2-norm of the residual is always calculated to test
for convergence. If the norm is less than the desired tolerance, the current guess
is returned and the function execution ends. If the norm is not less than the
tolerance, the coefficients in A are multiplied by the current guess at the solu-
tion (except for the coefficient on the diagonal associated with the unknown
we are determining) and these are subtracted from the right-hand side and
divided by the coefficient along the diagonal. The reader is encouraged to
revisit the process described above for solving for one unknown for each of the
mass balance equations and to observe the connection to the Jacobi iteration
in the Python script. If the desired solution tolerance is not achieved after the

�

� �

�

6.3 Iterative Solution Methods 103

maximum number of iterations has been reached, the function prints an error
message and simply returns the (incorrect) vector x after the final iteration.

Testing the Jacobi iterative method on the distillation column mass balances
results in 14 iterations being required to achieve the default tolerance for the
L2-norm of the residual. It is interesting to test the method with different initial
guesses for the solution. For example, if our initial guess had been
x = numpy.array([10.0, 10.0, 10.0])

the algorithm would have required 16 iterations to achieve a solution satisfying
the same tolerance.

Robustnesses of Iterative Methods

Test the Jacobi iterative method on the following matrix and right-hand side:

⎡⎢⎢⎢⎢⎢⎣

1.0 −1.0 2.0 −1.0
2.0 −2.0 3.0 −3.0
1.0 1.0 1.0 0
1.0 −1.0 4.0 3.0

⎤⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

−8.0
−20.0
−2.0

4.0

⎤⎥⎥⎥⎥⎥⎦
. (6.14)

The desired solution is [−7.0, 3.0, 2.0, 2.0], but for almost any initial guess (other
than the exact solution), the Jacobi iteration fails to converge. The cause of this
failure is described below in the section on Convergence of Iterative Methods.
The simplest solution to this failure is to use a LU-decomposition or some other
direct solver.

6.3.3 Gauss–Seidel Iteration

The Jacobi iteration calculates a new guess for the vector x based only on
the previous guess. It is therefore possible to compute each entry in the new
guess vector simultaneously. An obvious alternative to this approach is to
calculate a new value for the first entry in the unknown vector x but then use
this new value for calculating the second entry in the vector x. Continuing in
this manner, each new value in x is always calculated using the most recent
information available. For the first iteration of the distillation column example,
the calculation of m1 = 24.4 would be identical to the Jacobi iteration, but the
calculation of m2 using the new value for m1 would result in m2 = 37.11 instead
of m2 = 38.

The implementation of the Gauss–Seidel iteration is nearly identical to the
implementation of the Jacobi iteration, except the vector xnew is no longer
required since all calculations involve only the most recent information that
is already stored in x. The Python script that implements the Gauss–Seidel
iteration for the distillation column mass balances is given below.

�

� �

�

104 6 Linear Systems

import numpy
import numpy.linalg as nl

def gaussSeidel(A,f,x,maxIter = 100, tol = 1.0e-4):
inputs:
A is a nxn matrix
f is a right-hand-side vector of length n
x is initial guess at the solution to A x = f
maxIter (optional) is maximum iterations
tol (optional) is the desired accuracy in terms
of the L2-norm of the residual (= f - Ax)
n = f.size
Begin by checking for compatible sizes
if (A.shape[0] != n or A.shape[1] != n):

print("Error! Incompatible sizes.")
return f

Loop to iterate until we converge to solution
or we reach the maximum number of iterations
for iter in range(maxIter):

calculate residual
res = f - numpy.dot(A,x).flatten()
check L2-norm for convergence
if (nl.norm(res,2) < tol):

print(’Converged after ’, iter,
’ iterations’)

return x
start of Gauss-Seidel iteration
for i in range(n):

sum=0.0
for j in range(n):

if(i != j):
sum += A[i,j]*x[j]

x[i] = (f[i] - sum)/A[i,i]
print(’Failed to converge after ’, iter,

’ iterations’)
return x

A = numpy.array([[0.9, 0.3, 0.1], [0.1, 0.5, 0.2],
[0.0, 0.2, 0.7]])

f = numpy.array([30.0,25.0,10.0])
x = numpy.array([20.0, 20.0, 20.0])
sol = gaussSeidel(A,f,x)
print(sol)

Applying the Gauss–Seidel iteration to the test problem results in eight
iterations being required for convergence to the approximate solution with
the same default tolerance used previously (recall that 10 Jacobi iterations

�

� �

�

6.3 Iterative Solution Methods 105

were required). The Gauss–Seidel iterative method typically converges with
significantly fewer iterations and over a greater range of initial guesses than
the Jacobi iterative method. The only reason to use Jacobi iterations instead
of Gauss–Seidel iterations is that calculations involved in the Jacobi iteration
may be executed in parallel, which may result in shorter computational times
on some computer architectures even with a larger total number of iterations.

6.3.4 Relaxation Methods

Iterative methods are based on the idea of improving our guess for the solution
each iteration. For Gauss–Seidel, the improved guess is obtained through the
calculation: x[i] = (f[i] − sum)/A[i,i]. Informally, this equation
tells us a new value for x[i] that is (hopefully) better than the previous guess.

For some problems, this updated value for x[i] might move the unknown
too far and our approximate solution might start to diverge from the correct
solution. In this case, the following line of code in the algorithm for calculating
a new value for x[i] might provide greater stability:

x[i] = (1.0 - omega) * x[i] + \
omega * (f[i] - sum)/A[i,i]

where omega is set to a value between 0.0 and 1.0. This change to the
Gauss–Seidel iteration results in a new guess at x[i] that is equal to a
weighted average of the old guess plus an updated guess. This approach is
called under-relaxation, and it can help with stability at the cost of potentially
slowing converge. Sometimes, the convergence is dramatically slower and
2–3 times as many iterations are required.

Similarly, one can imagine situations where we wish to try to move faster
toward the solution. If the new guess for x[i] is really a much better
guess, maybe we should try to move even further in that same direction.
Using the same updated line of the algorithm as under-relaxation used,
setting omega to a value greater than 1.0 can potentially accelerate conver-
gence. When omega is set larger than 1.0, the method is called successive
over-relaxation or SOR, for short. For the Gauss–Siedel example given above,
setting omega = 1.1 can reduce the number of iterations required for
convergence by 1 to a total of seven iterations. Unfortunately, increasing
omega = 1.5 increases the number of iterations by a factor of 2 because
we tend to overshoot and over-correct x each iterations. In summary, this
simple move to the use of relaxation methods can help with either robustness
of convergence or accelerate convergence, but the algorithm is now more
complex and that complexity can be cause harm if care is not exercised.
Before closing this section on iterative methods, it is helpful to look at the
factors that impact whether or not these methods converge and the rate of
convergence.

�

� �

�

106 6 Linear Systems

6.3.5 Convergence of Iterative Methods

The goal of the iterative methods described here is to determine an approximate
solution to the problem A ⋅ x = f . To examine the implications of the
differences between the methods described previously, it is useful to add and
subtract I ⋅ x from the right-hand side (note that I is the identity matrix, which
is of the same size as A but just has ones on the diagonal and zeros everywhere
else), giving: I ⋅ x + A ⋅ x − I ⋅ x = f . This equation can be rearranged to give
a potential iterative method: xnew = f − (A − I) ⋅ xold. It turns out that this is a
really slow iterative method that should never be used.

We can use this same framework to write down the Jacobi iteration. We begin
by decomposing A into a matrix D that just has the main diagonal terms from
A with zero everywhere else, a matrix L that just has the values from A that are
in the lower triangular section strictly below the main diagonal, and a matrix
U that contains the values from A that are above the main diagonal. With these
new matrices, we can rewrite A = D + L + U. An example of this decomposi-
tion for our distillation example is

⎡⎢⎢⎣
0.9 0.3 0.1
0.1 0.5 0.2
0.0 0.2 0.7

⎤⎥⎥⎦
=

⎡⎢⎢⎣
0.9 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.7

⎤⎥⎥⎦
+
⎡⎢⎢⎣
0.0 0.0 0.0
0.1 0.0 0.0
0.0 0.2 0.0

⎤⎥⎥⎦
+
⎡⎢⎢⎣
0.0 0.3 0.1
0.0 0.0 0.2
0.0 0.0 0.0

⎤⎥⎥⎦
. (6.15)

Recalling that in the Jacobi iteration, all the off diagonal terms in A were
effectively moved to the right side of the equation and we then divided by the
diagonal terms of A, the Jacobi iteration can be written as

xnew = D−𝟏(f − (L + U) ⋅ xold).

Using the same strategy, the Gauss–Seidel iteration can be written as

xnew = (D+L)−𝟏(f − U ⋅ xold).

In either case, we are required to calculate the inverse of a matrix, D−𝟏 or
(D+L)−𝟏, which is normally the same computational cost as Gauss Eliminate
(i.e., order n3 operations) but is very inexpensive for the two matrices listed
here because they are strictly diagonal or lower triangular (i.e., the same cost as
backward substitution, order n2 or less). As a result, each iteration is relatively
inexpensive from a computational standpoint.

The rate at which these iterative methods converge depends on how well
the preconditioner: D−𝟏 or (D+L)−𝟏 for Jacobi and Gauss–Seidel, respectively,
approximates A−𝟏. If the diagonal matrix, D, contains the largest terms in
A, then D−𝟏 is a good preconditioner and convergence is rapid. If the largest

�

� �

�

Problems 107

magnitude terms are not along the main diagonal, that is, not contained in D,
then it is a poor preconditioner and convergence is unlikely.

The field of iterative methods for systems of linear equations is very broad,
and the presentation of convergence rate here is very simplified. There are a
number of iterative methods such as the conjugate gradient method, Krylov
methods, and multigrid methods that are beyond the scope of this book.
However, in all cases, the availability or absence of a good and inexpensive
preconditioner has a significant impact on the performance of the method.
Interestingly, one common precondition is to use Gaussian elimination but
to throw away any small terms that arise during the computations. This is
referred to as incomplete elimination and it provides a robust and inexpensive
preconditioner for some problems. For more information on iterative methods,
the interested reader is encouraged to read the following:

• Numerical Analysis by Burden and Faires [3]
• Iterative Methods for Solving Linear Systems by Greenbaum [4]
• A Multigrid Tutorial by Briggs et al. [5]

Problems

6.1 You have been hired by the EPA (Environmental Protection Agency) to
estimate the concentration of PCBs (polychlorinated biphenyls) in the
Great Lakes. In order to perform this analysis, you need to recognize that
the quantity (in kg/year) of PCBs entering each lake must equal the quan-
tity of PCBs leaving each lake (otherwise, the quantity in the lake would
increase until it was infinite). Mathematically, we can write this as in =
out. The quantity of PCBs in any river between the lakes can be calculated
by multiplying the flowrate (in km3

year
) by the concentration (in kg

km3).
Looking at the diagram below, we write a balance (in = out) on each lake.
For Lake Superior,

180
kg

year
= QSH ⋅ CS = 72 km3

year
⋅ CS,

and for Huron, the balance is (note that the input is the sum of three
streams):

630
kg

year
+ 72 km3

year
⋅ CS + 38 km3

year
⋅ CM = 160 km3

year
⋅ CH .

Begin by deriving the five balances on the five lakes (note, two of them
appear above). Then, solve the system of five linear equations (not by
hand, but using one of the methods covered in this chapter) for the five
unknowns (CS, CM, CH , CE, and CO). Note that you will need to rearrange
the equations so that the terms with unknowns all appear on one side of
the equation. Report to the EPA the concentrations it is seeking.

�

� �

�

108 6 Linear Systems

Lake
Superior

Cs

Huron
CH

Michigan
CM

QMHCM

QHECH630 kg/year

QSHCS

2750 kg/year

180 kg/year

3820 kg/year

QSH = 72 km3/year
QMH = 38 km3/year
QHE = 160 km3/year
QEO = 185 km3/year
QOO = 215 km3/year

810 kg/year

Lake Erie
CE

Ontario
CO

QCOCOQEOCE

The EPA is also considering a bypass stream that would go directly from
Lake Michigan to Lake Ontario with a flow rate of 20 km3

year
in order to

reduce the concentration of PCBs in Lake Michigan. This bypass does
not change any of the existing flow rates, it would just be an additional
flow out of Lake Michigan and into Lake Ontario. Report the potential
impact of the bypass.

6.2 A new type of chair for a ski lift has been developed, and the manufacture
has designed a simplified model (Figure 6.4) of the chair’s behavior upon
loading a group of individuals. Recall that the basic spring equation is

W = k ⋅ x,

where W is the weight or force applied to the spring, k the spring constant,
and x the displacement (or stretch) of the spring.
You have been hired to calculate the total displacement of the system of
springs and weights shown in Figure 6.4. The properties of the system are
as follows:

Parameter Value

k1 10,000.0 N⋅m
k2 5,000.0 N⋅m
k3 8,000.0 N⋅m
k4 3,500.0 N⋅m
k5 4,500.0 N⋅m
W1 500.0 N
W2 1,000.0 N
W3 1,000.0 N

�

� �

�

Problems 109

Figure 6.4 A system of weights and linear
springs that model a new chair lift design for
ski resorts.

W1

W2

W3

k1

k2

k3

k4 k5

x1

x2

x3

The first step is to derive a force balance on each weight. For the first
weight, W1, you need to consider every spring touching the weight,
including the displacement and direction of force:

W1 = k1 ⋅ x1 − k3 ⋅ (x2 − x1)

and for the second weight:

W2 = k2 ⋅ x2 + k3 ⋅ (x2 − x1) − k4 ⋅ (x3 − x2) − k5 ⋅ (x3 − x2).

After deriving the force balance for the third weight, the system of
equations can be written as a linear matrix problem:

⎡⎢⎢⎣
k1 + k3 −k3 0.0
−k3 k2 + k3 + k4 + k5 −k4 − k5

? ? ?

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦
=
⎡⎢⎢⎣

500.0
1000.0
1000.0

⎤⎥⎥⎦
. (6.16)

If the linear matrix has been derived correctly, the terms along the main
diagonal will all be positive, off-diagonal terms will be negative, and the
matrix will be symmetric. Solve the linear matrix problem and determine
the displacement of each weight (i.e., each skier) in m.

�

� �

�

110 6 Linear Systems

C1 C2 C3

Qin = 10 m3 / min

Cin = 20 g / m3

Q = 20 m3 / min
C = 0 g / m3

Figure 6.5 A three-stage, counter current cascade where all the lower streams have a flow
rate of 10 m3∕min and all upper streams have a flow rate of 20 m3∕min. The feed stream
with the compound of interest is fed into the first (left) stage at a concentration of 20 g∕m3.

6.3 Counter current cascades are common in Chemical Engineering for
the extraction of a substance from one stream into another stream. A
three-stage counter current cascade is shown in Figure 6.5. Each stage
in the cascade is basically a mixing tank, and we will assume that both
streams leaving a stage have the same concentration (i.e., both the upper
and lower stream leaving stage 1 have a concentration of C1).
You have been hired by a local environmental engineering firm to analyze
the effectiveness of the cascade shown below. You should begin by writing
a mass balance on each stage because for each stage the total mass of the
contaminant coming in must equal the mass of contaminant going out. In
other words, grams per min of contaminant coming in equals grams per
minute of contaminant going out. Looking at stage 1, there are two input
streams, so the total contaminant coming in is

Total = Qin ⋅ Cin + 20 m3∕min ⋅ C2

If we include the total going out to this equation and replace the known
variables, we get

(10 m3∕min)(20 g/m3) + (20 m3∕min)(C2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

inputs in g/min

=

(10 m3∕min)(C1) + (20 m3∕min)(C1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

outputs in g/min

(6.17)

and for the second stage balance, we get

(10 m3∕min)(C1) + (20 m3∕min)(C3) =
(10 m3∕min)(C2) + (20 m3∕min)(C2). (6.18)

�

� �

�

Problems 111

After deriving the mass balance for the third stage, the system of equations
can be written as a linear matrix problem by moving all terms containing
an unknown, Ci to the left side of the equal sign, and all terms without an
unknown to the right side, giving:

⎡⎢⎢⎣
−10 − 20 20 0.0

10 −10 − 20 20
? ? ?

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣
C1
C2
C3

⎤⎥⎥⎦
=
⎡⎢⎢⎣
−200.0

0.0
0.0

⎤⎥⎥⎦
. (6.19)

If the linear matrix has been derived correctly, the terms along the main
diagonal will all be negative and off-diagonal terms will be positive. Solve
the linear matrix problem and determine the concentration in each stage
of the cascade in g∕m3.

6.4 Use the bobcatLU() and bobcatBS() functions to solve the linear
matrix system:

⎡⎢⎢⎣
4.0 −1.0 1.0
2.0 5.0 2.0
1.0 2.0 4.0

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦
=
⎡⎢⎢⎣

8.0
3.0

11.0

⎤⎥⎥⎦
. (6.20)

Further, compare the solution to the solution obtained using
numpy.linalg.solve(). In both cases, the solution should be
[1.0,−1.0, 3.0].

6.5 Use the bobcatLU Gaussian elimination algorithm on the following
linear matrix system:

⎡⎢⎢⎢⎣

1.0 −1.0 2.0 −1.0
2.0 −2.0 3.0 −3.0
1.0 1.0 1.0 0
1.0 −1.0 4.0 3.0

⎤⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

− 8.0
−20.0
− 2.0

4.0

⎤⎥⎥⎥⎦
. (6.21)

The simple Gaussian elimination algorithm implemented inbobcatLU()
fails with this matrix because during the elimination process, a zero is
produced on the main diagonal, which in the best case triggers an error
message stating that pivoting is required, and in the worst case causes a
program crash.
Rewrite the bobcatLU() algorithm to use pivoting to avoid such
difficulties. A description of a pivoting algorithm can be found in a
number of numerical methods books including the book by Burden and
Faires [3].

�

� �

�

112 6 Linear Systems

References

1 Zamir, M. (2016) Hemo-Dynamics, Biological and Medical Physics,
Biomedical Engineering, Springer International Publishing, Heidelberg.

2 Fung, Y. (1984) Biodynamics: Circulation, Springer-Verlag, New York.
3 Burden, R. and Faires, J. (2001) Numerical Analysis, Brooks/Cole, Pine

Grove, CA, 7th edn.
4 Greenbaum, A. (1997) Iterative Methods for Solving Linear Systems, Frontiers

in Applied Mathematics, Society for Industrial and Applied Mathematics,
Philadelphia, PA.

5 Briggs, W., Henson, V., and McCormick, S. (2000) A Multigrid Tutorial,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2nd edn.

�

� �

�

113

7

Regression

7.1 Motivation

Frequently in engineering, a series of measurements are taken, while one or
more parameters for a system are varied. In some case, such as the sample data
shown in Figure 7.1(a), the measured system parameter (also called the depen-
dent variable) varies linearly with the parameter that is being systematically
varied. For example, if the pressure in a rigid tank containing an ideal gas is mea-
sured while the temperature is changing, the relationship will be linear as long
as the gas behaves like an ideal gas. In this example, pressure is the dependent
variable and temperature is the independent (controlled) variable. The stan-
dard practice is to plot the data with the dependent variable (pressure) on the
“y-axis” and the independent variable (temperature) on the “x-axis”. The other
possible case, which is much more common in real world, is that the measured
variable changes nonlinearly as the controlled parameter is being varied. An
example of this occurs if we measure the vapor pressure of water while varying
the temperature of the liquid. Example data of such an experiment is shown in
Figure 7.1(b). The careful observer will note that in the event nonlinear behav-
ior is observed, one can simply reduce the range over which the independent
variable is changed to recover a small region where the relationship is approx-
imately linear. All curves are approximately linear if you zoom in far enough.

Data tends to be much more useful if we are able to obtain a mathematical
expression that approximately matches or “fits” the data. If only two data points
are available, then it is trivial to determine the equation for the line that passes
through those two points. (It is extremely dangerous to do this because we typ-
ically do not know if additional data will be linear and fall close to this line.)
If more than two data points are available, then all three points are extremely
unlikely to fall on the same line so we need to develop an approach for obtaining
the equation for a line that “best fits” the data.

This chapter covers linear regression in some detail, including the mathe-
matics used to find the equation for a line that minimizes the square of the
distance between the data and the linear regression line. Nonlinear regression,
where data is fit with a nonlinear mathematical function that is specified by

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

114 7 Regression

7 600

500

400

300

200

p
*

(m
m

 H
g)

100

0

–100

6

5

P
re

ss
ur

e
(P

a)

4

3

2
0 2 4 6

Temperature (°C)

(a) (b)

Temperature (°C)
8 10 20 30 40 50 60 70 80 90

Figure 7.1 Example of two different data sets that might require regression to fit the data
with either a line (a) or some other nonlinear function (b).

the user, is also covered using tools available in Scipy. However, before getting
into the mathematics and programming, let us examine a common problem in
vapor–liquid equilibria that requires regression.

7.2 Fitting Vapor Pressure Data

Vapor pressure is the pressure exerted by a pure liquid into the vapor phase.
In other words, it is a measure of the volatility of the liquid, that is, a mea-
sure of how badly the liquid wants to be a vapor. If the vapor pressure reaches
or exceeds the total pressure in the vapor phase, the liquid boils. If the vapor
pressure of water in a pot on the stove exceeds approximately 760 mm Hg, that
is, atmospheric pressure, then the water boils. The vapor pressure of water at
100 ∘C is, of course, 760 mm Hg. Figure 7.1(b) shows a typical set of vapor pres-
sure measurements for water over a range of temperatures.

According to the Clausius–Clayperon equation, the relationship between
vapor pressure, p∗, and temperature, T , is an equation of the form:

ln(p∗) = c1

(1
T

)
+ c2,

where c1 and c2 are constants that must be determined from experimental mea-
surements. Looking at the data show in Figure 7.1(b) it may not be apparent that
we could ever use linear regression to fit the data, but the Clausius–Clapeyron
relationship shows us the way. Recalling that the equation for a line is

y = c1 ⋅ x + c2,

we notice that if we plot ln(p∗) (instead of just p∗) and if we plot 1
T

instead of
T , the data should be approximately linear, allowing us to fit the data with a

�

� �

�

7.3 Linear Regression 115

0.0028

8

7

6

5
In

 (
p

*)

4

3

2
0.0030 0.0032

1/temperature (K–1)

0.0034 0.0036

Figure 7.2 When the natural log of vapor pressure, ln(p∗), is plotted against the inverse
temperature, 1∕T , then the points fall on a straight line and linear regression can be used to
fit the data.

line and determine c1 and c2. When vapor pressure data, such as that shown
in Figure 7.1(b), is replotted after taking the natural log of the vapor pressure
and the inverse of temperature, the data falls on an approximately straight
line as shown in Figure 7.2. Once the constants are known, we can use the
Clausius–Clapeyron relationship to determine the vapor pressure at any
temperature we desire or, equivalently, to determine the temperature at which
a desired vapor pressure can be achieved.

7.3 Linear Regression

To begin the regression process, we need data. For now, assume that we have
n data points that consist of one independent variable, x, and one dependent
variable, y, so there are n data points: (xi, yi), i = 1,… , n. The goal is to obtain
an equation for a polynomial, y = p(x), that approximately matches the data.
The first step is the selection of a measure that tells us how well the polynomial
matches the data. For example, we may want to minimize the absolution value
of the distance between the polynomial, p(x), and the data, yi. If this is the goal,
then we need to minimize:

Eabs =
n∑

i=1
|yi − p(xi)|. (7.1)

�

� �

�

116 7 Regression

In practice, it is difficult to minimize E because the derivative of the absolute
value function is not defined at the origin. Least-squares regression is an easier
and much more common choice. It is based on minimizing:

Els =
n∑

i=1
(yi − p(xi))2. (7.2)

In order to understand the process of minimizing Els, let us assume for simplic-
ity that we are interested in linear polynomials, that is, p(xi) = c1xi + c0. (It is
relatively straightforward to extend this analysis to higher-order polynomials,
but this is often unnecessary because helpful software has been developed to
automate the process.)

The goal of linear regression analysis is to determine the two unknowns in
the equation for the line: c0 and c1 that minimize Els. As we probably learned in
one of our calculus courses, the local minimum of a function occurs when the
derivative is equal to zero. Further, since Els is a quadratic function, the local
minimum is also the global minimum. Taking the derivative of Els with respect
to the two unknowns gives

𝜕Els

𝜕c0
= − 2

n∑
i=1

(yi − c1xi − c0) = 0,

𝜕Els

𝜕c1
= − 2

n∑
i=1

((yi − c1xi − c0) ⋅ xi) = 0.

Simplifying these equations (note that a constant can be factored out of a sum)
gives

n∑
i=1

(yi) = c1

n∑
i=1

(xi) + n ⋅ c0, (7.3)

n∑
i=1

(yixi) = c1

n∑
i=1

(x2
i) + c0

n∑
i=1

(xi), (7.4)

which are commonly referred to as the normal equations. Recall that xi and yi
are known or given by the data. The only unknowns are c0 and c1. In terms of
these unknowns, the normal equations are a linear system of equations and can
be rewritten as a matrix problem:[

n
∑n

i=1(xi)∑n
i=1(xi)

∑n
i=1(x2

i)

]
⋅
[

c0
c1

]
=
[∑n

i=1(yi)∑n
i=1(xiyi)

]
. (7.5)

Fortunately, we learned how to solve linear matrix problems in the previous
chapter.

A Python script that performs linear regression on eight data points, which
are given near the start of the script, is shown below.

�

� �

�

7.3 Linear Regression 117

import numpy as np
import numpy.linalg as nl
import pylab

n = 8
x = np.array([0.1, 1.43, 2.86, 4.29, 5.71,

7.14, 8.57, 9.95])
y = np.array([2.33, 2.81, 3.84, 4.41, 4.31,

5.65, 5.68, 6.80])
if ((n!=x.size) or (n != y.size)):

print("Error:inconsistent number of data points")

Xsum = np.sum(x)
Ysum = np.sum(y)
XYsum = np.sum(np.dot(x,y))
X2sum = np.sum(np.dot(x,x))
A = np.array([[n, Xsum], [Xsum, X2sum]])
f = np.array([Ysum, XYsum])
c = nl.solve(A, f)

yLR = c[0] + c[1]*x
pylab.plot(x,y,'o',x,yLR)
pylab.xlabel('x')
pylab.ylabel('y')
pylab.show()

The script begins by constructing two numpy arrays that contain the data. One
array, x, contains the independent variable and the other array, y, contains the
dependent variable data. The script then checks to make sure that the arrays
are the same size. A useful numpy function, numpy.sum(), is used to sum the
entries in a vector. These sums are stored in different variables for use later in
constructing the matrix, A, and the right-hand side, f as defined in equation 7.5.
The linear system is solved using the solver included with numpy. In order
to plot the regression line, the solution to the linear problem, which contains
the coefficients for the linear polynomial fit to the data, is used to calculate
the approximate value of the dependent variable at every independent vari-
able point. The original data for the example problem is shown in Figure 7.3(a),
and the data with the linear regression curve is shown in Figure 7.3(b). Plotting
data as separate points and polynomial fits to the data as a solid line is standard
practice and highly recommended.

The data for the previous example was obtained by first selecting evenly
distributed points from a straight line: y = 0.4x + 2.5 and then adding random
noise to the data so that it did not all fall on a straight line. Interestingly,

�

� �

�

118 7 Regression

7

6

5

y

4

3

2

7

6

5

y

4

3

2
0 2 4

x
6 8 10 0 2 4

x
(a) (b)

6 8 10

Figure 7.3 (a) Sample data used in regression analysis and (b) the same data with the
calculated regression line.

the regression line obtained using least-squares linear regression was
y = 0.4285x + 2.33. Because only eight points were used and the random noise
was not evenly distributed over such a small number of points, the original line
was not completely recovered. Additional testing showed that the slope could
be reliably recovered (approximately two significant digits) with about 20 data
points, but recovering an accurate value for the intercept was more difficult
and required at least 100 data points to obtain approximately two significant
digits.

Quadratic Regression

Repeating the derivation of the normal equations and linear matrix prob-
lem associated with the least-squares regression of a quadratic polynomial:
yi = c2x2

i + c1xi + c0 gives

⎡⎢⎢⎢⎣

n
∑n

i=1(xi)
∑n

i=1(x2
i)∑n

i=1(xi)
∑n

i=1(x2
i)

∑n
i=1(x3

i)∑n
i=1(x2

i)
∑n

i=1(x3
i)

∑n
i=1(x4

i)

⎤⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎣

c0

c1

c2

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

∑n
i=1(yi)∑n

i=1(xiyi)∑n
i=1(x2

i yi)

⎤⎥⎥⎥⎦
(7.6)

7.3.1 Alternative Derivation of the Normal Equations

Recall that the goal in polynomial regression analysis is to determine the
polynomial coefficients that give the optimal fit to n data points. This requires
that the number of data points be greater than the number of coefficients in

�

� �

�

7.4 Nonlinear Regression 119

the polynomial. The polynomial will have the form: yi = c0 + c1xi + c2x2
i + · · ·.

Since i = 1,… , n, we can think of this polynomial at each data point being
written as a linear matrix problem: Ac = y where

A =

⎡⎢⎢⎢⎢⎣

1 x1 x2
1 · · ·

1 x2 x2
2 · · ·

⋮ ⋱

1 xn x2
n · · ·

⎤⎥⎥⎥⎥⎦
(7.7)

Notice that A and y are both given by the data that is being fit. In regression,
the goal is to minimize

Els = ||y − Ac||2, (7.8)

which is the L2-norm of the residual squared. Els is minimized when the deriva-
tive is zero, which leads to

𝜕Els

𝜕c
= 2||y − Ac||A = 0.

Upon rearrangement [1], we obtain the normal equations in matrix form:

(ATA)c = ATy. (7.9)

The result is the same linear matrix problem that was derived previously using
the more common approach.

7.4 Nonlinear Regression

The fitting of data by a nonlinear function through a least-squares minimiza-
tion process can be difficult because the process leads to a system of nonlinear
equations that must be solved. The solving of nonlinear equations is the focus
of the next chapter, but a few words on the process are important here. First,
nonlinear regression requires that the user supply a “guess” for the values of the
unknown parameters in the function that is being fit to the data. If data is being
fit to a function like a sin(𝜋x∕p), where x is the independent variable, then the
user must supply an initial guess for the amplitude, a, and the period, p, of the
data. The nonlinear solution process tends to be much more likely to converge
to a function that optimally fits the data in a least-squares norm (equation 7.1)
if the initial guesses for the function parameters are relatively close. The second
factor that impacts the solution process is the accuracy of the data. Data with
significant levels of noise is unlikely to lead to a nonlinear regression solution
for highly nonlinear functions.

A relatively robust nonlinear least-squares regression routine is included
with the Scipy library, it is the scipy.optimize.curve_fit() function.

�

� �

�

120 7 Regression

This function is based on the Levenberg–Marquardt algorithm [2] for
nonlinear regression. The call to this function has the form:

scipy.optimize.curve_fit(func, xdata, ydata, p0, sigma)

and the following parameters are passed into this function when it is called:

func: This is a user-defined function that is declared before curve fit is called.
The function must take the independent data as input (i.e., xdata) and the val-
ues for the different unknown parameters that are being determined in the
fitting process. The function must return a vector, y, containing the depen-
dent variable. The curve_fit function changes the values of the unknown
parameters to minimize the difference between the function return values
and the dependent variable data, ydata.

xdata: a vector of the independent variable data points.
ydata: a vector of the dependent variable data points. The y-values returned by

the function (func) are compared to this data using the least-square norm
(equation 7.1).

p0: a Python list containing guesses for the unknown function parameters.
A default value of 1 is used for all parameters if no initial guess is provided.
Use of the default value is discouraged.

sigma: an optional vector that is used to provide relative weights for the
least-squares processes. If the goal is to fit some of the data points more
closely than other data, a larger weight can be applied to those data points.
This vector is rarely provided.

The use of the curve_fit() function is illustrated through the Python
script below.

import numpy
from scipy.optimize import curve_fit
import pylab

n = 20
Antoine coefficients for water from Wikipedia
A = 8.07131
B = 1730.63
C = 233.426

Build some fake data: temperature, x, versus
vapor pressure, y, data
x = numpy.linspace(20,90,num=n)
error = numpy.random.rand(n)
y = numpy.zeros(n)
for i in range(n):

�

� �

�

7.4 Nonlinear Regression 121

y[i] = A - B/(x[i]+C)
y[i] = (10**y[i])+50*(error[i]-0.5)

Function for Antoine's equation – used in call
to curve fit below.
def antoine(temp, a, b, c):

n = temp.size
p = numpy.zeros(n)
for i in range(n):

p[i] = 10**(a - b/(temp[i]+c))
return p

Guesses for the Antoine coefficients and curve_fit call
params = [10, 2000, 200]
popt, pcov = curve_fit(antoine, x, y, p0=params)

calculate the dependent variable for plotting the curve
yfit = antoine(x, popt[0], popt[1], popt[2])
plot data as points and fit as a line
pylab.plot(x,y,'o',x, yfit)
pylab.xlabel('temperature ($ ̂ oC$)')
pylab.ylabel('$p ̂ *$ (mm Hg)')
pylab.show()

This function begins by generating some “fake” data that is curve fit later
in the script. Random noise is added to the fake vapor pressure data. The
nonlinear function with unknown parameters is defined in the function
antoine(temp,a,b,c). This function is passed a vector of temperatures
and estimates for the three unknown parameters: a, b, and c. The function
returns the vapor pressure, pi, at a given temperature, Ti, using a function of
the form:

pi = 10a+b∕(Ti+c), (7.10)
which is known as Antoine’s equation. The curve_fit() function repeat-
edly calls antoine() with different estimates for the parameters (a,
b, and c) in an effort to better fit the dependent variable data in the
vector y.

The scipy.optimize.curve_fit() function returns a tuple with two
numpy arrays. The first item in the tuple is a vector (stored in popt in the
example above) containing the optimal parameter values for fitting the func-
tion to the data. The second item in the tuple is an array (stored in pcov in
the example above) containing the covariance matrix associated with the opti-
mal parameter values. At the end of the script, the original fake data and the
curve_fit() result, if one is obtained, are plotted. Plotting the function (or
curve) that optimally fits the data requires a set of (x, y) values that fall on
the curve. In the example above, the x-data is also used for plotting the curve,

�

� �

�

122 7 Regression

600

500

400

p
*

(m
m

 H
g)

300

200

100

0
20 30 40 60 80

Temperature (°C)

(a) (b)

70 80 90

600

500

400

p
*

(m
m

 H
g)

300

200

100

0
20 30 40 60 80

Temperature (°C)

70 80 90

Figure 7.4 (a) Sample data used in nonlinear regression analysis and (b) the same data with
the nonlinear regression line from curve_fit(). p∗ = 108.1−1719∕(232+T).

but new y-data is obtained using the optimal parameter values from the popt
vector and the function that was used in the fitting (antoine()).

A sample result using the script above is shown in Figure 7.4. Repeated
experimentation with the script and different sets of fake data provided some
interesting observations. First, the Antoine parameters from curve_fit()
often differed from the actual parameters by 10% or more whenever significant
quantities of noise were added to the fake data. Second, the curve_fit()
function often failed to converge to a least-squares minimizer if the error
level in the data exceeded roughly 10%. Adding small amounts (0.1%) of
noise to the data gave accurate values for the Antoine parameters and
always led to convergence by curve_fit(), but larger amounts of noise
gave poor results or no results. Finally, large quantities of data (50 or
more points) gave better results than small quantities of data (10 or fewer
points).

7.4.1 Lunar Disintegration

The book Seveneves by Neal Stephenson is a science fiction novel that begins
with an event, caused by an unknown “agent”, that causes the moon to break
apart into seven large fragments. Relatively quickly, scientists in the book rec-
ognize that the seven large fragements will collide with each other and cause
the large fragments to break apart into smaller fragments. As more fragments
are formed, the potential for collision and further fragmentation increase. This
system exhibits a classic exponential growth curve – growth (an increase in the
number of fragments) in one generation causes faster growth (a faster rate of
new fragment formation) for the next generation. In the book, scientist recog-
nize that this fragmentation process would continue until the original moon
was broken apart into an incredibly large number of small fragments. Some of

�

� �

�

7.4 Nonlinear Regression 123

Table 7.1 Estimates of the number of fragments of the former moon as a
function of the number of days since the initial events.

Day: 0 7 28 100 200 300

Fragments: 7 8 20 350 12,000 500,000

the fragments would reach earth due to the earth’s gravity, and these fragments
would impact the surface or burn up in the atmosphere. Due to the incredibly
large number of fragments that the former moon would produce, the earth’s
surface and atmosphere would heat up beyond the point where life of any form
would survive.

The text of the book does not clearly state the exact number of fragments
that the moon has been reduced to as a function of time, but through a care-
ful analysis of the text, the data in Table 7.1 has been estimated and includes
the number of fragments as a function of the number of days from the initial
event (day 0). Our goal is to fit the fragment number versus day data with an
exponential curve of the form:

f = a ⋅ ex∕𝜏 ,

where f is the number of fragments, x is the day, and a and 𝜏 are unknown
parameters.

The Python script below uses the curve_fit() function to determine the
values for a and 𝜏 that result in the exponential curve to best fit the fragmenta-
tion data.

import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

day = numpy.array([0, 7, 28, 100, 200, 300])
chunks = numpy.array([7, 8, 20, 350, 12000, 500000])

Function for Breakup equation
used in call to curve_fit below.
def breakup(x, a, tau):

f = a*numpy.exp(x/tau)
return f

Guesses for the Breakup coefficients
params = [7.0, 30.0]

call curve_fit, returns fitting params

�

� �

�

124 7 Regression

and covariance of params, ignored with_
fit,_ = curve_fit(breakup, day, chunks, p0=params)

print(fit)

moreDays = numpy.arange(0,700)
yfit = breakup(moreDays, fit[0], fit[1])
plot data as points and fit as a line
plt.subplot(121)
plt.semilogy(day,chunks,'o', moreDays, yfit)
plt.xlabel('Day after the event')
plt.ylabel('Number of chunks')
plt.subplot(122)
plt.plot(day,chunks,'o', moreDays, yfit)
plt.xlabel('Day after the event')
plt.savefig('seveneves700.png')

The script begins by storing the fragmentation and day data in numpy arrays
and then the exponential function that is to fit the data is defined. The
breakup() function is called by scipy.optimize.curve_fit() a
few lines below, and the breakup() function needs to be written to receive
three arguments: a numpy vector, x, and two scalar parameters to be fit,
a and tau. A possibly more robust approach to writing the breakup()
function is to write a for loop to iterate through the values in x, but the more
compact form shown here is possible due to the use of the numpy.exp()
function.

As described earlier, the curve_fit() function returns two data struc-
tures: (1) the optimal values of the fitting parameters, stored in the variable
fit above, and (2) covariance values for the parameters. For this example, we
are not interested in the covariance values for the parameters, so we temporar-
ily store them in the variable “_”, which is a standard variable in Python for
temporary storing something that you do not plan to use. The result of fitting
the fragmentation data with an exponential curve is shown in Figure 7.5. The
exponential function fitting the data is

f = 6.92 ⋅ ex∕26.8.

Note that a semilogy() plot is used due to the large variation in the number
of fragments over time.

The final section of the code generates a plot that consists of two subplots,
and in both cases, the exponential fragmentation curve is extrapolated beyond
the data that is available. The data ends at day 300, but the curves shown in
Figure 7.6 extrapolate the curve out to day 700. Extrapolation requires that we
construct a new vector containing days out to 700, and this is achieved using
the numpy.arange() function. The subplot() function is then used to

�

� �

�

7.4 Nonlinear Regression 125

50

106

105

104

103

102

101

100

100 150
Day after the event

N
um

be
r

of
 c

hu
nk

s

200 250 3000

Figure 7.5 Fragmentation versus day after the event data is shown as descrete points,
and the optimal exponential curve fitting the data is shown as a solid line.

106

105

104

103

102

101

100

0 100 200 300 400

Day after the event

N
um

be
r

of
 c

hu
nk

s

500 600 700 0 100 200 300 400

Day after the event

(a) (b)

500 600 700

1013 1e12
1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1012

1011

1010

109

108

107

Figure 7.6 Fragmentation versus day after the event data is shown as descrete points, and
the optimal exponential curve fitting the data is extrapolated out to 700 days and shown as
a solid line.

generate a plot with two subplots, the subplot on the left uses a log-scale for
the y-axis (using semilogy) and the subplot on the right uses a regular, linear
y-axis to emphasize the exponential bend in the number of fragments as day
700 is approached.

�

� �

�

126 7 Regression

7.5 Multivariable Regression

The linear and nonlinear regression problems that have been examined thus
far in the chapter all have a single independent variable that is changing.
For example, the vapor pressure was only a function of temperature. The
number of lunar fragments was only a function of time (or days) since the
initial fragmentation event. In most engineering problems, our goal is a
fundamental understanding of a system and that means trying to change a
single variable and observing the response of the dependent variable. However,
sometimes this is impossible and there are multiple variables independently
changing. For example, my heart rate is a function of activity level and
caffeine consumption and it may not be possible to vary activity and caffeine
consumption separately. The focus of this final section on regression is fitting,
for example, an output variable, z, that depends on multiple input variables, x
and y, with a function of the form: z = a ⋅ x + b ⋅ y + c. This example function
has two independent variables and it is linear. It is also possible to fit with
a function that has multiple independent variables and is nonlinear (e.g.,
z = a ⋅ x + b ⋅ y + c ⋅ x ⋅ y + d ⋅ x2 + e ⋅ y2 + f ⋅ x2 ⋅ y2). However, caution should
be exercised to avoid fitting with too many parameters. If we were to fit with a
function that had >10 parameters, we should never attempt this unless a large
(>100) quantity of data is available, and even then, nonlinear terms may not be
necessary.

To illustrate multivariable regression, imagine that data is available (the data
can be found in the Python script below), and we need to fit the yield, y, of a
chemical reaction with a function of the form: y = a ⋅ T + b ⋅ C + d, where T
is the temperature and C the concentration. The Python script below begins
by constructing numpy.array() vectors to hold the data. The regression
or curve_fit() function below requires that all the data associated with
the independent variables (T and C) be stored in a single array with each
column holding the values for a different variable. The vectors holding the
temperature and concentration data are combined into a single array using
the numpy.stack() function. Next, the function to be fit to the data using
least-squares regression is defined. The function contains three unknown
parameters to be fit, a, b, and d, and initial guesses for the values of the
parameters should be provided to the curve_fit() function, but because
the function is linear, the guesses do not need to be of high quality. The Python
code for the full process is below.
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

temp = numpy.array([150, 160, 170, 180,
150, 160, 170, 180,
150, 160, 170, 180,

�

� �

�

7.5 Multivariable Regression 127

150, 160, 170, 180])
conc = numpy.array([40., 40., 40., 40.,

50., 50., 50., 50.,
60., 60., 60., 60.,
70., 70., 70., 70.])

x = numpy.stack((temp,conc),axis=1)
fracYield = numpy.array([70., 72., 74., 77.,

64., 66., 69., 71.,
49., 55., 57., 58.,
46., 48., 53., 55.])

def rxnFit(x, a, b, d):
f = a*x[:,0] + b*x[:,1] + d
return f

Guesses for the Breakup coefficients
params = [1.0, 1.0, 1.0]

call curve_fit, returns fitting params
and covariance of params, ignored with_
fit,_ = curve_fit(rxnFit, x, fracYield, p0=params)

print(fit)
fitYield = rxnFit(x,fit[0],fit[1], fit[2])

bar_width = 0.2
index = numpy.arange(len(fracYield))
plt.bar(index,fracYield,bar_width)
plt.bar(index+bar_width,fitYield,bar_width,color='r')

It is very difficult to visualize or plot the fit of the function to the original
data, especially in cases with a large number of independent variable. For the
example above, a simple bar chart is constructed with pairs of bars as shown
in Figure 7.7. The darker bar on the left is the original yield data for each sam-
ple, and the lighter bar on the right is the yield from the fitting function at the
same temperature and concentration. If all pairs of bars have a similar height,
that is, similar values, the fitting function agrees well with the data. For larger
data sets, even the generation of a simple bar chart like this one is impossible
and more sophisticated approaches are required for assessing the quality of the
fit.

7.5.1 Machine Learning

The field of machine learning is exploding in popularity because computers
have enabled the automated gathering and assembly of large data sets. For
example, in chemical processing, it is possible to assemble a large data set

�

� �

�

128 7 Regression

80

70

60

50

Y
ie

ld
40

30

20

10

0
0 2 4 6 8 10 12 14 16

Figure 7.7 A bar chart showing pairs of bars for each experimental condition (temperature
and pressure). The darker bar on the left is the yield from the original data, and the lighter
bar on the right is the least-squares regression fit at the same conditions.

that holds the conditions (temperature, pressure, valve position, concen-
tration, opacity, humidity, etc.) at a large number of locations throughout a
chemical processing facility. Another example is complete records of each
consumer’s purchases at a grocery store over a multiyear period. The field
of machine learning is focused on the development of algorithms that can
fit these large data sets in order to predict outputs. For the chemical pro-
cessing example, the output might be the purity of the final product, and
the machine learning algorithm can predict purity based on a full set of
input conditions, including the identification of the most important input
conditions.

Probably, the most fundamental tool used in machine learning is multivari-
able regression. In the field of machine learning, the term “feature” is used
instead of “variable”, and the term “weight” is used instead of “parameter”, but
many of the basic ideas are the same as the multivariable regression problem
solved above. To illustrate the connection between machine learning and multi-
variable regression, let us consider one of the most famous problems in machine
learning: numerical character recognition. This problem involves scanning a
single digit (0–9) from a hand-written number, thus converting it into an image
or set of pixels. Then, based on the color (white, gray, or black) of the pixels,
determine what number (0–9) is shown in the image. This is a pretty simple task
for a human but very challenging for a computer. The approach used in machine

�

� �

�

Problems 129

learning is to start with a large collection (>1000) of images showing digits
(0–9) that have already been identified by a person. The color of each pixel in the
image is represented using a vector of numbers, x, and machine learning algo-
rithms use regression to find a vector of weights, w such that x ⋅ w = y where
y is the previously identified number. This is just a linear regression problem.
We normally think of linear regression as: given a set of points, (x, y) find the
parameters (m, b) of a line so that the line y = m ⋅ x + b is a good fit for deter-
mining y for any given x. The character recognition problem is very similar: find
w so that x ⋅ w = y for any given vector of pixel colors, x.

Current challenges in machine learning include the challenge of getting a
computer to answer a question. This problem usually starts with the process
of converting every word in a language into a number. Then, we wish to find
the set of weights, w such that x ⋅ w = y where x is the vector of numbers that
represent the words in the question and y is the answer! If we have a large set
of questions and answers (i.e., a large set of questions: x and answers y), it may
be possible to find the desired weights (w). Finally, it is important to note that
the field of machine learning significantly extends beyond multivariable linear
regression. For the interested individual, the Machine Learning course through
Coursera (https://www.coursera.org/learn/machine-learning) is one opportu-
nity to learn more.

Problems

7.1 Look up the average monthly high temperature for your hometown. Start-
ing with April, list the average monthly high temperature for the next 12
months. Then, fit this data with a function of the form:

a ⋅ sin(𝜋x∕p) + b

where x is the month (starting with April as zero and continuing to March,
month 11) and a, b, and p are unknown parameters that are to be deter-
mined to fit the average monthly high in a least-squares minimization.

7.2 You have been hired by NASA to perform a regression analysis on the
GLOBAL Temperature Index data set (original data: http://data.giss.nasa
.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt). Using the data in the table
below, complete a linear (y = a + b ⋅ x), quadratic (y = a + b ⋅ x + c ⋅ x2),
and exponential (y = aebx) regression analysis of the average global tem-
perature (y) versus year (x). Use of the curve_fit() function from the
Scipy library is acceptable to NASA. Comment on the quality of the fit for
the various regression options considered.

�

� �

�

130 7 Regression

Year
Average global
temperature (∘C)

Approximate number
of pirates

1890 13.8 20,000
1900 13.7 18,000
1910 13.7 16,000
1920 13.6 15,000
1930 13.8 9000
1940 13.9 5000
1950 14.0 3000
1960 14.0 2000
1970 14.0 1100
1980 14.0 400
1990 14.2 20
2000 14.4 17
2010 14.6 15

It has been suggested that the rise in global average temperature is due to
the decline in the number of pirates. You have also been asked to perform
a linear and quadratic regression analysis on the approximate number of
pirates in the world (y) versus year (x). Finally, comment on the correla-
tion between the approximate number of pirates in the world versus the
average global temperature data.

7.3 You have been hired by the publisher of a Chemical Engineering refer-
ence manual to perform a regression analysis on Heat Capacity of solid
Hydrogen Bromide data [3]. Using the data in the table below, complete
a linear (y = a + b ⋅ x), quadratic (y = a + b ⋅ x + c ⋅ x2), and cubic (y =
a + b ⋅ x + c ⋅ x2 + d ⋅ x3) regression analysis of the Heat Capacity (y) ver-
sus temperature (x). Use of the curve_fit() function from the Scipy
library is acceptable to the publisher. Comment on the quality of the fit
for the various regression curves.

Temperature (K)
Heat capacity
(cal/(mol ⋅ K))

118.99 10.79
120.76 10.8
122.71 10.86
125.48 10.93
127.31 10.99

�

� �

�

Problems 131

Temperature (K)
Heat capacity
(cal/(mol ⋅ K))

130.06 10.96
132.41 10.98
135.89 11.03
139.02 11.08
140.25 11.1
145.61 11.19
153.45 11.25
158.03 11.4
162.72 11.61
167.67 11.69
172.86 11.91
177.52 12.07
182.09 12.32

The final report to the publisher should include figures showing each of
the regression curve fits, the equation for the fitting curve, and your rec-
ommendation for the fitting equation that best balances quality of fit with
simplicity (i.e., fewer fitting parameters).

7.4 There is much debate about the proper approach for characterizing the
rheology of blood. A particularly important aspect of this problem is
establishing a relationship between the shear stress and strain rate for
blood. The shear stress is a measure of the shear force per area applied
to blood. Imagine a person sliding on a waterslide, the shear stress is the
force per area that the person is applying to the water underneath them.
The strain rate represents the rate (or time period) at which the fluid
deforms. The magnitude of the deformation is usually normalized by the
original size (or thickness) of the fluid so that the strain rate has units of
“per time”.
You have been hired by the Red Cross to fit strain rate and shear stress data
from a blood sample to two different models, and then assess the quality
of the models for fitting the data. The rheological data is from [4].

Strain rate (1/s) Shear stress (dynes/cm2)

1.5 12.5
2.0 16.0
3.2 25.2

�

� �

�

132 7 Regression

Strain rate (1/s) Shear stress (dynes/cm2)

6.5 40.0
11.5 62.0
16.0 80.5
25.0 120
50.0 240
100 475

The first model proposed by the Red Cross is the linear (or Newtonian)
model:

𝜏 = 𝜇𝛾̇ ,

where 𝜏 is the shear stress and 𝛾̇ the strain rate. The second model is the
power law model:

𝜏 = k ⋅ 𝛾̇n.

Use least-squares regression (e.g., the curve_fit() function in Scipy)
to determine the optimal value(s) for the unknown parameter(s) in each
model (i.e., 𝜇 in the linear model or k and n in the power law model).
Generate a plot showing the data and the optimal regression curve for
each model. Finally, assess the quality of the fit in your report to the Red
Cross.

7.5 Possibly the most fundamental relationship in ecology is that the number
of unique species, S, increases as the area, A, of a region increases. This
relationship has been quantitatively observed in numerous studies over
the past 200 years. The relationship is normally of the form:

S = c ⋅ Az,

where c and z are unknown constants that depend on the ecological sys-
tem being studies and they must be determined from experimental data.
The value for z is a positive real number less than 1.0.
You have been hired as a consultant by the State of California to study the
species–area relationship for endemic vascular plant species for partially
isolated subregions of the state. Data on the number of species in each
area was collected and published previously [5].

Location Area (mi2) Species

Tiburon Peninsula 5.9 370
San Francisco 45 640

�

� �

�

Problems 133

Location Area (mi2) Species

Santa Barbara area 110 680
Santa Monica Mountains 320 640
Marin County 529 1060
Santa Cruz Mountains 1386 1200
Monterey County 3324 1400
San Diego County 4260 1450
California Coast 24,520 2525

Fit the species versus area data to the power law relationship given above
using regression to determine c and z for this particular system. An exam-
ination of similar studies shows that c is often of the order 10–1000 and z
is frequently between 0.2 and 0.4.
On the basis of the regression analysis, the State of California has asked
you to analyze the impact of the growth of its three major cities: Los Ange-
les, San Diego, and San Francisco. Specifically, if California loses 1% of the
total land in the state to the development of the cities every year, approx-
imately how many species will become extinct next year?
Hint: your supervisor recommends plotting the species versus area data
and curve fit using a “semilogx()” plot in matplotlib.

7.6 The World Health Organization (WHO) publishes data on average height
versus age for both females and males. Select data is summarized in the
table below (age is given in month and height is given in cm).

Month: 0 12 36 60 96 144 168 192 216

Female: 49.1 74.0 95.1 109.4 126.6 151.2 159.8 162.5 163.1
Male: 49.8 75.8 96.1 110.0 127.3 149.1 163.2 172.9 176.1

You have been contracted by WHO to fit the data for females to the
following growth function:

h = a
1 + b ⋅ e−c⋅t ,

where h is the height of females in cm, t the age in months, and a, b, and c
the unknown parameters to be determined using least-squares regression
on this nonlinear function. Your report to WHO should include a plot of
the height versus age data along with the optimal growth function to fit
the data.

�

� �

�

134 7 Regression

Finally, WHO is considering the potential for a single linear function to
fit the data for both boys and girls, using a function of the form:

h = a ⋅ t + b ⋅ g + c,

where h is the height of the individual, g the gender (you need to propose
an convervsion from gender, male or female, into a number), and a, b, and
c unknown parameters to be determined using least-squares regression.
You should comment on the quality of the fit for this function relative to
the previous growth function for the data provided.

References

1 Anton, H. and Rorres, C. (2005) Elementary Linear Algebra, John Wiley &
Sons, Inc., New York, 9th edn.

2 Moré, J. (1978) The Levenberg-Marquardt algorithm: implementation and
theory, in Numerical Analysis, Lecture Notes in Mathematics, vol. 630 (ed.
G. Watson), Springer-Verlag, Berlin Heidelberg, pp. 105–116.

3 Giaugue, W.F. and Wiebe, R. (1928) The heat capacity of hydrogen bromide
from 15k to its boiling point and its heat of vaporization. The entropy from
spctroscopic data. J. Am. Chem. Soc., 80, 2193–2202.

4 Palladino, J.L. and Davis, R.B. III (2012) Biomechanics, in Introduction to
Biomedical Engineering (eds J.D. Enderle and J.D. Bronzino), Academic Press,
Burlington, MA, pp. 134–218, 3rd edn.

5 Johnson, M.P., Mason, L.G., and Raven, P.H. (1968) Ecological parameters
and plant species diversity. Am. Nat., 102, 297–306.

�

� �

�

135

8

Nonlinear Equations

8.1 Introduction

Nonlinear equations are frequently encountered in diverse areas of
engineering, including chemical reaction rates, phase equilibria, fluid
distribution systems, and material deformation at large strain. One important
nonlinear equation that will be used as an example problem in this chapter is
the Soave–Redlich–Kwong (SRK) nonideal equation of state. This equation
relates the pressure and temperature of a gas to its specific volume (i.e., the
volume per mole of material). The SRK equation of state can be written as

P = RT
V̂ − b

− 𝛼a
V̂ (V̂ + b)

, (8.1)

where P is the absolute pressure, T the absolute temperature, V̂ the specific
volume, R the gas constant, and the remaining parameters defined as

a = 0.42747
(RTc)2

Pc

b = 0.08664
RTc

Pc

m = 0.48508 + 1.55171𝜔 − 0.1561𝜔2

𝛼 =
[
1 + m

(
1 −

√
T∕Tc

)]2
,

where Tc and Pc are the critical temperature and pressure, respectively, for the
substance of interest and 𝜔 the acentric factor for the substance.

Equations of state like the SRK equation relate T , P, and V̂ for a given sub-
stance, and whenever two of the three parameters are known, the EOS can be
used to determine the third, unknown parameter. If T and V̂ are given for a
known substance, then it is trivial to calculate P after looking up Tc, Pc, and𝜔 for
that substance. However, the most common situation is that T and P are known,
and we wish to calculate V̂ . This is a much more difficult problem when the SRK
equation of state is used because it requires the solution to a cubic equation.

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

136 8 Nonlinear Equations

Our goal in the first half of this chapter is to examine two different methods for
finding solutions to nonlinear, algebraic equations like the SRK equation when
V̂ is unknown. The first method, bisection, is slow but very robust, while the
second method, Newton’s method, is fast but does not always converge to the
solution.

Before examining bisection and Newton’s method in detail, we can use
some functions included with the Scipy library to solve the SRK problem
described above. It is, of course, dangerous to use an algorithm that we do
not understand – so consider this approach with skepticism, but having a
solution to our example problem will be helpful going forward. The Scipy
library includes a number of functions for solving nonlinear equations, and
these functions are contained in the optimization section of the library.
Some of the nonlinear solvers are designed for a single nonlinear equations
and other solvers, examined later in this chapter, are designed for large
systems of nonlinear equations. Here, we will use the “broyden1” function
(scipy.optimize.broyden1()) to solve the SRK equation for V̂ . The
use of the broyden1 function (and all other nonlinear solvers) requires at least
two inputs: (1) the name of a function containing the nonlinear equation and
(2) a guess for the solution. Further, the nonlinear function must be rearranged
so that all the terms are on one side of the equal sign and it returns zero at the
solution. Hence, if we have a general nonlinear equation like the SRK equation
that can be written as f (x) = g(x) and we are searching for x that satisfies this
equality, we must rewrite the function as f (x) − g(x) = 0 so that the function
returns zero when x is found.

Nonlinear Solution Algorithms

For most algorithms that find solutions to a nonlinear equation, the nonlinear
equation must be rearranged so that it is equal to zero at the solution.

The SRK equation should be rewritten as

P − RT
V̂ − b

+ 𝛼a
V̂ (V̂ + b)

= 0. (8.2)

The Python script below begins with the definition of the SRK function, which
is passed a guess for V̂ as the only input, and then using that guess and the
appropriate constants for the substance of interest (carbon monoxide in this
case), tests to see if the SRK equation is satisfied. If the function returns zero,
then the estimated value for V̂ was correct and the original function evaluates
to zero, that is, it is a root of the function.

import math
import scipy.optimize

�

� �

�

8.2 Bisection Method 137

def SRK(V):
Properties of Carbon Monoxide
T = 300 # K
P = 10 # atm
Tc = 133.0 # K
Pc = 34.5 # atm
w = 0.049 # Acentric factor for CO
R = 0.08206 # L atm / (mol K)
a = 0.42747*(R*Tc)**2 / (Pc)
b = 0.08664*(R*Tc/Pc)
m = 0.48508+1.55171*w-0.1561*w**2
alpha = (1+m*(1-math.sqrt(T/Tc)))**2
term1 = R*T/(V-b)
term2 = alpha*a/(V*(V+b))
return P-term1+term2

V = 2.0 # L/mol, initial guess

V = scipy.optimize.broyden1(SRK,V,maxiter=100,f_tol=1e-6)
print(V)

The Python script above should print out 2.46 L/mol as a root to the SRK
equation, and this is the desired answer. At this point, we do not know how the
broyden1() function determines this root, but, it turns out that this function
is similar to Newton’s method, which is covered later in this chapter.

Finally, it was noted previously that the SRK equation is a cubic equation in
terms of V̂ , which implies that there could be up to three possible roots. One
method for trying to find the other possible solutions is to change the initial
guess for V̂ . Trying this approach reveals that the broyden1 function converges
to 2.46 L/mol for any strictly positive guess. For any strictly negative guess, the
method fails to converge to a solution, and a guess of 0.0 gives NaNs (“Not
a Number”) errors. These errors are usually caused by dividing by zero. This
reinforces the issue of robustness with nonlinear solvers. In this simple case of
one equation, the function can be plotted to show that there is likely only one
root. This plot will be revisited to address the issue of robustness.

8.2 Bisection Method

The bisection method is based on identifying a region for the independent vari-
able that bounds the root that we are trying to find. In Figure 8.1, a nonlinear
function crosses the x-axis at the solution and points x = a and x = b have been
identified that bound the solution. The bisection algorithm is based on an iter-
ation with the following steps:

1) calculate the midpoint of the region bounding the root, c = (a + b)∕2,
2) calculate the value of the function, f (c) at the midpoint, and

�

� �

�

138 8 Nonlinear Equations

x

f(x)

a

b

f(b)

f(a)

c = (a+b)/ 2

Figure 8.1 The bisection
method is used to find the roots
or zeros of a nonlinear function.
The first step is to identify points
a and b such that f (a) ⋅ f (b) < 0
(i.e., f (a) and f (b) have different
signs). The distance between a
and b is halved and then a or b is
discarded depending on the sign
of f (c). This process is repeated
until the location of the root
within some tolerance is found.

3) determine which previous endpoint, f (a) or f (b), has the same sign (positive
or negative) as f (c) and replace that endpoint with c.

In Figure 8.1, endpoint b would be replaced by c because f (b) and f (c) have
the same sign (positive), and the new region that bounds the root would be
between a and c. Notice that the region bounding the endpoint is halved every
iteration and, eventually, f (c) is close to zero and the magnitude of f (c) is less
than a preset tolerance. The bisection method is extremely robust in that once
an a and b that bound the root are known, it always converges to a solution (i.e.,
a root of the equation). The weaknesses of this approach are the requirement
that a and b be determined manually (fortunately for many problems, we have
a rough estimate for the solution) and convergence is slow because we are only
halving the domain each iteration.

The Python script below uses the bisection method to find a root, that is, find
a value for V̂ that satisfies the SRK equation.

import math

def SRK(V):
Properties of Carbon Monoxide
T = 300 # K

�

� �

�

8.2 Bisection Method 139

P = 10 # atm
Tc = 133.0 # K
Pc = 34.5 # atm
w = 0.049 # Acentric factor for CO
R = 0.08206 # L atm / (mol K)
a = 0.42747*(R*Tc)**2 / (Pc)
b = 0.08664*(R*Tc/Pc)
m = 0.48508+1.55171*w-0.1561*w**2
alpha = (1+m*(1-math.sqrt(T/Tc)))**2
term1 = R*T/(V-b)
term2 = alpha*a/(V*(V+b))
return P-term1+term2

#Settings
maxIter = 1000
TOL = 1e-4
stop = False

Bisection method setup
a = 1.0
fa = SRK(a)
b = 5.0
fb = SRK(b)

Check starting values
if(fa*fb >= 0):

print("ERROR: bad starting bounds")
else:

Bisection iteration
for i in range(maxIter):

c = (a+b)/2
fc = SRK(c)
print("c = ", c, " and f(c)= ", fc)
Check for convergence
if(math.fabs(fc) < TOL):

print("Root found at ", c)
stop = True
break

if not converged, determine end point
to replace
if(fa*fc < 0):

b = c
fb = fc

else:
a = c
fa = fc

�

� �

�

140 8 Nonlinear Equations

if stop == False:
print("Reached maxIter. Currently at ", c)

When this script is run, it prints out the midpoint, c, and f (c) every iteration.
Depending on the initial bounds, 15–20 iterations are required for convergence
to the tolerance of 1 × 10−4. With nonideal gas problems like this, it is possible
to obtain a good initial estimate for the solution using the ideal gas law, PV̂ =
RT . For carbon monoxide under the conditions listed above, the ideal gas law
gives V̂ = 2.46 L/mol, which is almost identical to the solution obtained using
the SRK equation. If the pressure increases or the temperature decreases, the
ideal gas law becomes less accurate.

Debugging Practice

A novice programmer rewrote a few lines of the bisection script as shown below:

if not converged, determine end point
to replace
if(fa*fc < 0):

c = b
fc = fb

else:
c = a
fc = fa

The resulting method failed to converge. Why?

8.3 Newton’s Method

The most useful equation in computational mathematics may be the Taylor
polynomial (also known as Taylor series or Taylor expansion). Newton’s
method is one of many results given in this book that may be derived using a
Taylor polynomial. A Taylor polynomial is an expansion of f (x) about a nearby
point, x0:

f (x) = f (x0) + (x − x0) f ′(x0) +
(x − x0)2

2!
f ′′(x0) + O(x − x0)3. (8.3)

Typically, x0 is chosen to be a point where information about the function f ()
is known. The last term tells us that the magnitude of the term is on the order
of (x − x0)3, but the exact term is not given. If the distance between x and x0 is
small (i.e., x − x0 << 1), then (x − x0)3 or even (x − x0)2 is very small.

In Newton’s method, we are trying to find x such that f (x) = 0. Assuming
that we have a guess, called x0, for the value of x and setting f (x) = 0, the

�

� �

�

8.3 Newton’s Method 141

Taylor polynomial, ignoring the last two terms given above because they are
(hopefully) small, becomes

0 = f (x0) + (x − x0)f ′(x0).

Rearranging and solving for the unknown x gives

x = x0 −
f (x0)
f ′(x0)

. (8.4)

Figure 8.2 illustrates how this equation helps us to find the root of interest.
Noticing that we only retained the linear term from the Taylor polynomial,
Newton’s method approximates the nonlinear function with a line at current
estimate for the location of the root, x0, and that line is then used to calculate
a new and hopefully better estimate for the location of the root. A new Taylor
polynomial is used to approximate the nonlinear function with a line at this
new location, and the process is repeat until the root is found (in the case of
convergence) or an iteration limit is reached (failure).

Figure 8.2 Newton’s method
approximates a nonlinear
function with a straight line at
the point x0. The linear
approximation is then used to
obtain a new estimate for the
root (i.e., the intersection of the
nonlinear function with the
x-axis) of the nonlinear function.

x

f(x)

x0

Linear
approximation

x1

�

� �

�

142 8 Nonlinear Equations

Newton’s method is used to solve for the roots of the equation f (x) = sin(x) −
x2 in the Python script below.
import math

TOL = 1.0e-6
MAX_ITER = 10

def f(x): # function
return numpy.sin(x) - x*x

def df(x): # derivative
return math.cos(x) - 2.0*x

itr = 0 # iteration counter
x = 1.0 # initial guess at root
res = f(x) # initial function evaluation

while abs(res) > TOL and itr < MAX_ITER:
itr += 1
res = f(x)
print('Iteration: ', itr, 'res: ', res)
x = x - res/df(x)

if abs(res) < TOL:
print('Converged to ', x)

else:
print('Did not converge')

The script uses a while loop with two conditions: (1) the value of f (x) at the
current estimate for x must remain larger than the convergence tolerance and
the iteration counter must be less than the maximum iterations allowed. Upon
execution, Newton’s method converges to a root a 0.877 in four iterations.
Figure 8.3 is a plot of f (x) for x ∈ [0.0, 1.5] and confirms that there is a root
at the location that Newton’s method converged. There is a second root at
x = 0.0, and this root can be found by changing the initial guess to x = 0.1 or
some other value less than 0.5.

Newton’s method has two advantages over the bisection method:

1) Only a single estimate for the location of the root is required.
2) The error in approximating the nonlinear function with a straight line is on

the order of (x − x0)2. As the guess, x0, gets close to the true solution, x,
the linear approximation is very good and converge is extremely fast (i.e.,
convergence is quadratic near the solution).

�

� �

�

8.4 Broyden’s Method 143

Figure 8.3 The nonlinear
function f (x) = sin(x) − x2

with roots at x = 0.0 and
x = 0.877.

0.40.20.0
–1.4

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6 0.8 1.0 1.2 1.4 1.6

Newton’s method also has two disadvantages compared to the bisection
method:

1) We need to have a function that calculates the derivative, f ′(x), at a point,
x0. This limitation, however, is somewhat overcome in the next section on
Broyden’s method.

2) If the initial guess for the location of the root is not sufficiently accurate, the
iterations can diverge and a solution will not be found. This behavior was
seen previously using Broyden’s method when the initial estimate of V̂ was
less than zero.

8.4 Broyden’s Method

One disadvantage associated with Newton’s method is the requirement that the
derivative of the function of interest also be provided to the algorithm. Hav-
ing an approximation for the derivative would be a significant benefit if it were
available. Fortunately, the Taylor polynomial can once again help us by provid-
ing an approximation to the derivative. Recall the Taylor polynomial:

f (x) = f (x0) + (x − x0)f ′(x0) +
(x − x0)2

2
f ′′(x0) + O(x − x0)3, (8.5)

and notice that if the higher order terms are discarded (i.e., the last two terms
on the right side), it can be rearranged to provide an estimate for the derivative:

f ′(x0) ≈
f (x) − f (x0)
(x − x0)

.

If we substitute this directly into the Newton iteration, everything will cancel
out because we just used the same equation twice. Instead of using the current

�

� �

�

144 8 Nonlinear Equations

guess, x0, and the next guess, x, to approximate the derivative, we can use the
previous two guesses:

f ′(x1) ≈
f (x1) − f (x0)

x1 − x0
. (8.6)

Notice that the current guess is now x1 and the previous guess was x0. Substi-
tuting this approximation for the derivative into Newton’s method gives

xnew = x1 −
f (x1)(x1 − x0)
f (x1) − f (x0)

. (8.7)

This approach is also frequently called the Secant method because the
nonlinear function is approximated using a secant line instead of a tangent
line.

The Python script below uses Broyden’s method (equation 8.7) to find the
solution to the SRK model problem that was solved previously.

import math

def SRK(V):
Properties of Carbon Monoxide
T = 300 # K
P = 10 # atm
Tc = 133.0 # K
Pc = 34.5 # atm
w = 0.049 # Acentric factor for CO
R = 0.08206 # L atm / (mol K)
a = 0.42747*(R*Tc)**2 / (Pc)
b = 0.08664*(R*Tc/Pc)
m = 0.48508+1.55171*w-0.1561*w**2
alpha = (1+m*(1-math.sqrt(T/Tc)))**2
term1 = R*T/(V-b)
term2 = alpha*a/(V*(V+b))
return P-term1+term2

#Settings
maxIter = 1000
TOL = 1e-4

Broyden Setup
x0 = 1.0
fx0 = SRK(x0)
x1 = x0+1e-2
fx1 = SRK(x1)

for i in range(maxIter):
xNew = x1 - fx1*(x1-x0)/(fx1-fx0)
fxNew = SRK(xNew)

�

� �

�

8.4 Broyden’s Method 145

print("xNew = ", xNew, " and fxNew = ", fxNew)
if(math.fabs(fxNew) < TOL):

print("Root found at ", xNew)
break

else:
x0 = x1
fx0 = fx1
x1 = xNew
fx1 = fxNew

if(math.fabs(fxNew) > TOL):
print("Reached maxIter. Current estimate at ", xNew)

Using Broyden’s method, the solution, V̂ = 2.46, is obtained in about
seven iterations, depending on the initial guess. The iterations are espe-
cially rapid near the solution with f (x) = −0.00016 after six iterations and
f (x) = 1.7 × 10−7 after seven iterations. Notice that the value of f (x) is converg-
ing to zero quadratically (or nearly quadratically since we are approximating
the derivative.

Using an initial guess of x0 = −1.0 once again leads to an error message (in
this case division by zero) and failure to converge. Now that we understand the
principle behind Newton’s method and Broyden’s method, we can examine why
this occurs. Figure 8.4 shows the nonlinear SRK function with a single root at
V̂ = 2.46. For any guess near that root, if we approximate the SRK function with
a straight line and then notice where that line cross the x-axis, it will probably

50

S
R

K
()

–40

–20

0

20

40

–5–10 10

V
̭

Figure 8.4 The nonlinear SRK function with a single root at V̂ = 2.46.

�

� �

�

146 8 Nonlinear Equations

be a point closer to the solution, and the iterations will converge. If our initial
guess is negative, however, any linear approximation to the function is going to
predict that the root lies further to the left. As a result, each iteration will take
us further and further toward x → −∞.

8.5 Multiple Nonlinear Equations

Problems that have multiple nonlinear equations that must all be solved simul-
taneously arise in problems as diverse as fluid piping networks (i.e., water distri-
bution systems) to staged distillation columns. In order to solve these systems
of nonlinear equations, we need to use the tools we have already learned for
linear systems (Chapter 6) and single nonlinear equations (this chapter) and
combine them together. The first step is to recall Newton’s method:

xnew = x0 −
f (x0)
f ′(x0)

, (8.8)

which enables the iterative determination of x such that f (x) = 0. Now we are
interested in the case where we have n nonlinear equations (some prefer to
think of this as a vector of equations) written f(x) = 𝟎 and we are trying to
determine the vector of unknowns, x, that satisfies this system of equations.
For multiple equations, Newton’s method can be rewritten:

xnew = xold −
f(xold)
f ′(xold)

, (8.9)

where

f ′(x) =

⎡⎢⎢⎢⎢⎢⎣

𝜕f0

𝜕x0

𝜕f0

𝜕x1
· · ·

𝜕f1

𝜕x0

𝜕f1

𝜕x1
· · ·

⋮ ⋱

⎤⎥⎥⎥⎥⎥⎦
(8.10)

and

f(x) =
⎡⎢⎢⎢⎣

f0(x)
f1(x)
⋮

⎤⎥⎥⎥⎦
. (8.11)

All of the previous advantages (fast, single initial guess) and disadvantages (cal-
culate derivatives, may not converge) apply when Newton’s method is applied
to a system of nonlinear equations instead of a single equation. It is common
to call f(x) the residual or residual vector and f ′(x) is the Jacobian or Jaco-
bian matrix. Calculating the residual divided by the Jacobian requires solving
a linear matrix problem: f ′(x) ⋅ dx = f(x) for dx. Once dx is determined, then

�

� �

�

8.5 Multiple Nonlinear Equations 147

0.5
x

y

1.00.0

Zero contour for the two functions

–0.5–1.0
–1.0

–0.5

0.0

0.5

1.0

Figure 8.5 A plot of the zero contour lines (i.e., the lines where f0 and f1 equal zero) for the
example functions. The thicker contour line is f1. The two points where both functions are
zero are solutions to this nonlinear system, and two different solution vectors are seen to
exist in this plot.

xnew = xold − dx. This is wrapped in an iteration and repeated until ||f(x)||2 <

TOL. In other words, if x is close to the solution vector, then each equation in
the residual should be a small number and the L2-norm of the residual should
be small.

As an example, consider the system of two nonlinear equations with two
unknowns:

f0(x, y) = 2 ∗ x2 − y2,
f1(x, y) = y − 0.5 ⋅ (sin(x) + cos(y)).

For a system this small, it is possible to use a contour plot to explore the proper-
ties of the solution. Putting both of the unknowns, x and y, into a single vector:
x[0] = x and x[1] = y and plotting the contours where each function is equal to
zero generates the plot shown in Figure 8.5.

A Python script that uses Newton’s method to solve this small system of two
nonlinear equations is shown below.

import numpy
import numpy.linalg as nl
import math

def res(x):
n = x.size

�

� �

�

148 8 Nonlinear Equations

f = numpy.zeros(n,dtype=numpy.float64)
f[0] = 2*x[0]**2 - x[1]**2
f[1] = x[1]-0.5*(math.sin(x[0])+math.cos(x[1]))
return f

def jac(x):
n=x.size
j = numpy.zeros((n,n),dtype=numpy.float64)
j[0,0] = 4*x[0]
j[0,1] = -2*x[1]
j[1,0] = -0.5*math.cos(x[0])
j[1,1] = 1.0 + 0.5*math.sin(x[1])
return j

x = numpy.array([1.0,1.0])
TOL = 1.0e-6
maxIter = 20
for i in range(maxIter):

f = res(x)
j = jac(x)
print("Iteration ",i," has a norm of ",nl.norm(f,2))
if (nl.norm(f,2) < TOL):

print("Converged in ", i, " iterations to ", x)
break

else:
dx = nl.solve(j,f)
x = x - dx

if(i == maxIter):
print("Failed to converge in ", maxIter, " iterations")

The residual vector and Jacobian matrix are calculated in separate functions
that are called each Newton iteration. The L2-norm of the residual vector is then
calculated to check for convergence. If convergence has not been achieved,
then the linear matrix problem is solved and the guess at the solution is updated
based on that solution. Using an initial guess of (1.0, 1.0), Newton’s method
required five iterations to converge to one of the possible solutions, [0.44, 0.62].
It also displayed rapid, quadratic convergence once the approximate solution
was close to the final solution.

As with Broyden’s method, it is possible to avoid having to calculate an exact
Jacobian matrix. Numerical approximations for all the different derivatives
within the Jacobian matrix can be used instead of writing an explicit Jacobian
function. Most of the algorithms in the scipy.optimize library for solving
systems of nonlinear equations are capable of calculating an approximate
Jacobian matrix automatically. The Python script below demonstrates three

�

� �

�

8.5 Multiple Nonlinear Equations 149

different algorithms available in scipy.optimize for solving linear systems
of equations.
import numpy
import math
from scipy.optimize import newton_krylov

def res(x):
n = x.size
f = numpy.zeros(n,dtype=numpy.float64)
f[0] = 2*x[0]**2 - x[1]**2
f[1] = x[1]-0.5*(math.sin(x[0])+math.cos(x[1]))
return f

x0 = numpy.array([0.0,0.0])
x = fsolve(res,x0)
print("Converged to ", x)
x = newton_krylov(res, x0)
print("Converged to ", x)
x = broyden1(res, x0)
print("Converged to ", x)

Only the original nonlinear functions are provided to these algorithms, and
the algorithms automatically approximate the Jacobian. All three of these
algorithms, fsolve(), broyden1(), and newton_krylov() are
basically Broyden’s method, which was discussed previously, extended to
multiple equations. Interestingly, using an initial guess of (0.0, 0.0), two of
the methods, fsolve() and broyden1(), converged to the solution at
x = (0.44, 0.62), but newton_krylov() converged to the other solution,
x = (−0.25, 0.35).

8.5.1 The Point Inside a Square

Imagine that you are asked to solve the following geometric puzzle: a square
with sides of unknown length contains a point that is exactly 3, 4, and 6 ft from
successive corners of the square. What is the length, in feet, of the side of the
square? You begin by drawing the diagram shown in Figure 8.6.

Using Figure 8.6, equations based on the Pythagorean theorem can be
derived. Starting with the upper-right triangle that has a hypotenuse of
length 3, and using the edge lengths labeled a, b, c, and d, the Pythagorean
theorem states that

a2 + c2 = 32 = 9.

For the lower left triangle, the Pythagorean theorem states that

b2 + c2 = 16,

�

� �

�

150 8 Nonlinear Equations

3

6

4

a

b

c d

Figure 8.6 Sketch of a square
containing a point that is 3, 4,
and 6 ft from successive corners.

and for the triangle in the lower right, the Pythagorean theorem states that

b2 + d2 = 36.

At this point, we have four unknowns (a, b, c, and d) and three nonlinear
equations containing various combinations of those unknowns. In order
to have a potentially solvable system of equations, we need one additional
equation relating the unknowns. This final equation can be obtained by noting
that each side of the square must have the same length, so

a + b = c + d.

Now we have a nonlinear system of four equations with four unknowns. Before
using Broyden’s method to solve for the four unknowns, it is necessary to
rewrite the equations so that all the terms in every equation are on one side of
the equal sign.

The Python script below usesscipy.optimize.broyden1() to approx-
imate the solution to this system of equations.

import scipy.optimize

def equations(vals):
a, b, c, d = vals
eq1 = a + b - c - d
eq2 = b**2 + d**2 - 36

�

� �

�

Problems 151

eq3 = a**2 + c**2 - 9
eq4 = c**2 + b**2 - 16
return (eq1, eq2, eq3, eq4)

sol = scipy.optimize.broyden1(equations,(3,3,3,3))
print(sol)
print(sol[0]+sol[1])
print(sol[2]+sol[3])

The script begins by importing the scipy.optimize library, and then it has
a function containing the four equations being solved. The only input into this
function is a vector containing estimated values for the four unknowns, and
this vector is unpacked so that the estimated values are stored in the variables
a, b, c, d and are easier to use in the four equations. The script ends by
printing the solution found by Broyden’s method and printing the length of the
two sides of the square. The two sides should, of course, be equal to each other.
For this particular point to be 3, 4, and 6 ft from successive corners of a square,
the square must have sides that are approximately 6.27 ft.

Problems

8.1 Use Newton’s method to find a solution for sin(x) − x = 0. This equation
is very similar to the equation solved in the example problem in Section
8.3, so modifying that algorithm may be the simplest approach. Compare
the convergence of Newton’s method on this problem (sin(x) − x = 0) to
the convergence of Newton’s method on the example problem (sin(x) −
x2 = 0). Why is the convergence behavior different? Plot both functions
because that may provide some insight. Hint: calculate each term in the
Newton’s method equation at the solution.

8.2 Use Newton’s method to find a solution for x3 + 2x2 − 2 = 0. This func-
tion displays some interesting behavior when using Newton’s method,
depending on the initial guess. There is only a single solution (near x =
0.8), but an initial guess between x ∈ (−2, 0) is unlikely to converge to
the one solution while other initial guesses will converge to the solution.
Explain this behavior (hint: plot the function).

8.3 You have been hired by Con Edison because there is a giant Arctic cold
front approaching New York, and they are worried about condensation
of natural gas. We will assume that natural gas is a mixture of methane
and ethane. The following equations will allow you to estimate the dew
point temperature (i.e., the temperature where condensation initiates) for
natural gas.

�

� �

�

152 8 Nonlinear Equations

The dew point temperature is the temperature at which the following
equations is satisfied:

750 mm Hg = yMP∗
M + yEP∗

M,

where yM is the mole fraction of methane in the natural gas, yE the
mole fraction of ethane in the natural gas, and P∗ the vapor pressure of
methane or ethane, depending on the subscript. The abovementioned
equation assumes that atmospheric pressure (or barometric pressure) in
New York is 750 mm Hg. The vapor pressures of methane and ethane
depend on the temperature, and they are calculated using Antoine’s
equation:

P∗ = 10
(

A− B
T+C

)
,

where T is the temperature in ∘C, P∗ the vapor pressure in mm Hg, and
A, B, and C the species-specific constants given in the table below. Note
that the term after the number “10” is an exponent.

Methane Ethane

A 6.61184 6.80266
B 389.93 656.4
C 266.0 256.0

Con Edison typically has natural gas that has yM = 0.90 (i.e., 90 mol%
methane) and yE = 0.10 (i.e., 10 mol% ethane). Determine the dew
point temperature by solving the nonlinear equation above. Con Edison
would also like to know how the dew point temperature changes if
the composition of the natural gas changes to 70 mol% methane and
30 mol% ethane. Should they be worried about condensation occurring in
New York for the “worst case scenario” of Arctic cold front?

8.4 A new large backyard gas fire pit has recently been developed that is fueled
by propane. Unfortunately, the propane tank was painted black so that it
would be easier to hide in a backyard, but the black color causes the tank
contents to heat up in the hot sun and some tanks have ruptured. You
have been hired by the manufacturer to calculate the quantity of propane
in the tank at the time of rupture. The manufacturers believe that van der
Waal’s equation of state is an accurate equation for these conditions. The
equation is(

P + a
V̂ 2

)
(V̂ − b) − RT = 0,

�

� �

�

Problems 153

where

a =
(27

64

)(R2T2
c

Pc

)
,

b =
(1

8

)(RTc

Pc

)
.

The following properties for propane and other constant were provided
to you:

• T = 384 K
• P = 4891.3 kPa
• tank volume is 0.15 m3 so V̂ = 0.15 m3

n
where n is moles of propane in

the tank
• Tc = 369.9 K (critical temperature of propane)
• Pc = 4254.6 kPa (critical pressure of propane)
• gas constant: R = 0.008314 m3 kPa/(mol ⋅ K)

The pressure and temperature provided to you are the last pressure and
temperature readings on the tank just before rupture. Solve van der
Waal’s equation for the number of moles in the 0.15 m3 tank at the time
of rupture. Note that the temperature and pressure both exceed the
critical values so the fluid in the tank is not a liquid or a gas but is a super
critical fluid. You should report the quantity of super critical propane in
the tank in terms of moles and mass (kg). You should also generate a plot
of the value of the left side of van der Waal’s equation for different values
of n, the number of moles in the tank, to convince the manufacture that
there is only a single physically possible solution to the equation.

8.5 The trajectory of any projectile object (under certain assumptions) can be
determined using Newton’s laws of motion, F = m ⋅ a. After a football
has been released by a quarterback, the primary force acting on the foot-
ball is gravity, thus, the acceleration, a, of the football can be described by

0 = m ⋅ ax,−m ⋅ g = m ⋅ ax,

where ax is acceleration in the x- or horizontal direction, ay the accel-
eration in the y- or vertical direction, m the mass of the football, and
g = 9.806 m/s2. Since acceleration, a, equals the derivative of velocity with
respect to time, dv

dt
, the acceleration equations can be integrated to give

equations for velocity:

𝑣x = 𝑣0 cos(𝜃)

𝑣y = 𝑣0 sin(𝜃) − g ⋅ t,

�

� �

�

154 8 Nonlinear Equations

where 𝑣0 is the initial velocity of the football and 𝜃 is the initial upward
angle of the throw. Since velocity, 𝑣, equals the derivative of location,
(x, y), with respect to time, the velocity equations can be integrated to
give equations for location:

x = x0 + 𝑣0 cos(𝜃) ⋅ t

y = y0 + 𝑣0 sin(𝜃) ⋅ t − 1
2

⋅ g ⋅ t2,

where (x0, y0) is the initial location of the quarterback. Solving the x loca-
tion equation for time gives

t = (x − x0)∕(𝑣0 cos(𝜃))

and substituting this equation for time into the y location equation (and
moving everything to one side of the equal sign) gives

0 = y0 + tan(𝜃) ⋅ (x − x0) −
g ⋅ (x − x0)2

2 ⋅ 𝑣2
0 ⋅ cos2(𝜃)

− y.

You have been hired by the quarterback of the local professional
(American) football team to determine the angle, 𝜃, for throwing the
football so that it travels downfield for 50 m and can be caught 2 m
above the ground. Use the following data (obtain from the NFL Scouting
Combine) in your analysis:

• Quarterback location (x0, y0) is (0.0, 0.0)
• Quarterback arm strength gives an initial velocity of 25.0 m/s

8

7

6

5

4

3

2

1

0
0 10 20 30 40 50 60

X (m)

Y
 (

m
)

Figure 8.7 Trajectory of the football in the (x, y) plane.

�

� �

�

Problems 155

• Target location (x, y) is (50.0, 2.0) in m
• Broyden’s method as implemented in Scipy is recommended.

Your final report to the quarterback should include the initial angle, 𝜃 for
the throw in radians and degrees, and you should have a plot of the ball
location, (x, y) over time (Figure 8.7). Use this plot to estimate the time to
target to the nearest second.

�

� �

�

156

9

Statistics

9.1 Introduction

The rigorous statistical analysis of data is a critical aspect of our never end-
ing pursuit of more – more efficiency, more consistency, more profitability, and
so on. There is a large number of outstanding software packages that facilitate
the processes of statistical analysis. Commercial packages such as IBM SPSS
Statistics and SAS are widely used, and open source (free) packages such as
R are well-documented and have large communities of users. The motivation
for briefly examining select statistical functions available in the scipy.stats
library is that it is often helpful to combine statistical analysis with other mathe-
matical computations. For example, we might be using a Python script to model
a fermentation reactor, and one input to that model is the dissolved oxygen
(DO) concentration for the inflow stream. Before running the reactor simu-
lation, we might want to calculate the averaged DO concentration as well as
the standard deviation. Being able to perform all these calculations – from
solving ordinary differential equations to standard deviation calculations – in
one software package or programming environment can help us to be more
efficient and make fewer mistakes. Transferring results from one computer to
another computer or one software platform to another software platform is a
time-consuming process that frequently introduces mistakes. Thus, it should
be avoided whenever possible.

9.2 Reading Data from a File

Before data can be statistically analyzed, it often needs to be loaded from a
file. In this section, a few different options are examined for loading data from
a comma separated value or csv file. This format is used here because it is a
common format for sharing data between different software packages. Most
spreadsheets, including Excel, can export the contents of a spreadsheet as a csv
file. The goal of the different methods presented in this section is to import the

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

9.2 Reading Data from a File 157

Figure 9.1 A screen capture showing the first few lines of the file “DOdata.csv”. The file
contains a header row followed by the data.

contents of a csv text file into a numpy array for later statistical analysis and
plotting.

The first data set that will be imported contains multiple pH, dissolved oxygen
(DO), and temperature data from six different locations in a river. The locations
are distinguished only by a number (1 through 6). Figure 9.1 shows a screen
capture of the contents of the first part of the data file (DOdata.csv). The file
contains a header row that contains the names of the various columns of data
and the actual data follows below.

9.2.1 Numpy Library

The simplest method for importing data from a file into a numpy array is to
use the function numpy.genfromtxt(). This function is passed as inputs:
(1) the name of the file; (2) the delimiter (i.e., the character separating the
unique data points), which is typically a comma or a tab character; and (3) the
number of header rows to skip. The numpy documentation includes descrip-
tions for other, optional inputs for the genfromtext() function. The Python
script below illustrates the use of this function for importing data from a csv file.

import numpy

data = numpy.genfromtxt("DOdataNoHeader.csv", \
delimiter=",",skip_header=1)

numRows, numCols = data.shape

�

� �

�

158 9 Statistics

One drawback to this approach is that if the file contains a header row, such
as the example data shown in Figure 9.1, the header text is skipped and is not
readily available for use later in the code. Another drawback is that all the data
in the file should be the same data type. If one column contains, for example,
text data or missing data, the import function returns an error. If this approach
is used, the csv file should be carefully checked that it only contains numerical
data and any header text should be recorded separately if it is needed.

A second approach for importing data from a file using the numpy library
starts by using some standard Python functions for opening a file and then read-
ing the file contents one row at a time. Every time a new row is read in from the
file, it is loaded into the numpy array using the numpy.fromstring() func-
tion. This approach requires the construction of an empty numpy array to hold
new data as it is read in from the file. The advantage of this approach is that it
allows one to load the header information from the file and store it in a separate
variable from the numpy array. The Python script below implements this more
manual approach for reading in data from a cvs file.
import numpy

open file containing data
dataFile = open("DOdata.csv")

read first line with headers and split them up
header = dataFile.readline()
dataHeaders = header.split(',')
numCols = len(dataHeaders)

set maxRows we are capable of reading
maxRows = 256
data=numpy.zeros((maxRows,numCols),

dtype=numpy.float64)

read in data one row at a time
rowCount = 0
for row in dataFile:

data[rowCount,:] = numpy.fromstring(row,sep=',')
rowCount += 1
if(rowCount >= maxRows):

break

A few important observations can be made from this routine. First, both the
split() function and the numpy.fromstring() function are passed a
character for delimiting between columns. Second, a parameter limiting the
max number of rows of data that can be loaded from the file is set. This is rec-
ommended for security (avoids accidentally reading in 10 GB worth of data)
and computational speed (avoids have to resize the numpy array every time
new data is loaded).

�

� �

�

9.2 Reading Data from a File 159

9.2.2 CVS Library

Another approach for loading data from a cvs file takes advantage of the cvs
library that is a standard part of the Python language. This approach still allows
special handling of the header row, and it also requires the creation of an empty
numpy array for storing the data as it is read from the file. When each row is
read from the file, it is imported as a list of strings, that is, each number is a
unique string. These strings are converted into floating point numbers using
the function numpy.astype(float). Once all the rows are read from the
file, the numpy array can be resized to truncate any empty rows from the end of
the array that was originally created. The Python script below implements this
third approach.

import csv
import numpy

with open('DOdata.csv', 'r') as dataFile:
reader = csv.reader(dataFile)
header=next(reader)
numCols = len(header)
maxRows = 256
data = numpy.zeros((maxRows,numCols))
rowCount = 0
for row in reader:

data[rowCount,:]=numpy.array(row).astype (float)
rowCount += 1
if(rowCount >= maxRows):

break
data = numpy.resize(data,(rowCount,numCols))

9.2.3 Pandas

The final method for importing data from a file is to use the pandas library
(pandas.pydata.org). The pandas library was developed from the very beginning
to enable the analysis of large data sets in the most simple and straightfor-
ward manner possible. As a result, pandas includes functions for importing
data from a wide variety of file types including csv files, Excel files, and many
others. Pandas can handle heterogeneous data sets that include columns of
floating point numbers next to columns of string data. Further, pandas can
import data sets with missing data, and it includes functions that can attempt
to fill-in the missing data using a number of standard approaches if that is
necessary. The pandas library is one of the most actively developed libraries
for data analysis using Python, and further exploration of the library and its
features is highly encouraged for anyone that routinely performs data analysis
tasks [1].

�

� �

�

160 9 Statistics

The use of pandas to import the DO data set used in this chapter is explored
through a brief example. Pandas has a number of built-in functions for import-
ing and exporting data sets to files including read_csv(), read_excel(),
read_html(), and to_csv(). The full description of input/output func-
tions can be found on the pandas website (http://pandas.pydata.org/pandas-
docs/stable/io.html). The Python script below illustrates the read_csv()
function for importing the DO data set:

import numpy
import pandas
import matplotlib.pyplot as plt

data = pandas.read_csv("../../data/DOdata.csv")

This is remarkably simple when compared to the other methods we have
examined for importing data. The function automatically recognizes the header
information and it automatically recognizes the use of commas to separate the
data. The information in the file is stored in the variable “data”, which is techni-
cally a pandas Data Frame object. As expected, it is relatively simple to access
the data within the Data Frame. The code below is a continuation of the previ-
ous Python script, and it illustrates how to access, modify, and analyze the data
that was read from the file.

print(data.columns)
print(data.values)
print(data.describe())
print(data.sort_values(by='DO'))
print(data.Temp > 26.0)

The first print function call outputs the names of the columns from the file,
and the output is:

Index(['Location','pH','DO','Temp'],dtype='object')

The second print function outputs the values from the Data Frame as a numpy
array. Pandas is tightly coupled to numpy and uses numpy arrays extensively.
The third print function call using pandas’ describe() function to calculate
statistics for each column of data. The output from this function is:

Location pH DO Temp
count 33.000000 33.000000 33.000000 33.000000
mean 3.606061 8.297879 9.475758 26.274545
std 1.853028 0.143891 0.991293 0.418510
min 1.000000 7.880000 7.780000 25.780000
25% 2.000000 8.240000 8.750000 26.010000
50% 4.000000 8.300000 9.520000 26.190000
75% 5.000000 8.350000 9.890000 26.420000
max 6.000000 8.650000 12.130000 27.830000

�

� �

�

9.2 Reading Data from a File 161

We see the average, standard deviation, and other statistical information for
each column of data. The last two print functions demonstrate pandas’ abil-
ity to quickly analyze and sort data. The sort_values() function reorders
the rows of data based on sorting a specified column. The final print function
outputs a Boolean vector that is True for every row with a temperature value
over 26.0.

One of the especially useful features of pandas is that it allows us to access
data using labels instead of always needing to remember column or row num-
bers. If the DO data set is imported into a numpy array using genfromtxt() or
one of the other methods that were considered before pandas, then we need
to remember that the temperature data is in the fourth column and can be
accessed usingdata[:,3] or similar notation. If the data is stored in a pandas
Data Frame, we can access a numpy array holding the temperature data using
data.Temp. This is illustrated in the code below, which generates a histogram
of the temperature data.

27.0
Temperature (°C)
26.526.0

Fr
eq

ue
nc

y

25.5
0

2

4

6

8

10

27.5

Distribution of temperature measurements

28.0

Figure 9.2 A histogram of 33 temperature measurements. The data does not appear to be
normally distributed.

import numpy
import pandas
import matplotlib.pyplot as plt

data = pandas.read_csv("../../data/DOdata.csv")

Plot a histogram of temperatures
plt.hist(data.Temp,9)

�

� �

�

162 9 Statistics

plt.title("Distribution of Temperature Measurements")
plt.xlabel("Temperature ($ ̂ oC$)")
plt.ylabel("Frequency")
plt.show()

The result is shown in Figure 9.2.

9.2.4 Parsing an Array

Once all the data from the file is imported into a numpy array, it is some-
times desirable to extract out a subset of this data. For example, the data set
that has been used in this chapter contains multiple pH, DO, and tempera-
ture measurements at six different locations. If we want to compare the aver-
age DO at location 1 to the average DO at location 2, it is helpful to parse or
extract that data from the larger array. This process often requires that we first
count the amount of data that is going to be extracted, then allocate space in an
empty array for the data, and finally reading and copying the data into the new
array.

For the data set shown in Figure 9.1, a simple function can be written that
parses the larger array and returns a small array with only the location data of
interest.
def getDOlocation(data, loc):

countLocation = numpy.count_nonzero(data[:,0] == loc)
DOdata = numpy.zeros(countLocation)
countLocation = 0
for i in range(numRows):

if(data[i,0] == loc):
DOdata[countLocation] = data[i,2]
countLocation += 1

return DOdata

This function is passed the full data set (a numpy array) and the location
of interest. It counts the number of data points at that location, creates an
empty array of appropriate size, copies the data into the new array, and then
returns the data of interest. Notice the use of an equality comparator that
returns a Boolean (True or False) for every row in the data set based on
whether or not the location matches the variable loc and then the number of
matching locations is counted using the numpy.count_nonzero() func-
tion. Finally, a for loop is used to copy the rows matching the location into
a new array.

9.3 Statistical Analysis

Before conducting any statistical analysis on a data set, it is always a good
idea to plot a histogram of the data. Matplotlab (i.e., pylab) has a built-in

�

� �

�

9.3 Statistical Analysis 163

function for generating a histogram plot from a vector containing the data
of interest. The plotting function is called with: matplotlib.pyplot.
hist(data[:,3],9) or pylab.hist(data[:,3],9) where the first
argument is a vector with the data of interest (in this case we are asking for
a histogram of the temperature data across all locations) and the second,
optional argument is number of bins (i.e., the number of temperature ranges).
The histogram of the temperature data is shown in Figure 9.2 and the x-axis
indicates the temperature ranges for each bin and the y-axis is the frequency
of data points within each range. Some of the statistical analysis that is
covered in this section relies on data that is normally (or Gaussian) distributed.
Examination of the histogram can provide some insight into whether or not a
particular data set is normally distributed.

Numpy has built-in functions for calculating the mean and standard devia-
tion for an array. Using the getDOlocation() function above to extract out
the DO data for locations 1 and 2, the mean and standard deviation can be cal-
culated using the numpy.mean() and numpy.std() function as illustrated
in the code below.

DOdata1 = getDOlocation(data, 1)
DOdata2 = getDOlocation(data, 2)
print("Location 1: average = ", DOdata1.mean())
print(" and std. dev. = ", DOdata1.std())
print("Location 2: average = ", DOdata2.mean())
print(" and std. dev. = ", DOdata2.std())

For the DOdata.csv file data, the average DO for location one is 9.26 ±
0.57 mg/L and the average for location two is 9.6 ± 0.50 mg/L. An impor-
tant question is whether or not these two sample means are statistically
different. If additional data is collected, would the means converge to the
same mean or different means? This question can be answered using a
t-test, which is used to compare two means in order to determine the prob-
ability that the means are the same. For these two data sets, DOdata1 and
DOdata2, a t-test comparison can be performed using t, prob = scipy.
stats.ttest_ind(DOdata1,DOdata2,equal_var = True). This
function requires two input vectors containing the two different sets of data
whose means are being compared in a t-test. A third, optional input is a
Boolean (i.e., True or False) that indicates whether or not the variance is
approximately equal between the two sets of data. If the two data sets are both
from experimental measurements, we typically assume that their variances are
equal. However, if a set of experimental data is being compared to published
data, then equal_var=False should be used instead.

For the DO data from locations 1 and 2 in a river, the value for “t” or the t-stat
is −0.95. In order to interpret this value, it needs to be compared to a critical
t value from a table. We can avoid this work by simply focusing on the value
of “prob” or probability that is returned. This value reflects the probability that

�

� �

�

164 9 Statistics

the two means are the same. If prob < 0.05, then we can say with 95% con-
fidence that the two means are different. If prob < 0.01 then we can be 99%
confident that the means are different. These are the two thresholds commonly
used in statistically comparing two data sets. For the data examined here, prob
equals 0.37 so we cannot say that the two means are different and no statisti-
cal conclusion should be made. The means might be the same or they might
be different, we simply do not have enough data to have confidence in either
result.

In some cases, the data that we collect and want to analyze is subjective. For
example, imagine if we asked 100 people to score 20 different movies from
this past year on a scale of 1–10. Some people are “easy graders” and would
give scores closer to 10 even when they did not really like the movie. Other
people are “tough graders” and they never give a score over 8. Further, some
people would use the full range of possible values, giving the worst movie a 1
and the best movie a 10 while other people would use a small, clustered range of
scores (i.e., the worst movie gets a 6 and the best movie gets a 9). Whenever we
have subjective scores like this with variable distributions, it is helpful to nor-
malize the scores using a z-score, which is also known as the standard score.
The z-score is defined as

z = x − 𝜇

𝜎
, (9.1)

where 𝜇 is the average score and 𝜎 is the standard deviation for one set of
scores. Thus, each persons z-scores for the 20 movies are centered around zero
(good movies have a z-score greater than zero and below average movies have
a negative z-score) and the z-score reflects how many standard deviations bet-
ter or worse than the average a movie ends up being rated by each individual.
A z-score of 2.0 reflects a movie that is 2 standard deviations better than average
(i.e., the person ranked the movie in their personal top 5% of movies).

A data set can be automatically translated into z-scores using the function:
zscore = scipy.stats.zscore(DOdata1). The input into the func-
tion is the original data, and the function returns the normalized scores or
z-scores. The length of the zscore vector should be the same as the vector con-
taining the original data, and the z-scores should average zero. The z-scores for
the DO data at location 1 are as follows: −1.63, −0.65, 1.16, −0.51, 0.85, and
0.77. The greatest deviation from the average for the DO data is −1.6 standard
deviations below average.

9.4 Advanced Linear Regression

Linear regression was discussed previously, but thescipy.stats library pro-
vides a linear regression function that returns additional information that can
be helpful in interpreting the results. To explore the linear regression function

�

� �

�

9.4 Advanced Linear Regression 165

in scipy.stats, a new data set that contains DO and temperature measure-
ments as a function of time is used. Further, the measurements were repeated so
two different time- dependent data sets are available. The data is stored in two
separate csv files: DOdepletion1.csv and DOdepletion2.csv. Whenever such a
situation arises, it is helpful to write a Python script to open a file and import
the data for a specific trial number – trial 1 or trial 2 in this case. The Python
script below is passed a trial number and it then builds the file name using the
trial number and string concatenation.

def loadData(trial):
filename = 'DOdepletion' + str(trial) + '.csv'
with open(filename, 'r') as dataFile:

reader = csv.reader(dataFile)
header=next(reader)
numCols = len(header)
maxRows = 10
data = numpy.zeros((maxRows,numCols))
rowCount = 0
for row in reader:

data[rowCount,:] = \
numpy.array(row).astype(float)

rowCount += 1
if(rowCount >= maxRows):

break
data = numpy.resize(data,(rowCount,numCols))
return data

The DO measurements from the first data set are plotted in Figure 9.3. It is
clear that the DO concentration is reduced over time, but it is not clear what
order process is governing the clearance. Most kinetic processes like this are
first or second order. The rate of change (i.e., derivative) for a first-order process
is governed by

dDO
dt

= −k ⋅ DO, (9.2)

where k is the rate constant and DO the dissolved oxygen concentration in
mg/L. For a first-order process, the rate of depletion is proportional to the con-
centration and a faster depletion rate is observed at higher concentrations. In a
differential equations course or a kinetics course, the solution to this equation
is derived. The solution is just presented here:

DO = DO0 ⋅ e−kt (9.3)

or

ln(DO) = ln(DO0) − kt, (9.4)

�

� �

�

166 9 Statistics

7

6

5

4

3

2

1
0 5 10

Time (min)

C
on

ce
nt

ra
tio

n
(m

g/
L)

15 20 25

Figure 9.3 Dissolved oxygen (mg/L) measurements as a function of time for an isolated
sample. The order of the depletion rate is not clear.

where DO0 is the initial DO concentration. If a process is first order, then these
equations should fit the data. On the other hand, if a process is second order,
then the rate of change is governed by

dDO
dt

= −k ⋅ DO2 (9.5)

and the solution to this equation is given by

1
DO

= 1
DO0

+ kt. (9.6)

For the DO measurements plotted in Figure 9.3, we wish to determine if the
process is first or second order using linear regression to fit the data to both
rate laws and determining which provides the better fit.

In order to fit the data with a first-order model, we need to perform linear
regression on ln(DO) versus t. Since

ln(DO) = ln(DO0) − kt, (9.7)

the slope from regression should be an estimate for k and the intercept should
be an estimate for ln(DOO). The scipy.stats.linregress(x,y) func-
tion must be passed at least two vectors as inputs: (1) the independent variable
data, x, and the dependent variable data, y. For the first-order depletion
model, the independent variable is time, t, and that data is in the first column
of the DOdata array, and the dependent variable is ln(DO), which can be
obtained by taking the natural logarithm of the second column of DOdata.

�

� �

�

9.4 Advanced Linear Regression 167

The scipy.stats.linregress() function can be called and passed the
time and natural log of DO data using

slope, intercept, r_value, p_value, std_err = \
scipy.stats.linregress(dataSet1[:,0],
numpy.log(dataSet1[:,1]))

This function returns the slope, intercept, R, and the p-value resulting from
linear regression analysis. The value of R is a measure of how close the data is to
falling on a straight line. An R value close to 1.0 indicates that the data is highly
linear and falls close to the regression line. The p-value indicates that probably
that slope is zero, that is, the probability that the data in the second vector (the
y-data) is independent of the data in the first vector (the x-data). For the first set
of DO data, the value of R2 = 0.96, indicating a good but not great fit between
the linear regression line and the data, and the p-value is 0.0005, indicating
that the DO value has an extremely low probability of being independent of
time. Figure 9.4 shows the impact of adding the curve corresponding to the
first-order model to the previous plot of the data. The fit is far from perfect and
indicates that the first-order model may not be correct.

Fitting the data with a second-order model requires performing lin-
ear regression on 1

DO
versus t. The resulting slope from linear regression

should correspond to k, and the intercept should be equal to 1
DO0

. The
scipy.stats.linregress() function is called using:

slope, intercept, r_value, p_value, std_err = \
scipy.stats.linregress(dataSet1[:,0],1/dataSet1[:,1])

7

6

5

4

3

2

1
0 5 10

Time (min)

C
on

ce
nt

ra
tio

n
(m

g/
L)

15 20 25

Figure 9.4 Dissolved oxygen (mg/L) measurements as a function of time and the best fit
curve based on a first-order depletion model.

�

� �

�

168 9 Statistics

7

6

5

4

3

2

1
0 5 10

Time (min)

C
on

ce
nt

ra
tio

n
(m

g/
L)

15 20 25

Figure 9.5 Dissolved oxygen (mg/L) measurements as a function of time and the best fit
curve based on a second-order depletion model.

The value of R2 for the second-order model is 0.999, indicating that the data falls
extremely close to a straight line. This is strong evidence that the second-order
model is the correct model. Once again, the p-value is very small at 3 × 10−7.
Adding the best-fit curve corresponding to the second-order model (Figure 9.5)
to the original data plot shows that the model fits the data very well and the true
order of the process is probably second order.

9.5 U.S. Electrical Rates Example

The goal of this final section is to review many of the tools that were introduced
in this chapter through a final example. The first step is to visit www.data.gov
and search for “US electric utility companies and rates.” The top results for that
search are links to CVS data sets compiled by the National Renewable Energy
Laboratory (NREL), and you should download one of the data set. The 2011
data set is used in the example below. Analyzing electrical rates can be criti-
cal when choosing the location for an industrial facility that uses a chemical or
biological process. The most extreme example might be aluminum manufac-
turing, which uses the Hall–Heroult process to convert aluminum oxide into
pure aluminum and requires large quantities of electricity, but electrical rates
are a consideration in most industrial citing decisions.

�

� �

�

9.5 U.S. Electrical Rates Example 169

The first step in developing a Python script for exploring and analyzing this
data is to import the libraries that will be used and then read in the cvs file. The
example below uses the Pandas library for reading the file and storing the data.

import pandas as pd
import numpy
import matplotlib.pyplot as plt
import scipy.stats

rates = pd.read_csv('iouzipcodes2011.csv')
print(rates.columns)

The dataset contains nine columns:

['zip', 'eiaid', 'utility_name', 'state',
'service_type', 'ownership',
'comm_rate', 'ind_rate', 'res_rate']

To get a more complete picture of the data that is in the file, it is useful to next
use the function call: print(rates.describe()). Some of the informa-
tion output by this function includes the following:

• There are 37,791 rows of data in the file, indicating that there are 37,791
unique zip codes.

• The average commercial rate (comm_rate) is $0.084/kWh.
• The average industrial rate (ind_rate) is $0.063/kWh.
• The average residential rate (res_rate) is $0.103/kWh.
• The standard deviation for all rate levels is approximately $0.04/kWh.
• The maximum residential rate is $0.85/kWh.

The very high maximum rates for each of the rate categories are interesting.
Generating a quick scatter plot of the residential rate versus zip code provides
some insight.

plt.plot(rates.zip,rates.res_rate,'o')
plt.xlabel('zip code')
plt.ylabel('residential rate')
print('Zip Code with highest rate: ',

rates.zip[numpy.argmax(rates.res_rate)])

The plot that is generated is shown in Figure 9.6. Most of the residential elec-
tric rates for the United States are less than $0.20/kWh, but there are a few
extreme outliers. The last line of the Python code from the section shown above
uses the numpy.argmax() function to get the row number with the largest
value for the residential rate and then it prints out the zip code associated with
that row number. The zip code is 99634, and a quick search shows that this is
the zip code for Napakiak, Alaska.

�

� �

�

170 9 Statistics

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 20,000 40,000 60,000 80,000 100,000

Zip code

R
es

id
en

ta
l r

at
e

($
/k

W
h)

Figure 9.6 Scatter plot showing the residential electric rate ($/kWh) for every U.S. zip code.

This is a very large data set that covers the entire United States, but we might
want to focus in on a specific state. The next section of the Python script counts
up the number of rows in the data set associated with the state of Texas and then
builds numpy arrays that hold the residential and commercial electric rates for
Texas only.

TXcount = numpy.count_nonzero(rates.state == 'TX')
TXcomm = numpy.zeros(TXcount)
TXres = numpy.zeros(TXcount)
count = 0
for i in numpy.nditer(numpy.nonzero(rates.state == 'TX')):

TXcomm[count] = rates.comm_rate.data[i]
TXres[count] = rates.res_rate.data[i]
count += 1

A numpy function that has not been used before appears in the code above.
The numpy.nditer() function converts a numpy array into a Python object
that can be iterated over, allowing a for loop to loop over all the rows for the
state of Texas. Select data in those rows for Texas is then copied into smaller,
Texas-specific arrays.

Finally, the final section of the Python script (below) generates a histogram
of the various residential electric rates in Texas:

One question concerning electrical rates might be whether there is a corre-
lation between the residential rate and the commercial rate. Figure 9.7 shows
the commercial rate (x-axis) versus residential rate (y-axis) for the zip codes
in Texas. Even though there are a large number of zip codes for Texas (456),
there are a much smaller number of unique residential and commercial rates.
It is also clear from Figure 9.7 that there is a strong, but not perfect, correlation

�

� �

�

9.5 U.S. Electrical Rates Example 171

0.120

0.120

0.110

0.105

0.100

0.095

0.090

0.085

0.080

0.075
0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105

Texas commercial electric rate ($/kWh)

Te
xa

s
re

si
de

nt
ia

l e
le

ct
ric

al
 r

at
e

($
/k

W
h)

Figure 9.7 Scatter plot showing the commercial electric rate ($/kWh) versus the residential
electric rate ($/kWh) for every Texas zip code.

160

140

120

100

80

60

40

20

0
0.075 0.080

Texas residential electrical rate (/kWh)
0.085 0.090 0.095

N
um

be
r

of
 z

ip
 c

od
e

0.100 0.105 0.110 0.115 0.120

Figure 9.8 Histogram showing the frequency of zip codes with various residential electric
rates ($/kWh).

between the two rates. We can go one step further by calculating the R2 value
for a linear regression function through this data. Using

slope, intercept, r_value, p_value, std_err = \
scipy.stats.linregress(TXcomm,TXres)

it can be found that the residential rate is equal to 0.87 times the commercial
rate plus $0.03) and the R2 = 0.98, indicating a strong correlation.

�

� �

�

172 9 Statistics

plt.hist(TXres,10)
plt.xlabel('Texas Res. Elec. rate')
plt.ylabel('number of zip codes')

and the resulting figure is shown in Figure 9.8. Interestingly, the highest rate in
Texas ($0.12/kWh) is also the most frequent rate based on zip code.

Problems

9.1 You have been hired to statistically analyze the snow pack for one
basin (or area) in Montana over the past decade. To begin, go to
the Natural Resources Conservation Service’s snow data (SNOTEL)
website containing the Monthly Historic Snow (SNOTEL) Data for
various basins in Montana: http://www.wcc.nrcs.usda.gov/nwcc/rgrpt?
report=snowcourse&state=MT
Your employer has made the unusual request of asking you to analyze
the annual Snow Data from a random site of your choosing. The website
will allow you to download a text file containing the snow pack data for
various months going back different lengths in time depending on the
year. The text file follows the comma separated value (*.csv) format with
the exception of the header information. I recommend downloading the
data, changing the file extension to csv and opening the file in Excel so
that you can delete any unwanted information. If you do open the file in
Excel, you should be sure to resave the file as a *.csv file.
Select a particular time of the year (e.g., March), and plot either the Snow
Depth or Snow Water Equivalent as a function of year for at least the last
10 years. Add a line to the plot showing the average Snow Depth or Snow
Water Equivalent over the entire time period being plotted, and add stan-
dard deviation lines if possible. Write a brief report summarizing your
findings regarding the average snow depth or snow water equivalent and
the variings ability from year to year.

9.2 You have been hired by a major clothing manufacturing to provide some
analysis and figures (plots) on historical clothing sales trends and clothing
advertising spending. Begin by downloading publically available cloth-
ing expenditure data from http://www.stat.ufl.edu/winner/data/clotthes_
expend.csv and the description of the data (optional): http://www.stat.ufl
.edu/winner/data/clothes_expend.txt. The csv data file contains a column
of data on the real US GDP in billions of dollars that include quotation
marks around the number. It is recommended that this column be deleted
by opening the file in Excel before importing the file into a Python array.
After importing the data into Python, you are asked to generate a plot of
clothing sales (in billions of dollars, second column of data) for every year
that data is available. You are also asked to generate a second plot showing

�

� �

�

Problems 173

expenditures on advertising as a percent of GDP (last column) along with
the average percentage and standard deviation over the full time period.
Finally, returning to the original clothing sales (in billions of dollars,
second column of data) per year data, use linear regression to determine
the slope of the curve over the most recent 10 years of data. The slope
will represent the average increase in clothing sales per year for the
last 10 years. Write a brief memo to the clothing manufacturer that
summarizes your findings on the changes in sales, sales trends, and
average advertising spending as a percentage of GDP.

9.3 In 2015, the New England Patriots were accused of illegally deflating the
footballs that they used on offense during the AFC Championship game.
The Wells Report was released in May 2015, and contains the findings of a
special commission hired by the NFL to investigate the accusations. The
primary finding of the commission was, “it is more probable than not that
New England Patriots personnel participated in violations of the Playing
Rules and were involved in a deliberate effort to circumvent the rules.”
In other words, it is statistically probable that the Patriots deflated their
footballs below the 12.5 psig minimum allowed by the Playing Rules.
The primary pressure data used to make this determination is from the
pressure measurements of two different referees using two different pres-
sure gauges at halftime. It is assumed by the report that the Patriots foot-
balls were all inflated to 12.5 psig at the start of the game and before
tampering. The Colts footballs were all inflated to 13.0 psig at the start
of the game. (It is unclear which pressure gauge was used at the start of
the game.) The halftime pressure data that was collected is summarized
in the table below (all pressure data is in psig).

Patriots Ball Blakeman Prioleau

1 11.50 11.80
2 10.85 11.20
3 11.15 11.50
4 10.70 11.00
5 11.10 11.45
6 11.60 11.95
7 11.85 12.30
8 11.10 11.55
9 10.95 11.35
10 10.50 10.90
11 10.90 11.35

�

� �

�

174 9 Statistics

Colts Ball Blakeman Prioleau

1 12.70 12.35
2 12.75 12.30
3 12.50 12.95
4 12.55 12.15

You have been hired by the New England Patriots to repeat some of the
statistical analysis presented in the Wells Report and then submit your
own expert opinion. Specifically, calculate average pressure decrease (and
standard deviation) for the Patriot’s and Colt’s balls based on the mea-
surements of each pressure gauge. A t-test is used to compare two means
(or two average) and determine the probability that they are the same. Use
a t-test (scipy.stats.ttest_ind() is recommended) to determine
the probability that the average pressure drop of the Patriot’s footballs is
different from the pressure drop of the Colt’s footballs for each set of mea-
surements. (Extra Credit) The Patriots have offered you a bonus payment
if you are able to generate a bar chart showing the average pressure drop
and standard deviation for the two different sets of measurements for their
footballs.
Finally, the Patriots have asked you to summarize your own expert
opinion based on the data and facts presented here. Do you think there is
strong evidence of deflation in violation of the Playing Rules. Do not con-
sider facts beyond the pressure data (e.g., text messages included in the
report).

9.4 You have been hired by a local lawyer that is defending an individual
accused of driving under the influence of alcohol. The defendants
argument is that the breathalyzer test used to measure the individuals
blood alcohol concentration (BAC) is not reliable or consistent. The
lawyer is relying on data from a previously published study by Gullberg
[2]. In this study, 10 breath alcohol samples were taken from different
subjects approximately 20 s apart. The defense attorney’s argument is
that a reliable test should give the same measurement for all 10 samples,
but this study showed some variability.
Your specific task as a consultant is to generate figures that the lawyer can
use during the trial. The figures should show the BAC measurement for
each of the 10 samples from a single subject as well as the average and
standard deviation lines for the samples from the individual. The lawyer
has requested figures for at least two different subjects. A csv file contain-
ing the data for two different subjects is available in the paper referenced
above or http://www.stat.ufl.edu/ winner/data/breath_reg.dat.

�

� �

�

References 175

To help you generate exactly the plot desired, the lawyer drew a sketch
on a napkin shown below. In addition to the BAC figures, the lawyer also
needs your report to include the averages and standard deviations for the
data from the two subjects (Figure 9.9).

0.125

0.120

0.115

0.110

0.105

0.100
0 2 4 6

Sample

Subject 1

B
A

C

8 10

Figure 9.9 Rough sketch of desired BAC figure.

References

1 McKinney, W. (2012) Python for Data Analysis, O’Reilly Media, Inc.,
Sebastopol, CA.

2 Gullberg, R.G. (1995) Repeatability of replicate breath alcohol measurements
collected in short time intervals. Sci. Justice, 35, 5–9.

�

� �

�

176

10

Numerical Differentiation and Integration

10.1 Introduction

Most students learn how to calculate the derivative or integral of a given func-
tion in a first-year calculus course. Computational methods for taking deriva-
tives and integrals of functions were also described in Chapter 5 on symbolic
computations. For some complex functions, however, it is simply not possible
to calculate the integral or even the derivative, and it may be necessary to obtain
a numerical approximation of the derivative or integral. Sometimes, it is just
easier to use a numerical approximation than to determine the exact derivative
or integral. In this chapter, standard approaches for numerically approximat-
ing derivatives and integrals are described. The numerical approximation of
a derivative is usually not particularly useful until it is used to approximately
solve differential equations, as described in the later chapters. The numerical
approximation of a definite integral, however, is immediately useful for calcu-
lating quantities such as enthalpy changes and reactor volumes. This chapter
is divided into two parts. The first part briefly examines numerical approxi-
mations for the first and second derivatives of a given function at a point. The
second part describes a few different methods of numerically approximating
definite integrals.

10.2 Numerical Differentiation

The numerical approximation of a derivative has already been briefly explored
when Newton’s and Broyden’s methods were discussed earlier. In this section,
common choices for numerically approximating a derivative are examined
along with an analysis of the error associated with the approximation. These
approximations can be derived from the Taylor polynomial, but here, the
Taylor polynomial will be written in a slightly different form from that shown
in Chapter 8 on nonlinear equations. The Taylor polynomial provides an
approximation for a function about the point xi. The value of the function a

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

10.2 Numerical Differentiation 177

distance h away from xi is

f (xi + h) = f (xi) + h
df (xi)

dx
+ h2

2
d2f (xi)

dx2 + · · · (10.1)

or

f (xi + h) = f (xi) + h
df (xi)

dx
+ O(h2), (10.2)

where O(h2) represents a term with a size on the order of h2. Equation 10.2
can be seen to be equivalent to the previous Taylor polynomial equation 8.3 by
replacing h with x − xi.

10.2.1 First Derivative Approximation

Our goal in this section is to approximate df (xi)
dx

, and we can rearrange the Taylor
polynomial (equation 10.2) to give

df (xi)
dx

=
f (xi + h) − f (xi)

h
+ O(h) (10.3)

or
df (xi)

dx
≈

f (xi + h) − f (xi)
h

. (10.4)

This approximation is typically referred to as the forward approximation of the
first derivative, and the error associated with the approximation is of order h.
As we will see in the next few chapters, numerical approximation of derivatives
is often performed on a sequence of points that are separated by a fixed distance
h. Hence, it is common to simplify this notation slightly by replacing f (xi) by fi
and f (xi + h)with fi+1, see Figure 10.1, so that it clearly refers to the next point in
a sequence of points. Using this notation, the forward difference approximation
of the derivative becomes

df (xi)
dx

≈
fi+1 − fi

h
. (10.5)

The use of this approximation is shown in Figure 10.1(b). Clearly, the approx-
imation of the slope becomes more accurate as the distance between the two
points shrinks toward zero.

The Taylor polynomial at f (xi − h) is

f (xi − h) = f (xi) − h
df (xi)

dx
+ O(h2) (10.6)

and using the same derivation as above, leads to the backward difference
approximation of the derivative:

df (xi)
dx

≈
fi − fi−1

h
, (10.7)

which has the same O(h) accuracy as the forward difference approximation.
The use of the backward difference approximation is shown in Figure 10.1(a).

�

� �

�

178 10 Numerical Differentiation and Integration

x

f(x)

xi−1 xi+1xi

fi+1

fi

fi−1

x

f(x)

xi−1 xi+1xi

fi+1

fi

fi−1

x

f(x)

xi−1 xi+1xi

fi+1
fi

fi−1

(a) (b)

(c)

Figure 10.1 Three different finite difference approximations for the derivative at xi :
(a) backward difference, (b) forward difference, and (c) centered difference.

The final method for approximating the derivative of f (x) at xi is by subtract-
ing the Taylor polynomial for f (xi − h) (equation 10.6) from the polynomial for
f (xi + h) (equation 10.2). Notice that the f (xi) terms are eliminated and, more
importantly, it can be shown that the O(h2) terms are eliminated leaving a O(h3)
term. The resulting centered difference approximation of the first derivative is

df (xi)
dx

≈
fi+1 − fi−1

2h
, (10.8)

which is O(h2) accurate. As a result, as h → 0, the centered difference
approximation is much more accurate than either the forward or backward

�

� �

�

10.2 Numerical Differentiation 179

difference approximation. The centered difference approximation is illustrated
in Figure 10.1(c).

To illustrate both the implementation and accuracy of numerical approxi-
mations for the first derivative, the Python code below was created. The code
has the function f (x) = x ⋅ sin(x) declared near the beginning, and the code
has a second function that calculates the exact derivative. The derivative at
x = 1.0 is approximated using the three different approximations described
above (equations 10.5, 10.7, 10.8), and the accuracy of each approximation is
calculated.
import math

def fun(x):
return x*math.sin(x)

def exactDeriv(x):
return math.sin(x)+x*math.cos(x)

x0 = 1.0
exact = exactDeriv(x0)

for i in range(5):
h = 10**(-i-1)
df_forw = (fun(x0+h)-fun(x0))/h
df_back = (fun(x0)-fun(x0-h))/h
df_center = (fun(x0+h)-fun(x0-h))/(2*h)
print("forward error: %.1e" %

math.fabs(df_forw-exact))
print("backward error: %.1e" %

math.fabs(df_back-exact))
print("centered error: %.1e" %

math.fabs(df_center-exact))

Running the Python script for numerical differentiation gives the results
shown in Table 10.1. The forward and backward finite difference approxi-
mations give very similar levels of error, and both options give an error that
is O(h). The centered difference approximation, on the other hand, has a
similar level of error for large values of h, but it converges much faster to
the exact solution and has an error that is O(h2). Interestingly, even though
it is not clear at this point why anyone would ever consider using a forward
or backward difference approximation, we will later see situations where we
need to accept the poor accuracy of the lower order approximations because
they demonstrate better numerical stability. Therefore, do not forget about the
forward and backward difference approximations because they will have a use
later.

�

� �

�

180 10 Numerical Differentiation and Integration

Table 10.1 Accuracy of different numerical approximations of the first derivative
of f (x) = x ⋅ sin(x)

h
Forward difference
error

Backward difference
error

Centered difference
error

0.1 6.8 × 10−3 1.7 × 10−2 5.1 × 10−3

0.01 1.1 × 10−3 1.2 × 10−3 5.1 × 10−5

0.001 1.2 × 10−4 1.2 × 10−4 5.1 × 10−7

0.0001 1.2 × 10−5 1.2 × 10−5 5.1 × 10−9

1.0 × 10−5 1.2 × 10−6 1.2 × 10−6 5.5 × 10−11

10.2.2 Second Derivative Approximation

The second derivative of a function can also be numerically approximated, and,
once again, we turn to the Taylor polynomial to derive an equation for the
approximation. Recalling that

f (xi + h) = f (xi) + h
df (xi)

dx
+ h2 d2f (xi)

dx2 + O(h3) (10.9)

and

f (xi − h) = f (xi) − h
df (xi)

dx
+ h2 d2f (xi)

dx2 − O(h3), (10.10)

we can add these two equations (10.9 and 10.10) together (note that the first
derivative terms cancel and the O(h3) terms cancel) giving

f (xi + h) + f (xi − h) = 2f (xi) + h2 d2f (xi)
dx2 + O(h4). (10.11)

This equation can be rearranged to solve for the second derivative and the
notation simplified to yield

d2f (xi)
dx2 ≈

fi+1 − 2fi + fi−1

h2 , (10.12)

which is O(h2) accurate. This approximation is also called the centered differ-
ence approximation for the second derivative. There are other approximations
that have been derived for the second derivative, but this one approximation is
used in the vast major of engineering algorithms in the author’s experience.

The accuracy of the centered difference approximation (equation 10.12) of
the second derivative is examined using the Python script below.
import math

def fun(x):
return x*math.sin(x)

�

� �

�

10.2 Numerical Differentiation 181

def exactSecDeriv(x):
return 2.0*math.cos(x)-x*math.sin(x)

x0 = 1.0
exact = exactSecDeriv(x0)

for i in range(5):
h = 10**(-i-1)
ddf_center = (fun(x0+h)-2.0*fun(x0)+fun(x0-h))
ddf_center = ddf_center/(h**2)
print("h = ", h, ": error is %.4e" %

math.fabs(ddf_center-exact))

The output from this script is:

h = 0.1 : error is 1.0991e-03
h = 0.01 : error is 1.0998e-05
h = 0.001 : error is 1.1005e-07
h = 0.0001 : error is 2.9147e-09
h = 1e-05 : error is 1.7512e-06

For this example, the accuracy of the approximation is O(h2) until h is reduced
to h = 1 × 10−5, at which point computer roundoff error (or floating point
truction error) limits further reduction in approximation error for the second
derivative.

10.2.3 Scipy Derivative Approximation

The scipy library includes a function, scipy.misc.derivative(), for
numerically approximating derivatives. The inputs into the function are:

func a required input function whose derivative will be approximated
x0 the required point at which the derivative is approximated
dx optional spacing between the differencing points
n optional order of the derivative, default is 1
order optional number of points to use, must be odd

The use of the scipy.misc.derivative() function along with the
centered difference formulas derivative above (equations 10.8 and 10.12) is
demonstrated in the Python script below, which approximates the derivative
of f (x) = 2x ⋅ ex at x = 0.5.

import math
import scipy.misc

def fun(x):
return 2.0*x*math.exp(x)

�

� �

�

182 10 Numerical Differentiation and Integration

def exactDeriv(x):
return 2.0*(1+x)*math.exp(x)

def exactSecDeriv(x):
return 2.0*(2.0+x)*math.exp(x)

x0 = 0.5
exact = exactDeriv(x0)
exactSec = exactSecDeriv(x0)

print("Scipy deriv error is %.4e" %
math.fabs(scipy.misc.derivative(fun,x0)
- exact))

print("Scipy second deriv error is %.4e" %
math.fabs(scipy.misc.derivative(fun,x0,n=2)
- exactSec))

for i in range(3):
h = 10**(-i-2)
forward difference
df = (fun(x0+h)-fun(x0-h))/(2*h)
ddf = (fun(x0+h) - 2.0*fun(x0) + fun(x0-h))
ddf = ddf/(h**2)
print("h =",h,": deriv. error is %.4e"

% math.fabs(df-exact))
print(" second deriv. error is %.4e"

% math.fabs(ddf-exactSec))

The output from this script is:

Scipy deriv error is 2.0796e+00
Scipy second deriv error is 1.2975e+00
h = 0.01 : deriv. error is 1.9235e-04

second deriv. error is 1.2365e-04
h = 0.001 : deriv. error is 1.9235e-06

second deriv. error is 1.2364e-06
h = 0.0001 : deriv. error is 1.9234e-08

second deriv. error is 2.1802e-08

The very large error for the scipy.misc.derivative() function approx-
imation of the first and second derivatives indicates that the function is
probably being used incorrectly. Reflecting back on the inputs to the function,
we can observe that one of the optional inputs is dx, which is the spacing
between the differencing points, that is, dx is the same as h in the difference
approximation derived here. Reviewing the available documentation on the
scipy.misc.derivative() function reveals that the default value for
dx is 1.0, which is very large for this particular example problem. Modify the
function calls to the scipy.misc.derivative() function to be:

�

� �

�

10.3 Numerical Integration 183

print("Scipy deriv error is %.4e" %
math.fabs(scipy.misc.derivative(fun,x0,dx=0.0001)
- exact))

print("Scipy second deriv error is %.4e" %
math.fabs(scipy.misc.derivative(fun,x0,
dx=0.0001,n=2) - exactSec))

results in the error being:
Scipy deriv error is 1.9234e-08
Scipy second deriv error is 2.1802e-08

and this is identical to the centered difference approximations presented here.

10.3 Numerical Integration

The calculation of the definite integral of a function in one dimension is identi-
cal to calculating the area between the function and the x-axis. If we were not at
all concerned with accuracy, we could approximate the function with a straight
line between the bounds on the definite integral, (a, b). The resulting polygon
would be a trapezoid and we could easily approximate the area with

∫
b

a
f (x)dx ≈ h

2
[f (a) + f (b)].

The error associated with this approximation depends on the nonlinearity of
the function (i.e., roughly, the second derivative) but for most problems, the
use of a single trapezoid is not sufficiently accurate and much better accuracy
is possible at a modest computational cost.

If the region under the function is subdivided into n intervals of width
h = (b − a)∕n, then arbitrarily high accuracy is possible by increasing n.
Approaches that use multiple polygons to approximate the area under the
curve are called composite method. The simplest composite method is to
divide the region under the function into rectangles. Each rectangle typically
has the width, h, and the height of each rectangle is determined by evaluating
the function at the midpoint of the rectangle’s width (i.e., the midpoint of the
first rectangle is a + h∕2). This approach is called the composite midpoint rule
because the midpoint is used to determine the area of each rectangle. The
midpoint rule process is illustrated in Figure 10.2. The equation describing this
approximate integral is

∫
b

a
f (x)dx ≈ h

n∑
j=0

f (xj), (10.13)

where xj is at the midpoint of each subdomain. The error associated with this
approximation is O(h2), which means that using twice as many subdomains
(i.e., reducing h in half) results in a factor of 4 reduction in the error.

�

� �

�

184 10 Numerical Differentiation and Integration

f(x)

xa b

f

Figure 10.2 The fundamental idea behind the numerical approximation of a definite
integral (from a to b) is to estimate the area under the curve using simple subdomains with
areas that are easy to calculate. The composite midpoint rule is illustrated here.

A test problem using the midpoint rule (equation 10.13) to approximate
∫ 2

0 x ⋅ sin(x)dx is solved by the Python script below.

import math
import numpy

def fun(x):
return x*numpy.sin(x)

def exactIntegral(a, b):
integral = -b*math.cos(b)+math.sin(b)
integral += a*math.cos(a) - math.sin(a)
return integral

a = 0.0
b = 2.0

exact = exactIntegral(a, b)

Midpoint Rule
n = 100
h = (b-a)/n
x = numpy.linspace(a+h/2,b-h/2,num=n)
area = 0

�

� �

�

10.3 Numerical Integration 185

for i in range(n):
area = area + h*(fun(x[i]))

print("Midpoint rule error: %.4e"
% math.fabs(exact-area))

The one line in this Python code that is somewhat more complex than the oth-
ers is the construction of the vector, x, that holds the midpoints. The key in
constructing this vector is to start at the midpoint of the first interval (a + h∕2)
and linearly space the points to the midpoint of the last interval (b − h∕2). Using
100 subinterval (or 100 rectangles) the midpoint rule results in an error of
approximately 1.3 × 10−6, which is sufficiently accurate for most engineering
problems.

10.3.1 Trapezoid Rule

Instead of approximating the area under the function with a sequence of rect-
angles, a sequence of trapezoids could be used instead. The process is illustrated
in Figure 10.3. The equation describing this process is

∫
b

a
f (x)dx ≈ h

2

[(n−1)∑
j=0

f (xj) + f (xj+1)

]
. (10.14)

Interestingly, the accuracy of the composite trapezoid rule is the same as the
composite midpoint rule, O(h2), but the trapezoid rule has the same overall

f(x)

xa = x0 b = x3

f

x1 x2

Figure 10.3 The area under a function (i.e., the definite integral of a function) can be
estimated by subdividing the area into a sequence of trapezoids.

�

� �

�

186 10 Numerical Differentiation and Integration

computational cost and is sometimes more accurate by a factor of 2. Whenever
we read that the order of accuracy is h2 (i.e., O(h2)), we can think of this as say-
ing that the error is equal to k ⋅ h2 where k is a constant, or we can think of this
as saying that the error is proportional to h2. If the error of the composite mid-
point rule is k ⋅ h2, then the error associated with the composite trapezoid rule
for that same problems is k

2
h2. Because the composite trapezoid rule provides

twice the accuracy for the same computational cost, it is generally preferred
over the composite midpoint rule.

The composite trapezoid rule is straightforward to implement in Python, and
an (inefficient) implementation is given in the script below. This implementa-
tion is inefficient because the function being integrated is evaluated twice at the
same location, x. This is obviously a waste, but the algorithm is so fast that this
little inefficiency does not really matter.

import math
import numpy

def fun(x):
return x*numpy.sin(x)

def exactIntegral(a, b):
ans = -b*math.cos(b)+math.sin(b)
ans = ans+a*math.cos(a)-math.sin(a)
return ans

a = 0.0
b = 2.0

Trapazoid Rule
n = 100
h = (b-a)/n
x = numpy.linspace(a,b,num=n+1)
area = 0
for i in range(n):

area = area + h*(fun(x[i]) + fun(x[i+1]))/2.0
print(area)

For the test problem used here, using n = 10 results in an error of 3.3 × 10−3

and using n = 100 results in an error of 2.6 × 10−6. This error reduction is even
larger than expected (O(h2) is expected) due to the smoothness of the function
being integrated.

10.3.2 Numerical Integration Using Scipy

The numerical integration techniques examined thus far are based on eval-
uating the function being integrated at evenly spaced points, that is, the

�

� �

�

10.3 Numerical Integration 187

midpoint of a subdomain or the endpoints of a subdomain. Higher accuracy
can be achieved by evaluating the function being integrated at strategically
placed points that minimize the error associate with the approximation.
These “optimal” points are not at the ends of the subdomain, and they are
not evenly spaced throughout the subdomain. Fortunately, mathematicians
have previously determined the locations of these optimal points, they are
called Gauss points, and the numerical integration method is called Gaussian
quadrature.

An algorithm that implements the Gaussian quadrature approach for numer-
ically approximating integrals is included in the scipy.integrate library.
The use of this algorithm is illustrated in the Python script below.

import math
import numpy
import scipy.integrate.quadrature as quad

def fun(x):
return x*numpy.sin(x)

def exactIntegral(a, b):
ans = -b*math.cos(b)+math.sin(b)
ans = ans + a*math.cos(a)-math.sin(a)
return ans

a = 0.0
b = 2.0

exact = exactIntegral(a, b)
estimate = quad(fun,a,b)
print("error: ", math.fabs(exact-estimate[0]))

The Gaussian quadrature function is passed the name of a Python function
contain the equation we are approximately integrating, and it is passed the
bounds on the definite integral. The use of Gaussian quadrature provides an
extremely accurate approximation of the integral at a relatively modest compu-
tational cost in many cases. For the example equation used in the Python script
above, f (x) = x ⋅ sin(x), the Gaussian quadrature algorithm in Scipy returns the
approximate integral that has an error of only 9 × 10−12. This is basically as close
as possible on a computer to the exact integral.

10.3.3 Error Function

The example problem that was examined in the previous codes, ∫ 2
0 x ⋅ sin(x),

has an exact solution that can be found analytically. One of the major uses of
numerical integration, however, is for integrating functions that do not have an
exact, analytical solution, that is, it is impossible to find an antiderivative that

�

� �

�

188 10 Numerical Differentiation and Integration

is an elementary function. One example is

∫ e−x2 dx. (10.15)

This integrand arises frequently when solving heat conduction or diffusion
problems on semi-infinite domains. For example, modeling the diffusion of
a drug from a skin patch into the tissue below may result in this integrand.
Another example is the modeling of soil temperatures near the surface, which
oscillates due to solar heating but the oscillations decay with depth (i.e., the
temperature does not change a few feet below the surface).

This integrand arises so frequently, that a “special function” (i.e., nonelemen-
tary function) has been defined. The error function is defined as

erf (y) = 2√
𝜋 ∫

y

0
e−x2 dx. (10.16)

The value of this function can be obtained using tables or many software
libraries having functions that provide highly accurate approximations. In
Python, the scipy.special.erf() function is available in the scipy
library. The Python script below approximates the integral to

∫
𝜋

0
e−x2 dx

using the Midpoint rule (equation 10.13), the trapezoid rule (equation 10.14),
and Gaussian quadrature. These approximations are then compared to the
hopefully highly accurate approximation available using scipy.special.
erf().
import math
import numpy
import scipy.integrate.quadrature as quad
import scipy.special as ss

def fun(x):
return numpy.exp(-x*x)

def exactIntegral(a, b):
integral = (ss.erf(b) - ss.erf(a))
return math.sqrt(math.pi)*integral/2.0

a = 0.0
b = math.pi
exact = exactIntegral(a, b)
n = 100
h = (b-a)/n

�

� �

�

10.3 Numerical Integration 189

Gaussian Quadrature
estimate = quad(fun,a,b)
print("Gaussian Quadrature error: %.4e"

% math.fabs(exact-estimate[0]))

Midpoint Rule
x = numpy.linspace(a+h/2,b-h/2,num=n)
area = 0
for i in range(n):

area = area + h*(fun(x[i]))
print("Midpoint rule error: %.4e"

% math.fabs(exact-area))

Trapazoid Rule
x = numpy.linspace(a,b,num=n+1)
area = 0
for i in range(n):

area = area + h*(fun(x[i])+fun(x[i+1]))/2.0
print("Trapazoid rule error: %.4e"

% math.fabs(exact-area))

The “exact” integral is assumed to be the highly accurate approximation from
scipy.special.erf(), and the difference between this “exact” integral
and Gaussian quadrature using scipy.integrate.quadrature is
5.5 × 10−11. Using numerical integration with the midpoint rule and the
trapezoid rule and as few as 10 intervals also provides a relatively accurate
solution as summarized in Table 10.2.

Table 10.2 Accuracy of the midpoint and trapezoid
rule for integrating ∫ 𝜋

0 e−x2
dx with different

numbers, n of subintervals

n Midpoint error Trapezoid error

10 1.2 × 10−6 3.1 × 10−6

100 1.3 × 10−8 2.7 × 10−8

1000 1.2 × 10−10 2.7 × 10−10

�

� �

�

190 10 Numerical Differentiation and Integration

Problems

10.1 The scipy.misc.derivative() function has an optional input
argument order that specifies the number of points to use in the differ-
ence approximation and must be an odd number. The default value for
this function is 3, and the centered difference approximations derived
at the start of this chapter were also based on three points. Evaluate
the impact of setting order to 5 and 7 while changing dx to 0.01,
0.001, and 0.0001 for the function used previously, f (x) = 2x ⋅ ex. What
do you observe? Describe the potential advantages and disadvantages
associating with using a higher order approximation.

10.2 You have been hired by a mathematics software company that has pre-
viously been using the composite trapezoid rule to numerically approx-
imate the integrals of various mathematical functions of the form:

∫
b

a
f (x)dx.

For the composite trapezoid rule, the integration interval, [a, b], is
divided into smaller pieces and then the integral of each piece
is approximated using

∫
xi+1

xi

f (x)dx ≈ h
2
[f (xi) + f (xi+1)].

The software company has hired you to implement Simpson’s rule,
which is similar to the trapezoid rule except that instead of approxi-
mating the integral of each piece with a trapezoid, the integral of each
piece is approximated using a quadratic polynomial. Thus, the integral
of each piece of the interval is approximated using

∫
xi+1

xi

f (x)dx ≈ h
3
[f (xi) + 4 ⋅ f (xi+1) + f (xx+2)].

This approximation is illustrated in Figure 10.4. Simpson’s rule should
be implemented and tested by integrating ∫ 2

0 x ⋅ sin(x)dx for a specified
number of points, n. Note that each interval consists of 3 points, which
means that there are only n−1

2
intervals (and, n must be odd so that

n = 5 points corresponds to 2 intervals) and a loop through the intervals
should have a step size of 2. Evaluate the accuracy of Simpson’s rule for
different values of h = b−a

n−1
the distance between the points. Is Simpson’s

rule more accurate than the trapezoid rule for a given h?

10.3 The calculation of the amount of energy required to change the temper-
ature of a material is performed frequently in process engineering. For
example, if we have a cubic meter of nitrogen or a kilogram of carbon,

�

� �

�

Problems 191

f(x)

a (a+b)/2 b x

f

Figure 10.4 Illustration of Simpson’s rule for integration of f (x) from a to b.

how much energy is required to raise the temperature by 1 or 100 ∘C?
The calculation frequently requires integrating a polynomial between
the starting and ending temperatures. A refinery has hired you to create
a Python program that both automates these calculations and compares
two different numerical methods for the approximation of integrals.
Assuming a constant pressure process, the enthalpy change associated
with a temperature change from T1 to T2 is

ΔĤ = ∫
T2

T1

Cp(T)dT

where Cp(T) is the heat capacity as a function of temperature at constant
pressure [1]. The heat capacity of a material as a function of tempera-
ture is frequently given through a polynomial relationship. The refinery
is particularly interested in two materials: (1) nitrogen gas and (2) carbon
solid. The heat capacity of nitrogen gas in kJ/(mol ⋅ ∘C) is given by

Cp(T) = 0.0290 + 0.2199 × 10−5T + 0.5723 × 10−8T2

− 2.871 × 10−12T3,

where T should be in ∘C. The heat capacity of carbon solid in kJ/(mol ⋅ K)
is given by

Cp(T) = 0.1118 + 1.095 × 10−5T + 489.1∕T2,

where T should be in K .
Your contract with the refinery asks you to calculate the enthalpy
change for each material (nitrogen gas and carbon solid) starting at
a temperature of 20∘C and raising the temperature to 100∘C. Report

�

� �

�

192 10 Numerical Differentiation and Integration

the enthalpy change in kJ/mol. You should numerically approximate
the integral using the Gaussian quadrature algorithm included in
Scipy (scipy.integrate.quadrature()). In addition, use the
Trapazoid rule with 10 intervals to approximate the enthalpy change of
nitrogen gas and report the difference between the trapazoid rule and
Gaussian quadrature.

Reference

1 Felder, R.M. and Rousseau, R.W. (2005) Elementary Principles of Chemical
Processes, John Wiley & Sons, Inc., Hoboken, NJ, 3rd edn.

�

� �

�

193

11

Initial Value Problems

11.1 Introduction

Within the various fields of science and engineering, we are often interested
in how a system that is at a known state reacts to changes in a parameter that
influences that system. For example, what happens to the current in a circuit if
there is a change in the resistance across the device in the circuit? What hap-
pens to the temperature of the coolant leaving a radiator if the air temperature
changes? How fast is the change? What is the magnitude of the change? Many
systems can be described by a differential equation that contains derivatives
with respect to time. Typically, the initial conditions of the system are known
and we are interested in modeling the long-term behavior of the system. Prob-
lems in this important category are called initial value problems and they are
the focus of this chapter.

11.2 Biochemical Reactors

In biological systems, enzymes catalyze most of the reactions where one com-
pound or substrate is converted into a product. For example, wine contains
ethanol. In some cases, an enzyme from a microorganism can be present that
converts the ethanol into acetic acid. If this happens, the wine sours. The con-
version of ethanol into acetic acid is controlled and facilitated by an enzyme.
The first step is for the enzyme, E, and the substrate (ethanol), S, to combine
and form a complex written E ⋅ S. In some cases, this complex falls apart before
a product is formed, but in other cases, the enzyme catalyzes the reaction that
leads to the substrate–enzyme complex forming a product (acetic acid), P, and
the product quickly separates from the enzyme. This process can be summa-
rized as

E + S
k1
⇌
k−1

E ⋅ S
k2
→E + P.

Reactions catalyzed by enzymes are central to much of biochemical engi-
neering and bioprocess engineering. As you can learn in almost any course in

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

194 11 Initial Value Problems

those fields, if a process is controlled by the above set of reactions, then we can
describe the change in the concentration of substrate in a close system (i.e., a
system with no inflow and outflow like a sealed wine bottle) with the equation:

dS
dt

=
−VmaxS
Km + S

,

where S is the concentration of substrate, Vmax is a parameter that describes
the maximum reaction rate (i.e., full utilization of all enzymes because high
concentration of S is present) and Km is the substrate concentration at which
the reaction rate is half of Vmax. In order to solve an initial value problem, we
seek to determine the substrate concentration, S, that satisfied the equation
above, that is, the rate of change of the substrate is equal to a function that
depends on the current concentration.

The equation for dS
dt

describes the loss or consumption of S. The rate at which
S is consumed must be exactly equal to the rate at which P is produced (i.e.,
every ethanol molecule that is reacted away forms an acetic acid molecule) so
we can also write an equation for the formation of P as

dP
dt

=
VmaxS
Km + S

(note the sign change). This model of enzyme kinetics is known as the
Michaelis–Menten kinetics model, originally proposed in 1913! Given an
initial concentration of substrate S and product P, we can solve the initial value
problem to determine the change in these respective concentrations over time.
Figure 11.1 shows the change in substrate and product concentration for an

1.0

0.8

0.0

0.2

0.4

0.6

0.0 0.5 1.0 1.5

Substrate

Product

2.0
Time (dimensionless)

C
on

ce
nt

ra
tio

n
(d

im
en

si
on

le
ss

)

Figure 11.1 Substrate consumption (solid curve) and product formation (dashed curve) for
a process governed by Michaelis–Menten kinetics.

�

� �

�

11.3 Forward Euler 195

initial concentration of 1.0 (dimensionless) for the substrate and a concentra-
tion of 0.0 for the product. The ordinary differential equations (ODEs) were
solved using scipy.integrate.odeint(), which is described later in
this chapter.

11.3 Forward Euler

In this section, the forward Euler method is described, and it is the simplest
approach for solving an initial value problem. Any initial value problem can be
written as

dy
dt

= f (y, t), (11.1)

and the initial condition y0 = y(t = 0)must be included. The key to understand-
ing the process for approximately solving the initial value problem is to simply
recognize that the initial value problem gives us (1) a starting point, y0, and (2) a
slope (dy

dt
)! We can use these two pieces of information to make an estimate as to

where the unknown function, y, is going in the near future. Taking a small step
from the initial value in the direction given by the slope leads to a new value
for y at a new time point that is slightly different from where we started. At
this new location, we can again calculate the slope and take a small step in the
direction given by the slope. This process is illustrated in Figure 11.2. The pro-
cess described here estimates the future based ONLY on the current conditions.
This category of time-stepping methods for solving initial value problems are
called explicit methods because the estimates of the future are based explicitly
on the present.

t

y

y0

t = 0

Slope =
dy

dt
=f(t = 0, y0)

Figure 11.2 An approximate solution to an initial value problem can be obtained by
calculating a slope from the ODE equation based on the current values for y and t, and then
taking a small step in time to a new set of values. This problem is repeated until the desired
final time is reached.

�

� �

�

196 11 Initial Value Problems

The construction of an algorithm that implements the process described
above begins with the creation of a function that contains the ODE and
returns the slope (i.e., the time derivative) based on a given time, t, and value
for the dependent variable, y. The forward Euler process is based on an iteration
where the slope is calculated and then, based on the size of the time step, 𝛿t, a
new value for y is calculated. Recall from Chapter 10 that the first derivative of
a function can be approximated with a finite difference approximation:

dy
dt

≈
yi − yi−1

𝛿t
= f (yi−1, ti−1). (11.2)

The current value of the dependent variable, yi−1, and time, ti−1, is used to cal-
culate the slope and solve for the new value of the dependent variable, yi. The
previous equation can be rearranged to give

yi = yi−1 + 𝛿t ⋅ f (yi−1, ti−1), (11.3)

which is the forward Euler method. The Python script below implements the
forward Euler method to predict the change in substrate concentration for the
Michaelis–Menten reaction.

import numpy
import pylab

model kinetic parameters
Vmax = 2.0 # mol/(L s)
Km = 0.5 # mol/L

ODE definition
def df(s,t):

dsdt = -Vmax*s/(Km+s)
return dsdt

setup time discretization
n = 10 # number of time steps
t = numpy.linspace(0,2.0,n)
dt = t[1]-t[0]

allocate storage space and set initial conditions
sol = numpy.zeros(n)
sol[0] = 1.0 # initial S in mol/L

for i in range(1,n):
sol[i] = sol[i-1]+dt*df(sol[i-1],t[i-1])

pylab.plot(t,sol)
pylab.xlabel("time (dimensionless)")
pylab.ylabel("concentration (dimensionless)")
pylab.show()

�

� �

�

11.3 Forward Euler 197

The first section of this script contains the ODE function within a separate,
callable function. The inputs to this function are the current value for the
dependent variable (substrate concentration) and the current time. The func-
tion returns the slope, ds

dt
. The forward Euler algorithm requires that time be

discretized into “small” segments, and, to facilitate this process, the algorithm
builds a vector that holds all the time points using the numpy.linspace()
function. The initial condition and storage space for the final solution are then
set. The forward Euler iteration is very simple because it calculates a new value
for the dependent variable based on the slope and the time step size.

Figure 11.3 shows a plot of the substrate concentration versus time using the
forward Euler method with two different time step sizes. The solid curve is
based on 100 time steps (𝛿t = 0.02) and the dashed curve is based on 4 time
steps (𝛿t = 0.5). The large time steps used for the dashed curve show how the
slope of the approximation is equal to the slope at the beginning of the time
step. During the time step, the slope decreases as the substrate concentration
is reduced so there is a significant error associated with using the large time
step. The accuracy of the forward Euler method is of the same order as the for-
ward finite difference approximation of the derivative, that is, the error is O(𝛿t).
If the length of a time step is cut in half, the error is also halved. Fortunately, the
forward Euler method has a relatively low computational cost so taking a large
number of time steps is feasible here, but if we need to simulate a much longer
period of time or if we are solving many initial value problems simultaneously,
the very small time step requirement quickly becomes an issue. To begin to
address this accuracy limitation, we now turn our attention to improving the
order of accuracy.

1.0

0.8

0.6

0.4

–0.2

0.0

0.2

0.5 1.0 1.5 2.0
Time (dimensionless)

C
on

ce
nt

ra
tio

n
(d

im
en

si
on

le
ss

)

0.0

Figure 11.3 Substrate concentration governed by a Michaelis–Menten reaction is modeled
using the forward Euler method with two different time step sizes: 100 time steps (solid) and
4 times steps (dashed).

�

� �

�

198 11 Initial Value Problems

11.4 Modified Euler Method

The forward Euler method is based on an estimate of the slope based only on
the current conditions. One method for improving the accuracy of the forward
Euler method is to predict future conditions and then use that prediction to get
a better estimate for the slope. For example, we can predict future conditions
using the forward Euler method:

y∗i = yi−1 + 𝛿t ⋅ f (yi−1, ti−1), (11.4)

and then use this prediction to estimate the slope at ti using
dy
dt

= f (y∗i , ti).

We now have two estimates for the slope, one at ti−1 and one at ti. Using an
average of these two estimates gives us a better estimate of the slope over the
time span of interest. Using this principle, the modified Euler method calculates
a new value for the dependent variable using:

yi = yi−1 + 0.5 ⋅ 𝛿t ⋅ (f (yi−1, ti−1) + f (y∗i , ti)), (11.5)

where y∗i is calculated using equation 11.4 (i.e., forward Euler). The accuracy
of the modified Euler approach is O(𝛿t2), which leads to significantly smaller
errors for small time step sizes.

A Python script that utilizes the modified Euler method for the
Michaelis–Menten kinetics problem is given below.

import numpy
import pylab

model kinetic parameters
Vmax = 2.0 # mol/(L s)
Km = 0.5 # mol/L

ODE definition
def df(s,t):

dsdt = -Vmax*s/(Km+s)
return dsdt

allocate space and set initial condition
n = 100 # number of time steps
Vector of time points over the time domain
t = numpy.linspace(0,2.0,n)
Create an empty vector for storing the solution
sol = numpy.zeros(n)
sol[0] = 1.0 # initial S in mol/L
Calculate time step size
dt = t[1]-t[0]

�

� �

�

11.5 Systems of Equations 199

Iteration over time steps
for i in range(1,n):

slope = df(sol[i-1],t[i-1])
est = sol[i-1]+dt*slope
sol[i] = sol[i-1]+0.5*dt*(slope+df(est,t[i]))

Plot final solution
pylab.plot(t,sol)
pylab.xlabel("time (dimensionless)")
pylab.ylabel("concentration (dimensionless)")
pylab.show()

Overall, the algorithm is very similar to the forward Euler method, but it has an
extra step in the iteration loop to estimate the value of the dependent variable
at the end of the time step.

11.5 Systems of Equations

The enzymatic degradation of a substrate to a product involves changes in
concentration to both the substrate and the product. In this and many other
systems, a change in one system parameter has an impact on many other
system parameters. For these problems, multiple initial value problems must
be solved simultaneously. This implies that there is a vector, y, of the dependent
variable and a vector of the ODEs:

dy
dt

= f(y, t).

Fortunately, the extension of the methods described above to a system of ODEs
is trivial. The ODE definition function needs to be modified slightly so that
it can receive a vector of dependent variables and it must return a vector of
derivatives (or slopes), but otherwise there is little change.

As we move toward systems of equations, the computational costs can
increase quickly and it is often advantageous to utilize the initial value problem
algorithms available in the scipy.integrate library. These algorithms
have a number of helpful advantages:

1) high accuracy – often fourth order (O(𝛿t4)) or higher,
2) error checking – comparing the prediction of a fourth- and fifth-order

method (or, in general, comparing the prediction of two methods with
different orders of accuracy) each time step allows the algorithm to adjust
the time step size in order to maintain a desired level of accuracy, and

3) fast execution – the algorithms are often written in FORTRAN or C and
execute faster than a purely Python algorithm.

The simplest initial value problem solver in the Scipy library is scipy.
integrate.odeint(). This function must be given the name of a function

�

� �

�

200 11 Initial Value Problems

containing the ODEs, the initial condition(s), and the time span for integra-
tion. The use of this function for modeling both the substrate and product
concentration for a Michaelis–Menten kinetics problem is illustrated in the
Python script below.
import numpy
import pylab
from scipy.integrate import odeint

model kinetic parameters
Vmax = 2.0 # mol/(L s)
Km = 0.5 # mol/L

ODE definition
def df(c,t):

s = c[0] # substrate concentration
p = c[1] # product concentration
dsdt = -Vmax*s/(Km+s)
dpdt = Vmax*s/(Km+s)
return numpy.array([dsdt,dpdt])

initial condition
c0 = numpy.array([1.0, 0.0]) # initial S, P in mol/L
t = numpy.linspace(0,2.0,100)
sol = odeint(df, c0, t)
pylab.plot(t,sol)
pylab.xlabel("time (dimensionless)")
pylab.ylabel("concentration (dimensionless)")
pylab.show()

Notice that a vector of dependent variables is passed into the function contain-
ing the ODEs. Care must be taken to ensure that the order in which unknowns
are located in the vector is the same order used for the derivatives that are
returned. Assigning new variable names to the unknowns in the dependent
variable vector can be helpful for keeping track of the various unknowns. Of
course, these new variable names are limited to the function and cannot be
used outside the function. The figure resulting from the this Python script was
shown earlier in this chapter (Figure 11.1).

11.5.1 The Lorenz System and Chaotic Solutions

In 1963, Edward Lorenz derived a mathematical model of atmospheric flows
that consisted of a system of three initial value problems:

dx
dt

= 𝜎(y − x)

�

� �

�

11.5 Systems of Equations 201

dy
dt

= x(𝜌 − z) − y

dz
dt

= x ⋅ y − 𝛽z,

where Lorenz set 𝜎 = 10, 𝛽 = 8∕3, and 𝜌 = 28. The Python script below solves
this system of equations using the same parameters that Lorenz derived, and it
uses random initial values for x, y, and z that are between −2 and +2.
import numpy as np
import scipy.integrate as sint
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

sigma = 10.0
beta = 8.0/3.0
rho = 28.0

def lorentz_deriv(xi, t):
(x,y,z) = xi
dxdt = sigma * (y - x)
dydt = x * (rho - z) - y
dzdt = x * y - beta * z
return [dxdt, dydt, dzdt]

Choose two random starting points, (-2, 2)
x0 = -2.0 + 4.0 * np.random.random(3)

Solve the IVP
t = np.linspace(0, 4, 1000)
sol0 = sint.odeint(lorentz_deriv, x0, t)

Plot the solution
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot(sol0[:,0],sol0[:,1],sol0[:,2]
plt.savefig('LorenzFig0.png',dpi=150)

The script uses the same scipy.integrate.odeint() function that has
been used previously in this chapter for solving initial value problems. The one
unique feature of the script is that the mpl_toolkits.mplot3d.Axes3D
library is used, and this library is connected with matplotlib and enables
3D plotting. The ability to generate plots with three axes is helpful here
because we would like to plot the values of three different parameters (x, y, and
z) at each time point.

�

� �

�

202 11 Initial Value Problems

The Lorenz equations are possibly the most famous initial value problem of
the past 50 years, but they would be completely forgotten if it were not for one
very interesting observation. Before the Lorenz equations were numerically
solved on an early computer, the common assumption was that the solution
to an initial value problem was not overly sensitive to the initial conditions
used. Small changes in initial condition were assumed to be unlikely to cause
a large change in the final solution. For example, Figure 11.4 shows two
different solutions to the Lorenz system that have slightly different initial
values. The two solution track close to each other and ultimate oscillate in very
similar trajectories. This was the expected behavior for any two similar initial
conditions.

Fortunately, when Lorenz entered the initial condition that he desired for
his model into the computer, he made a mistake and changed the initial
conditions slightly. The solution that he observed was completely different
from what he expected. It took time for Lorenz to find his initial condition
mistake, but, when he did, he recognized the implications of what he had
found: the solution to this system of equations was highly sensitive to the
initial conditions. Figure 11.5 shows an example of this behavior. The two
initial conditions are similar, but the final solutions are very different. The
implication of this result is critical: for some systems such as atmospheric
dynamics (i.e., weather prediction), we must have highly accurate initial
conditions because slight errors in initial conditions could lead to very
inaccurate predictions. This observation led to the development of the field
of chaos [1]. The fundamental behavior of chaotic systems is that they are
unpredictable because we never know the initial conditions exactly. For
example, if a butterfly flaps its wings off the coast of South America, and we
do not know it, we might mispredict the weather in Florida in the coming
weeks.

50

40

30

10

20

0

0 5 10 15
20 25 –15–10

–5
51015

30
25

20

0
–5–10

–10

Figure 11.4 Two different
solutions to the Lorenz system
of equations using slightly
different initial conditions. The
three axes represent the three
solutions variables, x, y, and z,
and time is not shown other
than the variables oscillate in a
cycle long term.

�

� �

�

11.6 Stiff Differential Equations 203

Figure 11.5 Two different
solutions to the Lorenz system of
equations using slightly
different initial conditions. The
final solutions are very different
even though the initial
conditions are similar.

50

40

30

10

20

0

50
10 15 20 –30

–20

10
0

30
20

–10–5–10–15–20

11.5.2 Second-Order Initial Value Problems

Although they are rare in some engineering fields, for example, chemical or
biological engineering, some initial value problems involve second-order ODEs
and two initial conditions. The classic problem in this category is the motion of
a body under gravitational force. If x is the position of the body, then Newton’s
first law states:

d2x
dt2 = −g, (11.6)

where g is gravitational acceleration. Solving this equation requires two initial
conditions: an initial position, x(t = 0), and an initial velocity, dx(t =0)

dt
.

Solving second-order initial value problems is relatively straightforward
using the algorithms already described because second-order (or higher-order)
problems can be rewritten as systems of first-order equations by defining
new variables. For the problem above (equation 11.6), defining 𝑣 = dx

dt
allows

the second-order problem to be rewritten as a system of two first-order
equations:

dx
dt

= 𝑣, (11.7)

dv
dt

= −g, (11.8)

and notice that one initial condition can be used for each equation: x(t = 0) and
𝑣(t = 0).

11.6 Stiff Differential Equations

The forward Euler method and other explicit time-stepping methods are very
simple and computationally efficient for solving initial value problems, but they

�

� �

�

204 11 Initial Value Problems

have an important limitation. Use the forward Euler method to solve the initial
value problem:

dy
dt

= −25y + 25 sin(t) + cos(t), 0 ≤ t ≤ 2.0

y(0) = 1.0

with 10 time steps (𝛿t = 0.2). The solution shown in Figure 11.6 was obtained
when attempting this approach. This is very, very far from the correct solution.
In fact, the error associated with this approximation is growing exponentially,
and if we integrate beyond t = 2.0, the approximation only becomes worse.

To help us understand why the forward Euler method failed so badly for
this problem, it is helpful to look at the plot of the exact solution shown in
Figure 11.7. The important thing to recognize about the solution (y = sin(t) +
e−25t) is that there are two different time scales present – there is a very fast
time scale that causes a rapid, initial decrease in the solution, and then there is
a slower time scale associated with the oscillations from the sin() function. The
defining characteristic of stiff differential equations is two or more time scales.
If only the fast time scale existed, the solution would quickly reach steady state
and the simulation could focus on the brief period when all the changes occur.
If only the slow time scale existed, longer time steps could be used in obtaining
an approximate solution. With stiff differential equations, the time step must be
small enough to capture the fast time scale events, but those small time steps
result in large computational cost associated with simulating the slower, longer
time scale.

y

1.00.50.0

Time

–5,000

0

5,000

10,000

15,000

20,000

1.5 2.0

Figure 11.6 The approximate solution resulting from using the forward Euler method on
the initial value problem dy

dt
= −25y + 25 sin(t) + cos(t) with y(0) = 1.0 and 𝛿t = 0.2. The

approximation error is large and growing exponentially.

�

� �

�

11.6 Stiff Differential Equations 205

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0.0 0.5 1.0

y

Time
1.5 2.0

Figure 11.7 The exact solution and the solution resulting from using
scipy.integrate.odeint() on the initial value problem
dy

dt
= −25y + 25 sin(t) + cos(t) with y(0) = 1.0 and 𝛿t = 0.2. The two curves overlap one

another.

The use of explicit time-stepping methods on a stiff ODE reveals the major
weakness of these methods. Recall that explicit methods predict the future
direction of the solution using only currently available information. An analogy
would be to walk around watching only the ground exactly at your feet – based
on the topology at your feet, you take a step anticipating that the topology of the
ground is not going to change dramatically over that step. For problems with
only one time scale, that assumption holds. Stiff ODEs, however, have a slow
changing topology (the slow time scale) and a cliff or fast changing topology.
When an explicit method hits the fast time scale, it is analogous to stepping off
a cliff and exponential error increases result.

A number of different algorithms have been developed to address the chal-
lenge of stiff ODEs. The algorithm used by scipy.integrate.odeint()
is one such algorithm [2], and if this function is used to solve the stiff example
problem above, the solution is indistinguishable from the exact solution.
Figure 11.7 actually contains two curves – the exact solution and the approxi-
mate solution from scipy.integrate.odeint(). Algorithms designed
for stiff ODEs utilize two strategies to handle the multiple time scales within
the problem. The first strategy is to continuously check the accuracy of a
predicted solution for each time step and then continuously adapt the size
of the time step to the size required to maintain accuracy. By adjusting the
time step size, these algorithms can take smaller time steps whenever faster
time scales are causing rapid changes and take larger time steps whenever the
changes are slow. This first strategy is helpful to minimize the computational

�

� �

�

206 11 Initial Value Problems

costs associated with stiff ODEs, but, by itself, this strategy is not sufficient
and a second, critical technique is required.

Explicit time-stepping methods for solving initial value problems all have the
basic form:

yi = yi−1 + F(𝛿t, yi−1), (11.9)
where the predicted solution is only based on current values (or estimates of
the future that are still, ultimately, based on current values as is the case of the
modified Euler method or the popular, explicit Runge–Kutta methods.) The
alternative to explicit time stepping is implicit time stepping where the slope or
change in the dependent variables over the next time step is not simply based
on current values but also based on future values. Implicit methods have the
basic form:

yi = yi−1 + F(𝛿t, yi−1, yi). (11.10)
For example, the simplest implicit method is the backward Euler method, and
it has the form:

yi = yi−1 + 𝛿t ⋅ f (ti, yi) (11.11)

for solving an initial value problem of the form: dy
dt

= f (t, y). Notice that the
unknown variable, yi, now appears in multiple places within the equation
(11.11) and solving for the unknown likely requires solving a nonlinear
equation. For multiple ODEs, we have to solve a system of nonlinear equations
every time step. The development of algorithms that use implicit time stepping
requires utilization of the methods covered in Chapter 8 on nonlinear equat-
ions – typically, these algorithms use Newton’s method to solve the nonlinear
equations. Fortunately, robust algorithms have been developed by others
and should be utilized whenever possible. A number of different algorithms
that should meet most requirements are available through thescipy.integr
ate.ode() function (http://docs.scipy.org/doc/scipy/reference/generated/
scipy.integrate.ode.html).

Problems

11.1 One of the most famous initial value problems is the predator–prey
problem. If x is the population of prey, it is typical to assume that the
population change is governed by

dx
dt

= ax − bxy,

where a is the birthrate per unit of x and b the death rate due to the preda-
tor with population y. The population of predator is typically assumed to
be governed by

dy
dt

= cxy − dy,

�

� �

�

Problems 207

where c is the growth rate from the consumption of prey and d is the
death rate from overpopulation or age.
Solve the predator–prey model equations with a = 2, b = 1, c = 1.5, and
d = 2, and with an initial population of 1.0 for both the predator and the
prey. Plot the population over at least 10 time units.

11.2 Model the concentration of reactant A in a stirred tank reactor with two
inputs. The only reaction is

A → B.

This reaction can be described by the first-order reaction equation−rA =
kCA where −rA is the rate at which A is consumed in mol A/(L ⋅ s), CA is
the concentration of A in mol/L and k = 0.35 s−1 is the rate constant.
There are two input streams into the reactor: the first input has a flow
rate of Q1 = 10 L/min and CA,1 = 2 mol A/L and the second input stream
is turned on at t = 0 and has a flow rate of Q2 = 8 L/min and a concentra-
tion of CA,2 = 5 mol A/L. The concentration of A in the tank is governed
by the equation:

dCA

dt
= [CA,1Q1 + CA,2Q2 − (Q1 + Q2)CA]∕V − kCA,

where V = 50 L is the volume of the reactor. Before t = 0, the reactor is
operating at steady state, that is, dCA∕dt = 0, and Q2 = 0 so the above
equation simplifies to

(CA,1 − CA)Q1∕V = kCA,

which can be solved to establish that at t = 0, CA = 0.73 mol/L. This is
the initial condition that should be used to model the concentration of
A in the reactor after t = 0. Write a Python script to model this process
and plot CA as a function of time.

11.3 You have been hired by the City Health Department to estimate the
impact on an Ebola outbreak on a city of 50,000 people. You have been
asked to use a relatively simple initial value problem model of Ebola. Let
S be the number of healthy, but susceptible people leaving in the city
(initial value for S is 50,000), let I be the number of people infected by
Ebola (initial value for I is 2.0), and let R be the number of people that
recovered from Ebola. The model equations are as follows:

dS
dt

= −C ⋅ S ⋅ I

dI
dt

= C ⋅ S ⋅ I − I − d ⋅ I

dR
dt

= I,

�

� �

�

208 11 Initial Value Problems

where C is the rate of contact between sick and healthy people
(unknown, but estimates of C are 2.0/50,000 to 10.0/50,000) and d the
rate of death relative to recovery (estimate to be 0.5, implying 1 person
dies for every 2 that recover).
Solve this model of Ebola using scipy.integrate.odeint() for
a model period of 30 days and for 3 different contact rates and write a
report on the results to the City Health Department.

11.4 Adapted from “Astronomy Projects for Calculus and Differential Equa-
tions” by Farshad Barman, Portland Community College, 2012.
You have been hired by NASA to determine the minimum distance
between Mars and Earth at any time in the next 10 years. Assuming a
Cartesian coordinate system with the sun at (0, 0) and both the planets
orbiting in the (x, y)-plane, the location, (x, y), and velocity (𝑣x, 𝑣y) of
either planet is determined using the initial conditions and solving the
following system of equations from Newton:

dx
dt

= 𝑣x

dy
dt

= 𝑣y

d𝑣x

dt
= − G ⋅ M ⋅ x(√

x2 + y2
)3

d𝑣y

dt
= −

G ⋅ M ⋅ y(√
x2 + y2

)3 ,

where G is the universal gravitational constant, 6.67 × 10−11 m3

s2⋅kg
or

1.983979 × 10−29 AU3

year2⋅kg
, and M the mass of the sun, 2.0 × 1030 kg.

Because of the large distance and time spans being simulated, it is
recommended that the problem be solved using astronomical units
(AU) as the units of distance and years as the units for time. There are
149.598 × 109 m/AU and 3.15569 × 107 s/year.
The initial conditions for the earth are as follows: x(0) = 0.44503
AU, y(0) = 0.88106 AU, 𝑣x(0) = −5.71113 AU/year, and 𝑣y(0) =
2.80924 AU/year. The initial conditions for the Mars are as follows:
x(0) = −0.81449 AU, y(0) = 1.41483 AU, 𝑣x(0) = −4.23729 AU/year,
and 𝑣y(0) = −2.11473 AU/year.
Your first project requirement is to solve the initial value problem for
each planet and determine the location and velocity of each planet for
the next 10 year period. NASA requests a plot of the orbits over that
period. The second project requirement is to loop through each time

�

� �

�

Problems 209

point from the 10-year solutions and determine the minimum distance
between the two planets at any time during that period. NASA recom-
mends obtaining the solution for 10,000 time points during the 10-year
period. Report the minimum distance in AU.

11.5 Halocarbons are molecules containing carbon and at least one atom of
chlorine, bromine, or iodine. The most common halocarbons are chlo-
rofluorocarbons (CFCs), which were commonly used gases up until the
late 1980s. CFCs are relatively stable, long-lived molecules that, regard-
less of their purpose, inevitably escape into the troposphere (the lowest
layer of the earth’s atmosphere). The compounds then cycle between the
troposphere and the stratosphere. While in the stratosphere, a portion of
the molecular compound (the chlorine and bromine atoms) can be disso-
ciated, and these atoms catalyze the removal of ozone. The atoms remain
in the stratosphere on average 3 years before they are transported back
to the troposphere where they are removed by rain or surface deposition.
A mathematical model of this process was published by Ko et al. [3]. The
model has one mass balance on an initial quantity of halocarbons in the
troposphere:

dHT

dt
= −

HT

LT
−

HT ⋅ f
𝜏

+
HS

𝜏
,

where HT and HS are the amount of halocarbon in the troposphere and
the stratosphere, respectively. The first term on the right represents halo-
carbons that chemically degrade, the second term is halocarbons trans-
ported from the troposphere into the stratosphere, and the third term is
halocarbons that return to the troposphere from the stratosphere. The
time scales for these events, based on experimental measurements, are
LT = 1000 years and 𝜏 = 3 years. The second mass balance is on the
quantity of halocarbons in the stratosphere:

dHS

dt
= −

HS

LS
−

HS

𝜏
+

HT ⋅ f
𝜏

,

where LS = 5 years because hydrocarbons are disassociated more rapidly
in the stratosphere. The final balance is on the quantity of free chlorine
in the stratosphere:

dC
dt

= −C
𝜏
+

HS

LS
.

You have been hired as a consultant to independently solve these
equations using a numerical solver. You should assume that 15% of the
atmospheric mass is in the stratosphere so f = 0.15∕0.18. The initial
conditions that you should use are HT = 1 kg and HS = C = 0.0. The
key result will be a plot of the concentration of each of the three species

�

� �

�

210 11 Initial Value Problems

as a function of time. You should simulate a sufficient time period that
all three quantities are practically zero (maybe 100 years?).
Bonus: you are offered a bonus if you can integrate the C concentration
over that 100-year period using the numerical integration approaches
from the previous chapter. The total amount of ozone loss due to this
1 kg of CFCs depends on ∫ C dt.

References

1 Gleick, J. (1987) Chaos: Making a New Science, Open Road Integrated Media,
New York.

2 Hindmarsh, A. (1983) ODEPACK, a systematized collection of ODE solvers,
in Scientific Computing (ed. R. Stepleman), Elsevier, North-Holland, Amster-
dam.

3 Ko, M., Sze, N.D., and Prather, M. (1994) Better protection of the ozone
layer. Nature, 367, 505–508.

�

� �

�

211

12

Boundary Value Problems

This chapter continues our exploration of numerical methods to solve ordinary
differential equations (ODEs), which have derivatives with respect to a single
independent variable. The focus here is on problems that have a second-order
derivative so two conditions are required to determine a unique solution. In
the previous chapter, the derivatives were generally with respect to time, and
the second-order problems had two initial conditions – one on the dependent
variable and the other on the first derivative of the dependent variable. In this
chapter, the derivatives will typically be with respect to space, and the two
conditions used to determine a unique solution will be at either end of the
spatial domain that is being modeled.

12.1 Introduction

Boundary value problems (BVPs) frequently arise in engineering. A general
form for a linear BVP equation is

d2y
dx2 + a(x)

dy
dx

+ b(x) ⋅ y = c(x). (12.1)

Solving a BVP requires finding a function, y(x), that satisfies this equation (i.e.,
find y such that the second derivative of y plus a(x) times the first derivative
plus b(x) times y is equal to a given right-hand side). Determining a unique
solution, that is, determining y requires two additional conditions on y, and
without those boundary conditions, there are an infinite range of possible
functions y(x) that solve the ODE equation. Another way to see that we need
two boundary conditions is to recognize that we need to integrate this equation
twice, which gives two constants of integration, and we need the two additional
conditions to solve for the two constants of integration. For some problems,
y(x) is known at one or both ends of the domain. This boundary condition is
referred to as a Dirichlet or essential boundary conditions. For example, if we
are solving the BVP above on the domain [0, 1] and it is known that y(0) = 3.2,
this would be considered a Dirichlet condition. If Dirichlet conditions are given

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

212 12 Boundary Value Problems

for both ends of the domain, that is, y(1) is also known, then an approximate
solution can be determined. The other common possibility is that dy

dx
is known

at one or both ends of the domain. This type of boundary condition is known
as a Neumann boundary condition.

BVPs arise when describing diffusion processes, when modeling conductive
heat transport, and when calculating the velocity of viscous fluid flow. There
are many other settings in which these types of equations can potentially
arise, but problems involving conservation of mass, energy, and momentum
are the most common in engineering. In this chapter, two different numerical
approaches will be examined for solving BVPs – the shooting method and
the finite difference method. In both the cases, we will utilize numerical
techniques that were covered previously, so be prepared to review material
from early chapters as needed.

12.2 Shooting Method

The previous chapter discussed an approach for calculating the location of a
projectile under just the force of gravity given two initial conditions: an initial
location and an initial velocity (recall that velocity is just the first derivative
of location, dx

dt
). The equation describing the motion of the projectile was

a second-order ODE, but the problem fell into the category of initial value
problems because it included two conditions at the same boundary (i.e.,
the t = 0 boundary) instead of one condition at each boundary. BVPs have
a condition at each boundary, analogous to solving the projectile motion
problem given a starting location and an ending location but no initial velocity.
Without two initial conditions, we cannot simply reuse the methods covered
in the previous chapter, but, with a little creativity, we can recycle much of
what was developed previously and adapt it to BVPs.

Imaging that we are solving the projectile motion problem, given an initial
location and a target location, and we need to determine an initial velocity
as well as the particle location and velocity between the launching and target
locations. We could guess an initial velocity, take a shot, and determine the
final distance from the given target. We could then take a second shot with
a different initial velocity, and once again measure the distance to the target.
Using these two shots as reference points, we could then interpolate (or
extrapolate) to determine a better estimate for the required initial velocity to
hit the target. Repeating this process for three or four shots would hopefully
lead to us hitting the target. This process is effectively “the shooting method”
for BVPs. We guess one initial value, use all the initial value methods from
the last chapter, check to see if we matched the other boundary condition, and
repeat the process until our guess at the unknown initial value results in us
matching the second boundary condition.

�

� �

�

12.2 Shooting Method 213

It is easiest to examine the algorithm for the shooting method through an
example problem. We want to solve the BVP:

d2y
dx2 = 4(y − x) (12.2)

on the domain, 0 ≤ x ≤ 1, and with the boundary conditions, y(0) = 0 and
y(1) = 2. The first step is to rewrite equation 12.2 as a system of first-order
equations by introducing a new variable:

dy
dx

= y1 (12.3)

dy1

dx
= 4(y − x), (12.4)

where an initial condition is available for the first equation (y(0) = 0) but not
the second equation, that is, y1(0) is unknown. The shooting method requires a
guess for the second boundary condition, and then using the guess, we can solve
the system of equations (12.3 and 12.4) using any of the algorithm presented
in the initial value problem chapter (the scipy.integrate.odeint()
function is recommended) and check to see if the other boundary condition
(y(1) = 2) is satisfied. Figure 12.1 shows the solution using a guess of y1(0) = 1.0.
With this guess, the target of 2.0 is missed and y(1) = 1.0 is hit instead.

For the second shot, an initial guess of y1(0) = 0.0 is used, and the approx-
imate solution using this guess is shown in Figure 12.2. In this case, the target
is missed by a greater amount as y(1) = −0.813.

Now that two shots have been taken and the two misses have been measured,
we need a method for determining a better guess for the second boundary

0.6 0.8 1.00.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 12.1 Approximate solution to the BPV, d2 y

dx2
= 4(y − x) using a guess of

dy(0)
dx

= y1(0) = 1.0.

�

� �

�

214 12 Boundary Value Problems

0.0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8

–0.9
0.0 0.2 0.4 0.6 0.8 1.0

x

y

Figure 12.2 Approximate solution to the BPV, d2 y

dx2
= 4(y − x) using a guess of

dy(0)
dx

= y1(0) = 0.0.

condition on y1(0). The simplest approach is to fit the two previous results
with a line and extrapolate to determine a better guess. If 𝛾0 is the first guess
at the boundary condition, 𝛾1 is the second guess, and 𝛽 is the desired target
value, then an improved guess is available using:

𝛾 = 𝛾1 −
𝛾1 − 𝛾0

(y𝛾1
(1.0) − y𝛾0

(1.0))
(y𝛾1

− 𝛽). (12.5)

An iterative process is used where the improved estimate for the boundary
condition, 𝛾 , replaces the older guess, 𝛾0, and the process is repeated.

A Python script that uses the shooting method to solve the example problem
is given below.

import math
import numpy
import pylab
from scipy.integrate import odeint

Split y'' = 4*(y-t) into
y0' = y1 and
y1' = 4*(y-t)
def dfdt(y, t):

dy0dt = y[1]
dy1dt = 4.0*(y[0]-t)
return numpy.array([dy0dt, dy1dt])

�

� �

�

12.2 Shooting Method 215

def exact(t):
coeff = 0.13786
sol=coeff*(numpy.exp(2.0*t)-numpy.exp(-2.0*t))+t
return sol

TOL = 1e-6
t = numpy.linspace(0.0,1.0,100)
alpha = 0.0
beta = 2.0
gamma0 = 1.0
gamma1 = 0.0

first shot, use bc for y, set other to 0.0
yinit1 = numpy.array([alpha,gamma0])
y1 = odeint(dfdt, yinit1, t)
get impact point for first shot
note this gets the last row, first column entry
end1 = y1[-1,0]
print("Error with shot: ", math.fabs(beta-end1))

for i in range(20):
second shot, set bc for y to 0.0, other uses 1.0
yinit2 = numpy.array([alpha,gamma1])
y2 = odeint(dfdt, yinit2, t)
end2 = y2[-1,0]
print("Error with shot: ", math.fabs(beta-end2))
if math.fabs(beta-end2) < TOL:

break

gamma = gamma1
gamma -= (end2-beta)*(gamma1-gamma0)/(end2-end1)
gamma0 = gamma1
gamma1 = gamma
end1 = end2

pylab.plot(t,y2[:,0])
pylab.plot(t,exact(t))
pylab.xlabel(’x’)
pylab.ylabel(’y’)
pylab.show()

The Python script includes an additional function that contains the exact
solution so that the approximate solution from the shooting method can be
compared to the exact solution. One feature of numpy that is used in this
script but has not been covered previously is that it is possible to access the
last element in a row or column of an array using the index −1. For example,
the reference y[−1] in numpy will return the last entry in the vector. This
feature is used here to get the last row entry in the first column of the solution
array to determine the value of y at the far boundary, that is, y(1) so that we

�

� �

�

216 12 Boundary Value Problems

2.5

2.0

1.5

1.0

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0

x

y

Figure 12.3 Approximate solution to the BPV, d2 y

dx2
= 4(y − x) using a guess of

dy(0)
dx

= y1(0) = 1.551.

can calculate the distance to the target, 𝛽. Figure 12.3 shows both the final
result from the shooting method and the exact solution. The lines are so close
that they are indistinguishable from each other. For linear BVPs like this, only
three iterations should be required because the linear extrapolation used to
determine an improved guess, 𝛾 , should yield the exact value to use. Nonlinear
BVPs may require four or five iterations to determine an acceptable value for 𝛾 .

The shooting method is a common choice for BVPs when an efficient and
familiar ODE initial value problem solver is available and Dirichlet boundary
conditions are given. In general, however, it is not the most common choice
for BVPs in the author’s experience. A more intuitive and flexible approach,
capable of solving problems with one or two Neumann boundary conditions, is
presented in the following section (and the next chapter): the finite difference
method.

12.3 Finite Difference Method

The finite difference method is based on the idea of replacing the derivatives
in a differential equation with algebraic approximations of those derivatives at
discrete points distributed throughout the domain of interest. A general form
for a linear BVP is

d2y
dx2 + a(x)

dy
dx

+ b(x) ⋅ y = c(x), (12.6)

on the domain a ≤ x ≤ b with boundary condition given at a and b. The finite
difference method begins by dividing the domain, a ≤ x ≤ b, into a sequence

�

� �

�

12.3 Finite Difference Method 217

xi xi+1xi−1

y(xi)

y(xi+1)
y(xi−1)

y

x0 = a xN = bx

y(a)

y(b)

Figure 12.4 Using the finite difference method requires dividing the domain, a ≤ x ≤ b into
a set of discrete points or nodes with their locations given by xi . The goal of the approach is
to determine the approximate solution, yi , at every node.

of evenly spaced, discrete points called nodes with their location given by xi, as
shown in Figure 12.4. If h is the distance between the nodes, h = xi − xi−1, and
N is the number of intervals between nodes (i.e., there are N + 1 nodes that are
numbered from 0 to N), then the location of each node can be calculated using
xi = a + i ⋅ h.

Recall (equation 10.12) that the second derivative can be approximated at
location xi with

d2y
dx2 ≈

yi+1 − 2yi + yi−1

h2 , (12.7)

where h is the distance between the nodes, h = xi − xi−1, and yi is short for the
value of y at node xi or y(xi). Similarly, the first derivative (equation 10.8) can
be approximated with

dy
dx

≈
yi+1 − yi−1

2h
. (12.8)

Using these two approximations for the derivatives, the original BVP equation
can be replaced with an algebraic approximation at every node in the domain
(i.e., we are replacing a differential equation with N + 1 algebraic equations).
The algebraic approximation is(yi+1 − 2yi + yi−1

h2

)
+ a(xi)

(yi+1 − yi−1

2h

)
+ b(xi)yi = c(xi) (12.9)

Notice that we have transformed the problem from a differential equation into
a large system of linear algebraic equations. The unknowns are the values of yi
at every node.

The finite difference algorithm for linear BVPs has three sections:
1) The setup phase involves specifying the number of intervals between nodes,

N , which translates into N + 1 nodes numbered from 0 to N , the size of the

�

� �

�

218 12 Boundary Value Problems

domain by specifying a and b, and calculating the node spacing, h. The setup
phase also typically includes building a vector containing the locations of the
nodes, and allocating space for later storing the matrix and right-hand side
associated with the linear system of equations.

2) The middle section of the code is a loop through each node and adding
the appropriate coefficients into the matrix and right-hand side. The details
of this step are summarized below, but it is important to note that nodes
located at the boundary have boundary conditions that need to be handled
separately.

3) The last section of the algorithm involves solving the linear matrix problem
(using, e.g., numpy.linalg.solve()) and plotting the solution.

The finite difference equation at every node has the form:
(yi+1 − 2yi + yi−1

h2

)
+ a(xi)

(yi+1 − yi−1

2h

)
+ b(xi)yi = c(xi),

which is typically rewritten as

(yi+1 − 2yi + yi−1) +
h
2
⋅ a(xi)(yi+1 − yi−1) + h2b(xi)yi = h2c(xi). (12.10)

This equation exists at every node, and the resulting system of equations can
be written as a matrix problem with the following form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 + h2b(x1) 1.0 + ha(x1)
2

0 · · ·

1.0 − ha(x2)
2

−2 + h2b(x2) 1.0 + ha(x2)
2

0

0 1.0 − ha(x3)
2

−2 + h2b(x3) ⋱

⋮ 0 1.0 − ha(x4)
2

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎣

y1

y2

⋮

yN

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

h2c(x1)

h2c(x2)

⋮

h2c(xN)

⎤⎥⎥⎥⎥⎥⎦
(12.11)

It is important to note that the above linear matrix system does NOT include
boundary conditions (or an equation for node 0) and is only intended to give
the basic structure of the linear system. If the boundary condition y(x0) = 1.0
is given, then instead of having a finite difference equation for the first node,
which corresponds to the first row in the matrix equation, the boundary

�

� �

�

12.3 Finite Difference Method 219

condition equation would be used instead and the matrix problem would
become

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0 0 · · ·
1.0 − ha(x1)

2
−2 + h2b(x1) 1.0 + ha(x1)

2
0

0 1.0 − ha(x2)
2

−2 + h2b(x2) ⋱

⋮ 0 1.0 − ha(x3)
2

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎣

y0

y1

⋮

yN

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

1.0
h2c(x1)

⋮

h2c(xN)

⎤⎥⎥⎥⎥⎦
(12.12)

The finite difference method is used below to solve the BVP:
d2y
dx2 + y = 0

on the domain 0 ≤ x ≤ 𝜋∕2 with the Dirichlet boundary conditions x(0) = 1.0
and x(𝜋∕2) = 1.0. The finite difference equation at each node for this equation
is

(yi+1 − 2yi + yi−1) + h2 ⋅ yi = 0.0. (12.13)

The Python script is below.
import numpy
from numpy.linalg import solve
import pylab

N = 9 # number of intervals
x = numpy.linspace(0,numpy.pi/2.0,N+1)
h = x[1]-x[0]

Allocate space
A=numpy.zeros((N+1,N+1))
b = numpy.zeros(N+1)

Boundary condition at x=0
A[0,0] = 1.0
b[0] = 1.0

for i in range(1,N):
A[i,i-1] = 1.0
A[i,i] = -2.0 + h**2
A[i,i+1] = 1.0
b[i] = 0

�

� �

�

220 12 Boundary Value Problems

Boundary condition at x = pi/2.0
A[N,N] = 1.0
b[N] = 1.0

y = solve(A,b)
pylab.plot(x,y)

pylab.plot(x, numpy.cos(x)+numpy.sin(x))
pylab.xlabel(’x’)
pylab.ylabel(’y’)
pylab.show()

The equations associated with the boundary conditions (i.e., the equations
associated with nodes at the boundary) receive special handling in this algo-
rithm, but all the other finite difference equations (12.13) are handled with an
iterative loop. For this particular problem, an exact solution is available and this
solution is plotted on the same figure as the approximate solution. Even with
only 10 nodes, the finite difference approximation is almost indistinguishable
from the exact solution as shown in Figure 12.5.

12.3.1 Reactions in Spherical Catalysts

Many chemical and biochemical reactions (A → B) are facilitated by catalysts,
and these catalysts are often solid particles that the reactants diffuse into until
the reaction occurs at a catalytic site. Microbes that are used in biological

1.45

1.40

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00
0.0 0.2 0.4 0.6 0.8

x

y

1.0 1.2 1.4 1.6

Figure 12.5 Approximate solution to the BPV, d2 y

dx2
+ y = 0 using the finite difference

method with 10 nodes. The exact solution is also plotted (dashed line) and is almost
indistinguishable from the approximate solution.

�

� �

�

12.3 Finite Difference Method 221

processes to facilitate various reactions are often found in flocs, which are
biofilm particles that are similar to the solid catalyst particles of traditional
chemical processes. In either scenario, the physical processes of interest
include (1) diffusion into the catalyst particle and (2) reaction within the
particle. A material balance on a spherical catalyst particle gives the following
equation that includes both physical processes:

𝜕2c
𝜕r2 + 2

r
𝜕c
𝜕r

− 𝜙2c = 0, (12.14)

where r is the radial distance from the center of the sphere, c is the concentra-
tion of the reactant, and 𝜙 is the Thiele modulus, a dimensionless parameter
that describes the relationship between the reaction rate and the diffusion
rate. The two left most terms in the material balance capture diffusion, and the
term with the Thiele modulus captures the reaction. If the Thiele modulus is
large, then the reaction is much faster than diffusion and most of the reaction
happens near the surface and the concentration of reactant is zero over most
of the particle because the reactant is consumed before it can diffuse into
the particle. If the Thiele modulus is small, then the reaction is slow and the
particle has a high concentration of reactant everywhere.

The first derivative term in equation 12.14 must also be approximated using
a finite difference approximation. Using the standard centered difference
approximation, the first-order derivative term will be replaced with

2
r
𝜕c
𝜕r

≈ 1
r

ci+1 − ci−1

h
.

Note that the 2 in the numerator cancels with the 2 that appears in the
denominator of the centered difference approximation (equation 10.8). As a
result of this additional first derivative term, the terms off the main diagonal
of our finite difference matrix are going to have the form:

1.0 − h
r

(12.15)

after multiplying each equation by h2. It may be helpful to compare the
off-diagonal term in equation 12.15 with that in equation 12.12, and note that
the a(x) term from earlier is set to 2

r
here. Further, the terms along the main

diagonal are going to have the form

−2.0 − 𝜙2 ⋅ h2

due to the reaction term.
Typical boundary conditions for the reaction in a spherical catalyst

equation 12.14 are
dc
dr

= 0 at r = 0,

which basically says that if the concentration is the same on all surfaces of the
catalyst, then the concentration has to be symmetric inside the catalyst. This

�

� �

�

222 12 Boundary Value Problems

boundary condition can be rewritten using a finite difference approximation
for the first derivative as

c1 − c0

h
= 0.0,

where c0 is the concentration at the center (r = 0) and c1 is the concentration
at the point nearest the center (r = h). This equation can be simplified to c0 =
c1, and this equation will be used as the first equation in the linear system of
equations. The second boundary condition is that the concentration must be
known on the surface of the catalyst particle. For example, if the bulk concen-
tration of the reactant is 2.0 (dimensionless), then the boundary condition is

c = 2.0 at r = 1.0,

assuming that the radius of the particle is 1.0 (nondimensionalized).
The governing equation 12.14 and boundary conditions are solved using the

finite difference method in the script below.

import numpy
from numpy.linalg import solve
import matplotlib.pyplot as plt

N = 99 # number of intervals
phi = 5

finite difference point spacing
r = numpy.linspace(0,1.0,N+1)
h = r[1]-r[0]

Allocate space
A = numpy.zeros((N+1,N+1))
b = numpy.zeros(N+1)

Symmetry boundary condition at r=0
A[0,0] = -1.0
A[0,1] = 1.0
b[0] = 0.0

for i in range(1,N):
A[i,i-1] = 1.0 - h/r[i]
A[i,i] = -2.0 - phi**2 * h**2
A[i,i+1] = 1.0 + h/r[i]
b[i] = 0.0

Concentration boundary condition at r = 1.0
A[N,N] = 1.0
b[N] = 2.0

c = solve(A,b)

�

� �

�

12.3 Finite Difference Method 223

plt.plot(r,c)
plt.xlabel('radius')
plt.ylabel('concentration')
plt.title('$\phi = 5$')

The approximate solution to equation 12.14 is shown in Figure 12.6 for
two different values of 𝜙. Note that the left edge of the figures shows the
predicted concentration at the center of the particle and the right edge of
the figures shows the concentration at the surface, which should always be
2.0. Figure 12.6(a) shows 𝜙 = 1.0, which represents a reaction rate that is
approximately equal to the rate of diffusion, and Figure 12.6(b) shows 𝜙 = 5,
which represents a reaction rate that is 5 times the rate of diffusion causing
much lower concentrations near the center of the spherical catalyst particle.
The Python script above uses the fact that the matplotlib library supports
advanced mathematical equation editing when placing a title on a plot. The
“$” symbols are used to indicate a mathematical equation, and everything
appearing between the “$” signs is processed using LaTeX. One particularly

Figure 12.6 Concentration
inside a spherical catalyst
where a first-order reaction is
occurring. The center of the
particle is r = 0, and the
surface is at r = 1. The
concentration at the surface is
c = 2.0. (a) 𝜙 = 1 and (b)
𝜙 = 5, which represents a
much faster reaction rate.

2.00

1.95

1.90

1.85

1.80

1.75

1.70
0.0 0.2 0.4 0.6 0.8 1.0

Radius

(a)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Radius

C
on

ce
nt

ra
tio

n
C

on
ce

nt
ra

tio
n

2.0

1.5

1.0

0.5

0.0

ϕ = 5

ϕ = 1

�

� �

�

224 12 Boundary Value Problems

helpful feature that is used above is that Greek letters can be obtained by
placing a \ in front of the name of the letter. In the Python script above, \phi
is converted into the Greek letter, 𝜙. For more information regarding using
LaTeX to format mathematical equations, see [1] or any other LaTeX reference.

Problems

12.1 Use the shooting method to solve the BVP:
d2y
dx2 = −y

on the domain 0 ≤ x ≤ 𝜋

4
with y(0) = 1 and y(𝜋∕4) = 1.0.

12.2 Use the finite difference method to solve the BVP:
d2y
dx2 = − cos(x) − sin(x)

on the domain 0 ≤ x ≤ 𝜋∕2 and with the boundary conditions y(0) = 0
and dy(𝜋∕2)

dx
= −1.0. Note that this problem has the solution y = cos(x)

+ sin(x).
The one complication with this problem is the Neumann boundary
condition at x = 𝜋∕2. The derivative in this boundary condition can be
approximated as

yxN
− yxN−1

h
= −1.0.

This equation becomes the last row in the linear matrix problem, which
has the form:

⎡⎢⎢⎢⎢⎣

⋱ 1.0 + ha(xN−2)
2

0
1.0 − ha(xN−1)

2
−2 + h2b(xN−1) 1.0 + ha(xN−1)

2
0 −1.0 1.0

⎤⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎣
yN−2
yN−1
yN

⎤⎥⎥⎦

=
⎡⎢⎢⎣
0.0
0.0
−h

⎤⎥⎥⎦
.

12.3 You have been hired by Fisser Pharmaceuticals to analyze the potential
of a new drug for treating vitreous hemorrhage in the eye. The new
drug would be delivered topically to the cornea via eye drops. The drug
would diffuse toward the back of the eye (i.e., to the retina), and any
drug reaching the retina in the back of the eye would immediately be
taken away by the blood flow in the retina. The challenge is that the drug

�

� �

�

Problems 225

naturally decays relatively quickly as it diffuses away from the cornea
toward the retina.
The diffusion and decay of the drug are described by the equation:

d2c
dx2 − k ⋅ c = 0,

where the first term captures diffusion and the second term is decay. The
boundary conditions are c = 1.0 (dimensionless) at x = 0.0 (the cornea)
and c = 0.0 (dimensionless) at x = 2.0 cm (the retina). For the current
version of the drug, the decay constant is k = 20 cm−2.
The first question Fisser would like you to answer is: What is the
concentration at the vitreous hemorrhage site, which is at the center
of the vitreous at x = 1.0 cm? Is the concentration greater than 0.2
(dimensionless), the minimum effective concentration?
The second question is what decay rate, k, would approximately give a
concentration of 0.2 (dimensionless) at x = 1.0 cm?

12.4 You have been hired as a consultant by a company that manufactures
tubing for blood donations. The tubing transports blood from the
needle at the injection site to the collection bag. The inner wall of the
tube is 1 cm from the center of the tube (i.e., the inner diameter of the
tube is 2 cm) and is at blood or body temperature (38 ∘C). The outer
wall of the tube is at room temperature (23 ∘C) and is 1.3 or 1.8 cm from
the center of the tube (Figure 12.7). The temperature of the tubing wall
material varies between the inner wall temperature and the outer wall
temperature and is governed by the equation:

d2T
dr2 + 1

r
dT
dr

= 0.

The approximate solution to this equation can be found by dividing the
domain, 1.0 ≤ r ≤ 1.3 or 1.0 ≤ r ≤ 1.8 into discrete points and solving
the finite difference approximation equation at each point:(Ti+1 − 2Ti + Ti−1

h2

)
+ 1

ri

(Ti+1 − Ti−1

2 ⋅ h

)
= 0,

where h is the distance between the discrete points in the radial direc-
tion, Ti the temperature of point i, and ri the radial location of point i.
The company is debating between the tubing with an outer wall diameter
of 1.3 and 1.8 cm. One factor in choosing the best diameter tube is that
there is some concern that large temperature gradients (approximated as
(Ti − Ti−1)∕h) will cause the tubing to fracture and fail. Your consulting
contract requires you to submit a brief report with your recommenda-
tion regarding tubing thickness selection. The report should summarize
your findings and include figures showing temperature versus radius for

�

� �

�

226 12 Boundary Value Problems

38oC

23oC

r

Figure 12.7 A thick cylindrical tube for
transporting blood from an individual into a
collection bag. The inner wall (1.0 cm from the
center) of the tube is at 38 ∘C and the outer wall
(1.3–1.8 cm from the center) is at 23 ∘C.

the two different tube thicknesses and reports the temperature gradient
at some location for each tube thickness (Figure 12.7).

Reference

1 Lamport, L. (1994) LaTeX: A Document Preparation System, Addison-Wesley,
Upper Saddle River, NJ, 2nd edn.

�

� �

�

227

13

Partial Differential Equations

A goal in developing a mathematical model is to create the simplest possible
model that captures the features of interest in the system. In many cases,
the variables we are interested in calculating are primarily changing in time,
and spatial variation can be either ignored or captured through a lumping
parameter. For example, in a well-mixed reactor or even a region of the body,
it is often possible to develop useful and informative models that include
only time derivatives and not spatial derivatives. These models are typically
initial value problems. In other cases, there are important spatial variations
in temperature or concentration, but because the system is continuous and
nearly steady state, the small temporal variations can be ignored. For the
case of a membrane or a large slab, it is often sufficient to only model spatial
changes in one direction, which leads to a one-dimensional boundary value
problem. However, in other cases, it is necessary to examine variation of the
quantity of interest in multiple dimensions – either time and spatial variation
or variation in multiple spatial dimensions, which leads to partial differential
equations (PDEs). These equations have two or more independent variables
and they have derivatives with respect to each of these variables.

13.1 Finite Difference Method for Steady-State PDEs

The finite difference method was developed in the previous chapter for
the solution of boundary value problems. The objective of this chapter is
to extend this method to multiple dimensions and PDEs. This category of
problem is still called boundary value problems, but algorithm development
is much more complex and fraught with pitfalls when multiple dimensions
are involved. Finite difference algorithms for PDEs are more complex than any
algorithm previously developed in this book. The presentation here will break
the full algorithm into its major sections and each section will be discussed
independently. The primary example used in this chapter is the solution to

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

228 13 Partial Differential Equations

Laplace’s equation in two dimensions:

𝜕2c
𝜕x2 + 𝜕2c

𝜕y2 = f (x, y). (13.1)

Solving this equation requires the determination of the function c such that
its second derivative with respect to x plus its second derivative with respect
to y is equal to f (x, y), and c must satisfy the required boundary conditions.
This equation describes diffusion through solids and biological tissues, and it
describes conductive heat transport through a stationary medium. At the end
of this section, a second example is presented that includes a convective flux
term.

13.1.1 Setup

Finite difference algorithms typically begin with a setup phase where the size
of the domain and the number of nodes are specified. The algorithm developed
here is based on M intervals (i.e., M + 1 nodes) in the x-direction and N inter-
vals in the y-direction. Ideally, the spacing between the nodes in each direction
is equal but that is not required. What is required is that the spacing between
the nodes in each direction be uniform. Figure 13.1 shows a typical node in the
domain. If i is used as an index for nodes in the x-direction, and j is used as an
index for nodes in the y-direction, then the center node in this figure is node(i, j).
The four nearest neighboring nodes are also shown in this figure. As we will see
below, each node is effectively coupled to these four nearest neighbors when we
use the finite difference approximation presented later.

xi xi+1
xi−1

yj

yj+1

yj−1

x

y

Figure 13.1 If the finite difference method is used for a two-dimensional boundary value
problem, each node is connected to its four nearest neighbors.

�

� �

�

13.1 Finite Difference Method for Steady-State PDEs 229

The first section of Python code for the two-dimensional Laplace problem
using finite differences is shown below.

import numpy
from numpy.linalg import solve
import pylab

M = 15 # intervals in x-direction
N = 15 # intervals in y-direction

west = 0.0 # edge locations
east = 1.0
south = 0.0
north = 1.0

node locations and spacing
x = numpy.linspace(west,east,M+1)
y = numpy.linspace(south,north,N+1)
h = x[1]-x[0]
k = y[1] - y[0]
h2k2 = h**2 / k**2
coeff = 2*(h2k2+1)

plot the mesh/grid
X,Y = numpy.meshgrid(x,y)
pylab.plot(X,Y,'o')

Allocate space
totalNodes = (M+1)*(N+1)
A=numpy.zeros((totalNodes,totalNodes))
b = numpy.zeros(totalNodes)

The scipy.linalg.solve() function is imported because it is used later
for solving the linear matrix problem that is the result of the finite difference
approximation. The variables M and N are set to the number of intervals
between nodes in the x and y directions, respectively. Larger values for M and
N will give a more accurate approximate solution, but values larger than about
100 will have a significant computational cost. The total number of nodes in the
domain is (M + 1)(N + 1) so M = 100 and N = 100 will result in over 10,000
nodes and a linear matrix problem with over 10,000 unknowns. This is about
the largest acceptable matrix size for a solver based on Gaussian elimination.
The variables east, west, south, north are used to specify the
location of the boundaries of the rectangular domain of the problem. Some
authors of numerical algorithms find those variable names to be intuitive while

�

� �

�

230 13 Partial Differential Equations

others dislike (hate) those variable names because they cannot remember
which direction is east and which is west, for example. Different variable
names are, of course, acceptable. For example, some algorithm writers use the
variables left, right, bottom, top instead or even a, b, c, d.

The next stage in the setup phase of this algorithm is to build vectors holding
the locations of the nodes in the x and y directions. On the basis of these
node locations, the spacing between the nodes, h and k, can be calculated.
The variables h2k2 and coeff are needed later in the algorithm. The
numpy.meshgrid() function converts the vectors x and y into 2D arrays
that hold the x and y locations of every node. These arrays are only needed for
plotting the solution at the end of the algorithm although they can be used
here to generate a plot with the locations of the nodes included (this line is
currently commented out). The final step in the setup phase is to calculate the
total number of nodes and, hence, the total number of unknowns in the linear
matrix problem. Once this is known, space for the matrix and right-hand-side
vector can be allocated.

13.1.2 Matrix Assembly

The model problem that is used here is
𝜕2c
𝜕x2 + 𝜕2c

𝜕y2 = 0 (13.2)

on the domain 0 ≤ x ≤ 1.0 and 0 ≤ y ≤ 1.0 and c = 0 on all boundaries except
for the west (left) boundary, which has c = sin(y). Approximating the deriva-
tives with centered finite difference equations (10.12) leads to the algebraic
equation

ci+1,j − 2ci,j + ci−1,j

h2 +
ci,j+1 − 2ci,j + ci,j−1

k2 = 0 (13.3)

and multiplying this equation by h2 leads to

−2

[(
h
k

)2

+ 1

]
ci,j + ci+1,j + ci−1,j +

(
h
k

)2

(ci,j+1 + ci,j−1) =

h2f (x, y) = 0. (13.4)

This algebraic, finite difference approximation of the original PDE exists at
each node and makes up one row (or one equation) in the linear matrix
problem. Equation 13.4 includes coefficients for five unknowns, reflecting that
each equation connects a center node, ci,j, to its four nearest neighbors (north,
east, south, and west).

Assembly of the linear matrix problem begins with an outer loop through
each row of nodes in the y-direction followed by an inner loop through each

�

� �

�

13.1 Finite Difference Method for Steady-State PDEs 231

column of nodes in the x-direction. The combination of these two loops is
that each node in the domain is visited once – starting in the lower left corner
(southwest corner), proceeding to the right across the first row, then up to
the next row, and then next until we end in the upper right corner (northeast
corner). At each node, the appropriate coefficients from equation 13.4 are
added to the matrix, unless the node is located on a boundary and then
the correct boundary condition must be added to the linear system of
equations.

Before examining the algorithm for assembling the matrix, it is important to
recognize that we need a mechanism for mapping node (i, j) to a unique row in
the matrix (i.e., to a unique unknown or node number). In the previous chapter,
where we examined one-dimensional problems, this was trivial because node i
corresponded to the ith unknown and ith row of the matrix. Now, however, we
have node (i, j)due to the two-dimensional nature of the problem. (At this point,
some students suggest using a three-dimensional matrix, but this is not the
correct solution.) In order to uniquely map node (i, j) to a particular unknown
number, we will use the equation

node = j ∗ (M + 1) + i, (13.5)

where i = (0,… ,M) and j = (0,… ,N). Therefore, for node (0, 0), we get
node = 0; for node (0, 1), we get node = M + 1; and for node (M,N), we get
node = N ∗ (M + 1) + M = (N + 1) ∗ (M + 1) − 1. This same equation can be
used to calculate the unique node number of the neighboring nodes to the
north, east, south, and west.

The section of Python code below assembles the matrix for the test problem.

for j in range(0,N+1):
for i in range(0,M+1):

node = j*(M+1)+i
Enode = j*(M+1)+i+1 # node to the east
Wnode = j*(M+1)+i-1 # node to the west
Snode = (j-1)*(M+1)+i # node to the south
Nnode = (j+1)*(M+1)+i # node to the north

if (i == 0): # check for west boundary
A[node,node] = 1.0
b[node] = numpy.sin(numpy.pi*y[j])

elif (i == M): # check for east boundary
A[node,node] = 1.0
b[node] = 0.0

elif (j == 0): # check for south boundary
A[node,node] = 1.0
b[node] = 0.0

elif (j == N): # check for north boundary
A[node,node] = 1.0
b[node] = 0.0

�

� �

�

232 13 Partial Differential Equations

else:
A[node,node] = -coeff
A[node,Enode] = 1.0
A[node,Wnode] = 1.0
A[node,Snode] = h2k2
A[node,Nnode] = h2k2
b[node] = h**2 * 0.0

This section of code consists of two nested loops that cause us to ultimately loop
through every node in the domain. The numbers of the node and its neighbors
are calculated first. Then, the algorithm checks to see if a node is on the bound-
ary. It is important to do this first because if a node is on the boundary, then one
or two of its neighbors does not exist and trying to write entries into the matrix
for nodes that do not exist will only lead to crashes and error messages. If the
node is on the boundary, the appropriate boundary condition can be applied
(in this case, all boundary conditions are Dirichlet conditions and all are zero
except for the east boundary). Finally, if the node is not on the boundary, the
appropriate values, based on the finite difference equation 13.4 , are added into
the matrix and the right-hand side.

13.1.3 Solving and Plotting

The final code segment solves the linear matrix problem (scipy.linalg.
solve() is recommended), and the result is returned as a one-dimensional
vector. The contour plotting function in Matplotlib typically requires that the
solution data be in an array with the same shape as the arrays (X and Y) that
hold the locations of the nodes for the two-dimensional finite difference mesh.
Each row in the array corresponds to a row of nodes in the domain. The solu-
tion vector can be reshaped using the numpy.resphape() function before
the plotting function is called. Depending on the plotting routine that is used,
additional labels and color bars may be helpful. The Python code segment below
finalizes the process of solving the Laplace problem in two dimensions using
finite differences. The resulting contour plot is shown in Figure 13.2

z = solve(A,b)
Z = z.reshape(M+1,N+1)

Plotting
CT = pylab.contour(X,Y,Z)
pylab.clabel(CT)
pylab.xlabel('x')
pylab.ylabel('y')
pylab.show()

�

� �

�

13.2 Convection 233

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

0.150

0.300

0.450

0.750

0.900

0.600

1.0
x

y

1.0

Figure 13.2 Contours of the solution for the model problem.

13.2 Convection

The Laplace problem examined in the first part of this chapter is used to
model diffusion or heat conduction in stagnant domains. If there is also fluid
movement or convection in addition to the diffusion or conduction, then
an additional term is required in the model equation. To model steady-state
diffusion and convection in two dimensions with the fluid velocity being given
by the vector (u, 𝑣), the following equation is used:

𝜕2c
𝜕x2 + 𝜕2c

𝜕y2 − u ⋅
𝜕c
𝜕x

− 𝑣 ⋅
𝜕c
𝜕y

= 0. (13.6)

Using the same boundary conditions and domain as before, and approximating
the second-order derivatives with centered finite difference equations (10.12)
and the first-order derivatives with backward finite difference equations (10.7)
leads to the algebraic equation

ci+1,j − 2ci,j + ci−1,j

h2 +
ci,j+1 − 2ci,j + ci,j−1

k2 −

u ⋅
ci,j − ci−1,j

h
− 𝑣 ⋅

ci,j − ci,j−1

k
= 0. (13.7)

�

� �

�

234 13 Partial Differential Equations

It is very important to recognize that less accurate, backward differ-
ence equations were used here instead of the more accurate centered
difference equations (10.8) for first-order derivatives. When applying a finite
difference approximation to the convective term, it is important that the
approximation of the derivative be done in such a way as to include only the
nodes that are upwind of the node of interest. The mathematical justification
for this choice is available in a number of excellent books [1], but here we will
simply state that not using an upwind difference approximation usually leads
to numerical instability and significant error in the approximate solution. An
analogy of questionable accuracy is that it is difficult to detect changes in smell
(concentration) when facing downwind but it is relatively simple when facing
upwind. The finite difference equation above is based on the assumption that
both components of the wind velocity, (u, 𝑣), are positive. If one or both of these
velocities is negative, then the finite difference equation must be modified to
use the forward first-derivative approximations (equation 10.5) in the upwind
direction.

Adding convection to the previous two-dimensional finite difference code is
relatively simple and only requires (1) adding a wind velocity variable and (2)
adding additional terms to the matrix for the convective part of the equation.
The Python script for the test problem with a fluid velocity vector of (5.0, 5.0)
is reproduced completely below.
import numpy
from numpy.linalg import solve
import pylab

M = 15 # intervals in x-direction
N = 15 # intervals in y-direction

west = 0.0 # edge locations
east = 1.0
south = 0.0
north = 1.0

node locations
x = numpy.linspace(west,east,M+1)
y = numpy.linspace(south,north,N+1)
h = x[1]-x[0]
k = y[1] - y[0]
h2k2 = h**2 / k**2
coeff = 2*(h2k2+1)

plotting the grid/mesh
X,Y = numpy.meshgrid(x,y)

�

� �

�

13.2 Convection 235

pylab.plot(X,Y,'o')

Wind
both MUST be positive due to differencing
wind = numpy.array([5.0,5.0])

Allocate space
totalNodes = (M+1)*(N+1)
A=numpy.zeros((totalNodes,totalNodes))
b = numpy.zeros(totalNodes)

for j in range(0,N+1):
for i in range(0,M+1):

node = j*(M+1)+i
Enode = j*(M+1)+i+1 # node to the east
Wnode = j*(M+1)+i-1 # node to the west
Nnode = (j+1)*(M+1)+i # node to the north
Snode = (j-1)*(M+1)+i # node to the south

if (i == 0): # check for west boundary
A[node,node] = 1.0
b[node] = numpy.sin(numpy.pi*y[j])

elif (i == M): # check for east boundary
A[node,node] = 1.0
b[node] = 0.0

elif (j == 0): # check for south boundary
A[node,node] = 1.0
b[node] = 0.0

elif (j == N): # check for north boundary
A[node,node] = 1.0
b[node] = 0.0

else:
A[node,node] = \
-coeff - h*wind[0] - h**2*wind[1]/k
A[node,Enode] = 1.0
A[node,Wnode] = 1.0 + h*wind[0]
A[node,Nnode] = h2k2
A[node,Snode] = h2k2 + h**2*wind[1]/k
b[node] = h**2 * 0.0

z = solve(A,b)
Z = z.reshape(M+1,N+1)

Plotting solution
CT = pylab.contour(X,Y,Z)

�

� �

�

236 13 Partial Differential Equations

0.8

0.6

0.4

0.2

0.0
0.0

0.
15

0

0.
45

0

0.
30

0

0.
75

00.900 0.
60

0

0.2 0.4 0.6 0.8 1.0
x

y

1.0

Figure 13.3 Contours of the solution for the model problem with a convective flow of
(5.0, 5.0), that is, toward the northeast corner.

pylab.clabel(CT)
pylab.xlabel('x')
pylab.ylabel('y')
pylab.show()

The convective term can have a significant impact on the solution to the
model problem, depending on the magnitude of the wind. The contours
associated with a fluid velocity of (5.0, 5.0) are shown in Figure 13.3. Once the
magnitude of the fluid velocity exceeds about 100, the problem quickly becomes
more numerically demanding and a much finer mesh (i.e., more nodes) is
likely to be required to get an accurate result. An inaccurate result is almost
always inexpensive from a computational standpoint, but accuracy can be
costly.

13.3 Finite Difference Method for Transient PDEs

PDEs have multiple independent variables, and the first part of this chapter
examined problems where all the independent variables were spatial variables.

�

� �

�

13.3 Finite Difference Method for Transient PDEs 237

These equations described changes in two or more spatial directions. The other
possibility is that one of the independent variables is time. The final part of this
chapter examines problems where there are derivatives with respect to time
and space in the same equation. This class of PDEs is often called “parabolic”
PDEs. Before examining a finite difference algorithm to solve a parabolic PDE
problem, let us briefly discuss controlled drug release.

Researchers are increasingly developing devices that gradually release a phar-
maceutical drug over time. In most cases, a gradual release is preferred to the
burst release that is associated with the injection of a drug. One type of device is
based on the embedding of the drug in a polymer and allowing the drug to grad-
ually diffuse out of the polymer over time. The polymeric material is eventually
passed through the digestive track after the drug has been gradually released via
diffusion. If we assume that the device is shaped like a chip (think poker chip or
coin), then the diffusion occurs primarily in one spatial direction – the direction
that requires the shortest distance for diffusion. In this case, the concentration
is described by the equation

dc
dt

= d2c
dx2 , (13.8)

where  is the diffusivity and c the concentration within the device. We
assume that the distance from the surface of the device, x = 0, to the center
is 1.0 (dimensionless). As a result, the spatial domain is 0 ≤ x ≤ 1.0. Further,
we assume that the concentration at the surface is zero, that is, c(x = 0) = 0.0,
implying the any drug that diffuses to the surface is immediately swept away,
and the device is assumed symmetric about the center, that is,

dc
dx

||||x=0
= 0.

Finally, we assume that the initial concentration is 1.0 (dimensionless) every-
where except the surface, that is, c(t = 0, 0 < x ≤ 1.0) = 1.0.

We have previously discussed how to replace the derivatives in the PDE with
finite difference approximations. For this problem, the time that we wish to
simulate is going to be divided into N discrete steps and we are going to approx-
imate the time derivative with a forward difference approximation (i.e., use the
forward Euler method, equation 11.3). The one spatial dimension is going to
be divided into M intervals (or M + 1 nodes) that span from 0.0 to 1.0, and the
second derivative in space will be replaced with a centered difference approx-
imation (10.12). The result of the finite difference approximation is that the
original PDE is replaced with the finite difference equation:

ci,new − ci,old

𝛿t
= ci+1,old − 2ci,old + ci−1,old

h2 , (13.9)

where i is the index for the spatial location of the node, ci,old refers to the concen-
tration at node i at the previous time step, and ci,new refers to the concentration

�

� �

�

238 13 Partial Differential Equations

at the next time step (i.e., the unknowns). This equation is usually rearranged
to give

ci,new = ci,old + 𝛿t ⋅ 
h2 [ci+1,old − 2ci,old + ci−1,old]. (13.10)

Notice that explicit time stepping is used so we can calculate the new concen-
tration using only concentrations from the previous time step. This equation
also shows how the new concentration at each node depends on three concen-
trations from the previous time step – the concentration at the same node and
the two neighboring nodes. Figure 13.4 summarizes the connection between
the concentration at a node and its neighboring nodes from the previous time
step.

A Python script that utilizes the finite difference approximation to solve the
transient diffusion problem, that is, the drug release problem, is shown below.
The algorithm is similar to the others shown in this chapter in that the first
section of the algorithm performs some basic setup operations. The number of
time and space intervals is specified, the size of the domain and duration of the
simulation are set, and some vectors containing the spatial node locations and
time points are constructed. One additional and important step in the setup
phase is that a vector must be constructed that contains the initial conditions.
import numpy
import pylab

M = 15 # intervals in x-direction
N = 200 # total number of time steps

xi xi+1
xi−1

tj

tj+1

x

t

Figure 13.4 Diagram illustrating the finite difference approximation for a transient PDE with
one spatial dimension. Time is shown on the y-axis and space is on the x-axis. When solving
for the concentration at a node for the next time step, the concentration will depend on
three adjacent nodes from the previous time step.

�

� �

�

13.3 Finite Difference Method for Transient PDEs 239

left = 0.0 # edge locations
right = 1.0
start = 0.0
stop = 20.0
diffh2 = 5.0

node locations
x = numpy.linspace(left,right,M+1)
t = numpy.linspace(start,stop,N+1)
h = x[1]-x[0]
dt = t[1] - t[0]

Initial conditions
c_old = numpy.ones(M+1)
c_old[0] = 0.0
c_new = numpy.zeros(M+1)
Plot initial conditions
pylab.plot(x,c_old)
pylab.xlabel('x')
pylab.ylabel('c')

time loop
for j in range(1,N+1):

c_new[0] = 0.0
spatial loop

for i in range(1,M):
tmp = c_old[i-1]-2*c_old[i]+c_old[i+1]
c_new[i] = c_old[i]+dt*diffh2*(tmp)

c_new[M] = c_new[M-1]
c_old = c_new.copy()

Plot every 20th time step
if j%20 == 0:

pylab.plot(x,c_new)

pylab.show()

The main section of the algorithm consists of two loops. The outer loop is a loop
through the time steps, and the inner loop cycles through the spatial nodes. The
algorithm operates by calculating new concentrations at every spatial location
before moving on to the next time step. Care must be taken to set the boundary
conditions. The Dirichlet boundary condition at x = 0 is set before proceeding
through the inner loop through the spatial nodes. The Neumann boundary con-
dition at x = 1 is enforced by setting the concentration of the edge node to be
equal to its nearest neighbor. The justification for doing this comes from the
boundary condition equation:

�

� �

�

240 13 Partial Differential Equations

dc
dx

||||x=1
=

cM − cM−1

h
= 0

or

cM = cM−1.

This simulation uses a large number of time steps (200) and plotting the solution
at every time step creates a very busy figure. To simplify the figure showing the
results, the solution is only plotted every 20th time step by checking to see if
the remainder of dividing the time step number by 20 is zero. The results from
running the algorithm are shown in Figure 13.5.

Observant readers may be surprised that the algorithm above used 200 time
steps and only 16 spatial nodes. This choice can be justified in part by observ-
ing that the approximation of the time derivative is first-order (temporal error
is O(𝛿t) and the spatial derivative approximation is second-order (O(h2)) so we
should expect to need a higher temporal resolution. An alternative justification
can be provided by simply rerunning the algorithm with only 40 time steps. The
result of this numerical experiment is shown in Figure 13.6. In this case, the
approximation error is seen to grown exponentially – a clear symptom of a stiff
differential equation. Recalling that stiff differential equations should be solved
using an implicit time-stepping method, we simply state here that switching
to an implicit time-stepping method like backward Euler will avoid the expo-
nential error growth seen here. The disadvantage of switching to implicit time
stepping is that a linear (or nonlinear) matrix problem must be solved every
time step. For this reason, many algorithms use a sufficiently small step size

0.6

Increasing time

0.8 1.0
x

c

0.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 13.5 Plot of the concentration for the model problem shown every 20th time step.
The initial concentration is the highest, and as time increases, the concentration decreases.

�

� �

�

Problems 241

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8
0.0 0.2

1e36

0.4 0.6 0.8 1.0
x

c

Figure 13.6 Plot of the concentration for the model problem using only 40 time steps. The
error grows exponentially, and the final solution is completely without value.

to maintain stability. The time step size must be kept smaller than a constant
times the node spacing squared, that is, 𝛿t < kh2. Techniques for determining k
are available in most numerical analysis books or k can be determined through
numerical experiments.

Problems

13.1 A few days every year, it is possible to detect an unpleasant smell on
the campus of the University of Colorado at Boulder. The (incorrect)
explanation given to students was that this was the “Husker smell” ema-
nating from Nebraska. (The correct explanation identified a company
in Greeley, Colorado, that occasionally produced bad smells.) Develop
a model of convection and diffusion over the state of Colorado. Model
Colorado as a unit square (feel free to be more accurate if you are so
compelled as the state is definitely not a square) and apply zero concen-
tration boundary conditions to all boundaries except the eastern half
of the north boundary (i.e., the right half of the top boundary) and the
northern half of the east boundary (i.e., the top half of the right bound-
ary), which roughly corresponds to the shared border between Nebraska
and Colorado. (It may be helpful to consult a map of the United States.)
Along the portion of Colorado’s border that is shared with Nebraska,
apply a concentration of 1.0. Determine the concentration in the center
of the state of Colorado on a windless day and then the concentration
for wind velocities in the x-direction only between −10.0 and +10.0.

�

� �

�

242 13 Partial Differential Equations

13.2 You have been hired by the Department of Homeland Security to
study the potential for Canada to attack Montana with a noxious odor.
The concern is that Canada will release a noxious odor from either
Lethbridge or Medicine Hat (both towns are just north of the northern
border of Montana) and the noxious odor will diffuse in all directions,
including into Montana. The odor will drive people out of Montana
and then the Canadian Mounties (see, Do-Right, Dudly) will be able to
move in and occupy Montana.
The diffusion of the noxious odor is governed by the two-dimensional
Laplace equation:

𝜕2c
𝜕x2 + 𝜕2c

𝜕y2 = 0,

where the domain of interest is the state of Montana, which should be
approximated as a rectangle that is 500 miles west-to-east and 250 miles
south-to-north. If the noxious odor is released from Medicine Hat, then
the concentration of the odor along the north border should be approx-
imated as

c = sin
(
𝜋 ⋅

x
500

)

because Medicine Hat is north of central Montana. The concentration
along all other borders (west, south, and east) should be approximated
as zero. If the noxious order is release from Lethbridge, which is north of
western Montana, then the concentration along the north border should
be approximated:

c = sin
(
𝜋 ⋅

x
250

)
, 0 ≤ x ≤ 250

and

c = 0, 250 < x ≤ 500,

where x is always the distance from the western border of Montana.
In both the cases, the peak concentration along the border is 1.0 (dimen-
sionless). You should plot the concentration everywhere in Montana
and, in particular, determine the concentration in Bozeman, Montana,
which can be approximated as 100 miles from the western border and
50 miles from the southern border. The citizens of Bozeman will be able
to stay and defend the state if the concentration is less than 0.10 (dimen-
sionless).
The final concern from the Department of Homeland is that the noxious
odor will be release during a polar vortex, which will generate a wind
from North to South with a velocity of−2.0 (dimensionless). In this case,
the transport of the noxious odor will be governed by the equation:

�

� �

�

Problems 243

𝜕2c
𝜕x2 + 𝜕2c

𝜕y2 = −2.0 ⋅
𝜕c
𝜕y

.

Repeat the previous analysis under conditions of the polar vortex.

13.3 Nicotine patches are placed on the skin of an individual and they
diffusively deliver nicotine across the skin and other tissues. They
are primarily used by individuals that are trying to stop consuming
cigarettes and provide an alternative nicotine source during the
transition period away from cigarettes. You have been hired by a man-
ufacturer of nicotine patches to predict the concentration of nicotine
in the tissue near the patch over a 24- h time period.
The concentration of nicotine in the tissue can be accurately described
by the equation:

𝜕c
𝜕t

= D 𝜕2c
𝜕x2 − k ⋅ c,

where c is the concentration in mg/cm3, t the time in h, D = 0.1 cm2/h
the diffusivity, and k the first-order decay rate of nicotine in h−1.
The company has asked you to approximately solve this equation using
an explicit finite difference approximation, using the finite difference
equation:

ci,new = ci,old + 𝛿t ⋅ D
h2 [ci+1,old − 2ci,old + ci−1,old] − 𝛿t ⋅ k ⋅ ci,old

with an initial concentration of zero everywhere except the skin surface
adjacent to the patch. The skin surface next to the patch should maintain
a fixed concentration of 1.0 mg/cm3 for at least the 24-h period you have
been asked to model. The soft tissue beneath the patch is 2-cm thick and
then an impermeable bone prevents further diffusion of the nicotine.
As a result, the model should have a no-flux boundary condition (i.e.,
cimax

= cimax−1) at the other end of the spatial domain, 2 cm away from the
skin surface.
The rate at which nicotine decays in the tissue varies significantly from
one individual to another. At one extreme, some individuals lack the
proteins that normally break down the nicotine so k is effectively zero.
At the other extreme, some individuals rapidly break down nicotine so
k can be as high as 1.0 h−1.
Your report to the company should contain predictions (i.e., figures) of
nicotine concentration at different points between the skin and the bone
at different time points for a total time period of 24 h. The predictions
should include both extreme cases, k = 0.0 h−1 and k = 1.0 h−1. It is also
suggested that you vary the number of spatial points/intervals and the
number of time steps to convince yourself and the company that has

�

� �

�

244 13 Partial Differential Equations

hired you that the approximate solution is a good approximation to the
original equation (hint: a good approximation should change little with
changes in the number of temporal or spatial intervals).

Reference

1 Donea, J. and Huerta, A. (2003) Finite Element Methods for Flow Problems,
John Wiley & Sons, Ltd., West Sussex, England.

�

� �

�

245

14

Finite Element Method

This is an optional chapter on the use of the finite element method (FEM) and
the FEniCS library. The FEniCS library can be installed in two different ways:

1) Windows and MacOS uses should begin by installing the Docker Toolbox
(www.docker.com/products/docker-toolbox), and then following the
instructions on the FEniCS project download page (fenicsproject.org/
download). This approach will install virtual machine software on Windows
or MacOS that will run the Linux operating system within Windows or
MacOS. The biggest disadvantage of this approach is that it can be difficult
to share files between the base Windows or MacOS operating system and
the Linux operating system in the virtual machine. The FEniCS Docker page
is very helpful for setting up Docker and FEniCS properly with Windows
(fenics-containers.readthedocs.io/en/latest).

2) If you have a computer running Ubuntu Linux (or one of the derivatives of
this operating system such as Mint), you can add the PPA for FEniCS and
install FEniCS with a single command (sudo apt-get install fen-
ics).

As of 2016, the FEniCS library required Python 2.7 and support did not yet
exist for Python 3.x.

14.1 A Warning

The FEM is an advanced numerical approach to solving partial differential
equations and is typically only taught at the graduate level. This chapter only
briefly develops the FEM. The interested reader is referred to the suggested
reading at the end of the chapter for further information regarding FEM.
The primary focus here is to present a tool (FEniCS) that advanced readers
may appreciate later in their academic careers for solving PDEs in more
complicated geometries and with greater computational efficiency.

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

246 14 Finite Element Method

14.2 Why FEM?

The FEM is used to solve partial differential equation such as those that were
solved earlier using the finite difference method. Why, we might ask, should we
discuss anything beyond the finite difference method? Why do people use FEM
instead of finite differences? There are a number of reasons for using FEM, but
three reasons are typically given more often than any others:

1) The FEM is easy to use when the shape of the domain is complex. If we wish
to solve Laplace’s equation on a domain that is shaped like the human brain
(and this is a real problem in medical imaging), then we need to use FEM
because finite difference cannot accurately capture the shape of complex
domains.

2) The FEM is typically easier to extend to higher order approximations.
Implementing a fourth- or even eighth-order accurate FEM method is
relatively straightforward. This level of accuracy is rarely needed, but it can
be a real advantage in some situations like modeling blood flow in the aorta
that is nearly turbulent.

3) Rigorous mathematical analysis of FEM is much more extensive than
analysis of finite differences.

14.3 Laplace’s Equation

The use of FEniCS and the FEM will only be briefly introduced here through the
lens of an example problem. An excellent book [1] and a large library of example
problems (fenicsproject.org) are available for FEniCS, and the interested reader
should utilize these resources to gain a much more comprehensive understand-
ing of the FEniCS library and FEM. The FEniCS project is actually a collect of
software packages that are used in concert to solve differential equations using
FEM. The central software package that to some extent ties everything together
is called dolfin. Many of the packages, including dolfin, are written in C++ for
faster execution, but wherever necessary, the C++ code has been wrapped so
that it can be called from Python. To utilize the various FEniCS packages within
a Python code, the first step is to import the dolfin library with from dolfin
import *. Since this is often the only library that is imported, we do not need
to worry about importing multiple objects with the same name.

14.3.1 The Mesh

Whenever we use FEM, we always need to start with a mesh. A mesh is a divi-
sion of the problem domain into small polyhedral shapes. In two dimensions,
we typically divide the domain into triangles or quadrilateral shapes. For simple
domains, such as squares, rectangles, and circles, FEniCS has built in mesh gen-
erators that automatically divide the domain into triangles. The function call

�

� �

�

14.3 Laplace’s Equation 247

0.8

0.6

0.4

0.2

Mesh.
var: mesh

0.2 0.4 0.6 0.8
x-axis

y-
ax

is

Figure 14.1 Triangular mesh from the UnitSquareMesh() function.

mesh = UnitSquareMesh(32, 32) divides a unit square into triangles
with 32 triangles in each direction. The resulting mesh is shown in Figure 14.1.
For more complex shapes, a number of software packages are available that pro-
vide a CAD-like interface for defining the domain (e.g., our domain might be a
mountain bike) and then divide the domain into small polyhedral shapes of a
desired type and size. The Cubit software from Sandia National Laboratory is
one example.

14.3.2 Discretization

The basic idea behind the FEM is to select a set of mathematical functions
called the function space and then determine the exact function on each ele-
ment that best satisfies the original PDE. The most common function space
by a significant margin is polynomial functions of a selected order. While this
is a pretty simple idea, the actual implementation is much more difficult. To
construct a function space in FEniCS, call V = FunctionSpace(mesh,
‘Lagrange’, 2) where “Lagrange” specifies Lagrange polynomials and “2”
is the polynomial degree (i.e., quadratic polynomials).

Recall that Laplace’s equation is

∇2u = d2u
dx2 + d2u

dy2 = f (x, y) (14.1)

�

� �

�

248 14 Finite Element Method

and the same boundary conditions as before will be used here (u = sin(𝜋y) on
the west boundary, u = 0 elsewhere). We begin by integrating both sides of this
equation over the entire domain and multiplying both sides of the equation by
a “test” function, 𝑣, giving

∫Ω
(∇2u)(𝑣) dΩ = ∫Ω

f (x, y) ⋅ 𝑣dΩ. (14.2)

Using integration by parts, this equation becomes

∫Ω
(∇u)(∇𝑣)dΩ + boundary terms = ∫Ω

f (x, y) ⋅ 𝑣dΩ. (14.3)

This form of the equation is called the weak form, and the boundary terms
cancel along all interior boundaries. Along external boundaries, the bound-
ary terms are used to enforce Neumann boundary conditions or they are not
present when we have Dirichlet boundary conditions.

14.3.3 Wait! Why Are We Doing This?

The short answer is to ask a mathematician. The long answer will result when
you ask a mathematician. The abbreviated answer is that we are trying to find
a polynomial approximation of u on every element. Between elements the
approximate solution is continuous, but the derivative is not continuous. By
multiplying by a test function, we were able to move one of the two derivatives
off of u and onto 𝑣. Now we have an equation that we can actually evaluate over
the domain to determine an approximate solution. On each element we are
trying to determine, essentially, the polynomial coefficients for that element.
Since we have many elements, the result is a large linear system where the
unknowns are the polynomial coefficients for all the elements.

14.3.4 FEniCS Implementation

The Python script below uses FEniCS (primarily dolfin) to solve Laplace’s
equation on the unit square.
from dolfin import *

Create mesh
mesh = UnitSquareMesh(32, 32)

Create function space
V = FunctionSpace(mesh, 'Lagrange', 2)

Define boundary conditions
u0 = Expression('sin(pi*x[1])*(1-x[0])')

def u0_boundary(x, on_boundary):

�

� �

�

14.4 Pattern Formation 249

return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(0.0)
a = inner(grad(u), grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)

solve(a == L, u, bc,
solver_parameters={'linear_solver': 'cg',

'preconditioner': 'ilu'})

Dump solution to file in VTK format
file = File('poisson.pvd')
file << u

The construction of the matrix problem happens when the matrix object, a,
is created. The inner product of “grad(u)” and “grad(v)” is same as the weak
form equation above. The right-hand side, L, is just a vector of zeros. The dolfin
solve() function solves the linear matrix problem using an iterative method
(conjugate gradient) with an incomplete matrix factorization as the precondi-
tioner. The final result is written to a file and can be visualized using Paraview,
Visit, or other visualization software packages. Figure 14.2 was generated using
Visit from Lawrence Livermore National Laboratory.

14.4 Pattern Formation

Have you ever wondered how the hairs on a zebra know whether they should
be white or black so that distinct stripes ultimately form? In nature, there
are many, many patters, from the spots on a leopard to the observation that
octopuses and spiders consistently have eight legs. The underlining biological
mechanism that allows for the formation of patters was a mystery until Alan
Turing proposed a reaction-diffusion system that allowed for stable patterns
to form from random initial noise [2]. The Turing system consists of two
diffusible chemicals: an activator that diffuses more slowly and over shorter
distances and an inhibitor that diffuses more rapidly. Starting with a random
initial pattern (Figure 14.3, top left), the activator compound causes more

�

� �

�

250 14 Finite Element Method

0.2

0.2

0.4

0.6

Max: 1,000
Min: 0.000

Contour
Var: f_2

0.8

0.9091
0.8182
0.7273
0.6364
0.5455
0.4545
0.3636
0.2727
0.1818
0.09091

0.4 0.6 0.8
x-axis

y

Figure 14.2 FEM solution to the model problem (Laplaces equation) using a second-order
Lagrange function space. The solution was visualized using Visit.

activator to be produced. In a positive feedback loop, regions that had slightly
higher activator concentrations in the initial, random pattern, these areas
quickly achieve even higher activator concentrations (Figure 14.3, top right).
However, because the activator moves more slowly, the increases in activator
concentration are very local. The inhibitor, on the other hand, moves over
greater distances and the regions between the high activator peaks quickly
become suppressed by the inhibitor (Figure 14.3, lower right). The result is a
stable, predictable pattern of peaks and values. The number of peaks depends
on the relative diffusion or movement rates of the two molecules and the speed
of the activation and inhibition reactions.

One system of equations that describes the reaction-diffusion system of
Turing and others is

𝜕A
𝜕t

= A

(
𝜕2A
𝜕x2 + 𝜕2A

𝜕y2

)
+ A2 ⋅ H − A (14.4)

𝜕H
𝜕t

= H

(
𝜕2H
𝜕x2 + 𝜕2H

𝜕y2

)
− A2 ⋅ H + 1, (14.5)

�

� �

�

14.4 Pattern Formation 251

Random initial activator
concentration

Short range activator

concentration increases

Longer range inhibitor
reduces concentration
between peaks

Stable Turing
pattern

Figure 14.3 Pattern formation based on the reaction-diffusion system of Turing begins with
a random concentration of activator (shown in upper left) and inhibitor (opposite of
activator). Regions of greater initial activator concentration start to grow due to a positive
feedback loop (upper right). The faster moving inhibitor suppresses the activator between
the initial peaks (lower right) and ultimately leads to a stable pattern of peaks and valleys.

where A is the activator concentration, H the inhibitor concentration, and 
the diffusivity of the two different species. Equations 14.4 and 14.5 are partial
differential equations in both space and time, but the greatest challenge is the
A2 ⋅ H term, which makes the equations nonlinear. There are a few different
approaches for solving nonlinear equations in FEniCS, and the script below
utilizes one approach for this system of equations.

from dolfin import *
from numpy.random import random
import numpy

class TuringPattern(NonlinearProblem):
def __init__(self, a, L):

NonlinearProblem.__init__(self)
self.L = L
self.a = a

def F(self,b, x):
assemble(self.L, tensor=b)

def J(self, A, x):
assemble(self.a, tensor=A)

�

� �

�

252 14 Finite Element Method

Load mesh from file
mesh = UnitSquareMesh(48,48)

Define function spaces (P2-P1)
U = FunctionSpace(mesh, "CG", 2)
W = U * U

Define trial and test functions
du = TrialFunction(W)
(q, p) = TestFunctions(W)

Define functions
w = Function(W)
w0 = Function(W)

Split mixed functions
(dact, dhib) = split(du)
(act, hib) = split(w)
(act0, hib0) = split(w0)

Set parameter values
dt = 0.05
T = 20.0

Initial conditions
class IC(Expression):

def eval(self,values,x):
values[0] = 1.0*random() + 0.25
values[1] = 1.0*random() + 0.25

def value_shape(self):
return(2,)

w_init = IC(element=W.ufl_element());
w.interpolate(w_init)
w0.interpolate(w_init)

L0 = act*q*dx - act0*q*dx \
+ dt*0.0005*inner(grad(act), grad(q))*dx \
- dt*inner(act*act*hib,q)*dx \
+ 1.0*dt*inner(act,q)*dx

L1 = hib*p*dx - hib0*p*dx \
+ dt*0.1*inner(grad(hib), grad(p))*dx \
+ dt*inner(act*act*hib,p)*dx \

�

� �

�

Additional Resources 253

- dt*inner(Constant(1.0),p)*dx
L = L0 + L1
a = derivative(L, w, du)

Create files for storing solution
ufile = File("results/pattern.pvd")

Create nonlinear problem and Newton solver
problem = TuringPattern(a, L)
solver = NewtonSolver()

Time-stepping
t = dt
while t < T + DOLFIN_EPS:

print "t =", t
w0.vector()[:] = w.vector()
solver.solve(problem, w.vector())

Save to file
ufile « w.split()[0]

Move to next time step
t += dt

Most of the functions in this script are the same as those previously described
when Laplace’s equation was solved. The TuringPattern object at the top
is derived from built in functionality in FEniCS for automatically solving
nonlinear problems using a Newton solver. At each time step, the activator
concentration is saved to a file. Figure 14.4 shows the pattern that results
from the script above. By changing the relative sizes of the various terms
in equations 14.4 and 14.5 , different patterns (or no pattern at all) can be
achieved.

Additional Resources

The following books may be useful for learning more about the FEM.

• An Introduction to the Finite Element Method by Reddy [3]
• Finite Element Methods for Flow Problems by Donea and Huerta [4]
• The Finite Element Method in Heat Transfer and Fluid Dynamics by Reddy

and Gartling [5]
• The Mathematical Theory of Finite Element Methods by Brenner and

Scott [6]

�

� �

�

254 14 Finite Element Method

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
x-axis

y-
ax

is

Figure 14.4 Activator concentration resulting from a Turing pattern simulation.

References

1 Logg, A., Mardal, K.A., and Wells, G.N. (2012) Automated Solution of Dif-
ferential Equations by the Finite Element Method, Springer-Verlag, Berlin
Heidelberg, doi: 10.1007/978-3-642-23099-8.

2 Turing, A. (1952) The chemical basis of morphogenesis. Philos. Trans. R. Soc.
London, Ser. B, 237, 37–72.

3 Reddy, J. (1993) An Introduction to the Finite Element Method, McGraw Hill,
Boston, MA, 2nd edn.

4 Donea, J. and Huerta, A. (2003) Finite Element Methods for Flow Problems,
John Wiley & Sons, Ltd., West Sussex, England.

5 Reddy, J. and Gartling, D. (1994) The Finite Element Method in Heat Transfer
and Fluid Dynamics, CRC Press, Boca Raton, FL.

6 Brenner, S. and Scott, L. (2002) The Mathematical Theory of Finite Element
Methods, Springer-Verlag, New York, NY, 2nd edn.

�

� �

�

255

Index

a
activator, pattern formation 249, 254
algebraic vs. differential equations 4–5

Euler notation 5
Lagrange notation 5
Leibniz notation 4

ANSYS 12
Antoine’s equation 121
array construction 52, 53
array operations 55
array slicing 53
AttributeError 46
axis labels 61, 62

b
backward difference approximation 177, 179
backward substitution algorithm 91, 93, 94
best fit approximation 9
biochemical reactors 193–195
bisection method 137–140
block of code 32
blood flow network 95–98
bobcatSolve.py 95
Boolean vector 161
boundary conditions 211–214, 218
boundary value problems (BVPs) 227

finite difference method 216–224
shooting method 212–216

breakup() function 124
Broyden1 function 136
Broyden’s method 143–146

c
centered difference approximation 178, 180,

221, 237
cipher 81
Clausius–Clayperon equation 114
colorbar 63
comparators 31–34
compiled language 13–14
complex cipher 82
composite method 183
composite midpoint rule 183–185
computational cost 98–100
computational methods 1, 2
computational scalability 98

COMSOL 12
conditionals 31–34
conjugate gradient method 107
containers 23–25
contour plotting function 232–233
convection 233–236
covariance matrix 121
cryptography

Caesar cipher 81
shift cipher 82
Vigenère cipher 82

csv files 159, 165
curve fitting 125
CVS library 159

d
debugging 45
decipher 81, 83
dependent variable 113, 120
derivatives and integrals, SymPy

cryptography 81–83
reaction example 79–80
reactor sizing 80–81
symbolic integration 80

direct methods 91–100
Dirichlet condition 211–212
dissolved oxygen (DO) 156

measurements 165–168
distillation column 88
Docker 245
dolfin 246

e
engineering problem-solving process 2
enzymes 193
equation identification 4–9
equilibrium equation 77
error function 187–189
Error Messages 45–46
Euler notation 5
explicit methods 195
explicit time-stepping methods 203–204, 206
external libraries, engineering

Gillespie algorithm 63–66
Matplotlib library 60–63
Numpy library 51–60

Chemical and Biomedical Engineering Calculations Using Python® , First Edition. Jeffrey J. Heys.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/heys/engineeringcalculations_python

�

� �

�

256 Index

f
factoring and expanding functions, SymPy

equilibrium kinetics 77–78
partial fraction decomposition 78

FEniCS 17
implementation 248–249

FEniCS Docker page 245
Fibonacci sequence 54
finite difference approximations

backward difference 177–178
centered difference 178–179
forward difference 177–178

finite difference method
Dirichlet boundary conditions

219
linear BVP 216–218
matrix problem 218, 219
nodes 217, 218
spherical catalysts, reactions in 220–224

finite element method (FEM)
Laplace’s equation

discretization 247–248
FEniCS implementation 248–249
mesh 246–247

pattern formation 249–253
uses 246
warning 245

first derivative approximation 177–180
first-order equilibrium reaction 66
first-order depletion model 166, 167
first-order model 166, 167
floating point numbers 31, 43
FORTRAN 91
forward difference approximation 177
forward Euler process 195–197
function space 247

g
Gaussian elimination function 91–93, 97, 229
Gaussian quadrature 187
Gauss points 187
Gauss–Seidel iteration 103–105
genfromtxt() 161
Getting Python 15–19
Geometry Experimentation 71
Gillespie algorithm 63–66

h
Hall–Heroult process 168
histogram 161

i
IBM SPSS Statistics 156
IDE see integrated development environment

(IDE)
ideal gas law 140
if statements 32

implicit time-stepping method
240

import bobcatSolve 91
import numpy.linalg. 90
indentation 32
IndentationError 46
independent variable data 120
IndexError 46
initial conditions 193
initial value problems

biochemical reactors 193–195
equations systems

Lorenz system and chaotic solutions
200–203

second-order initial value problems 203
forward Euler 195–197
modified Euler method 198–199
stiff differential equations 203–206

input function 33
integrated development environment (IDE)

16
interpolation vs. regression 8–9
interpreted programming languages 13–14
iterative methods 99, 105
iterative solution methods

convergence of 106–107
Gauss–Seidel iteration 103–105
Jacobi iteration 100–103
numpy.norm 100
relaxation methods 105
robustnesses of 103
vector norms 100

j
Jacobi 102
Jacobian matrix 146, 148
Jacobi iteration 100–103
just-in-time (JIT) compilation 14

k
KeyError 46
Krylov methods 107

l
Lagrange polynomials 247
LAPACK 91
Laplace’s equation 228

discretization 247–248
FEniCS implementation 248–249
mesh 246–247

least-squares
norm 119
regression 9, 118

Leibniz notation 4
Levenberg–Marquardt algorithm 120
linear matrix equation 87, 91, 99
linear matrix problem 230–231, 249
linear regression 164–168

�

� �

�

Index 257

curve 117
normal equations 116, 118–119

linear systems
direct methods 91–100
iterative solution methods 100–107
vs. nonlinear equations 5–6

linspace() function 59, 60, 63
Linux 17
logspace() function 54
Lorenz system and chaotic solutions

200–203
low-level language 188
LU-decomposition 92

m
Maple 71
mass flow rate 88, 89
MathCAD 12, 71
Mathematica 12, 71
mathematical equation 3
math library 26
MATLAB 12, 13
Matplotlab 162–163
Matplotlib library 60–63, 223
matplotlib.pyplot 163
matrix assembly 230–232
mesh 246–247
Michaelis–Menten kinetics model 194, 196
modified Euler method 198–199
Monty Hall Problem 68
multigrid methods 107
multiple nonlinear equations 146–151
multiple return variables 94
multivariable regression

data sets 128
machine learning 127–129
numpy.stack() function 126

myquad() function 43

n
NameError 46
National Renewable Energy Laboratory

(NREL) 168
nested conditional statements 32
Neumann boundary condition 212
Newton iteration 148
Newton’s method

advantages 142
disadvantages 143
nonlinear function 141
Taylor polynomial 140

nodes 217
nonlinear equations

bisection method 137–140
Broyden’s method 143–146
multiple nonlinear equations 146–151
Newton’s method 140–143

nonlinear regression 113

Antoine’s equation 121
covariance matrix 121
exponential curve 123
least-squares norm 119
Levenberg–Marquardt algorithm 120
lunar disintegration 122–125
parameters of 120
Python script 123
semilogy 125

normal equations 116
alternative derivation of 118–119
linear equations 116

numerical differentiation
first derivative approximation 177–180
scipy derivative approximation 181–183
second derivative approximation 180–181

numerical integration
error function 187–189
scipy 186–187
trapezoid rule 185–186

numpy.array() method 51–52
numpy library 51–60, 157–158

advantage 158
array and vector creation 51–54
array operations 55
drawback 158
help() function 55–56
inputs 157
loading 59–60
mathematical functions 56
polynomials 58–59
random vectors 57
saving arrays 59–60
searching 57–58
sorting 57–58

numpy.linalg.function() 90
numpy.nonzero() function 58
numpy.norm 100
numpy.polynomial 59
numpy.random 57
numpy.save() function 60
numpy.savetxt() function 60
numpy.sum() 117
numpy.zeros() function 53

o
ordinary differential equations (ODEs) 6–8,

195, 196, 199, 211
ordinary vs. partial differential equations 6–8

p
pandas library 159–162, 169
parabolic PDEs 237
partial differential equations (PDEs) 3, 6–8

convection 233–236
finite difference method

matrix assembly 230–232
setup 228–230

�

� �

�

258 Index

partial differential equations (PDEs) (contd.)
solving and plotting 232–233
for transient PDEs 236–241

partial fraction decomposition 78
pattern formation 249–253
Poiseuille flow equation 85, 95, 96
polynomial coefficients 118
power law model 132
predator–prey model equations 207
print function 15, 44–45
problem solving, engineering

equation identification and categorization
4–11

pylab 61
Pythagorean theorem 149–150
Python

commands 16
comparators and conditionals 31–34
debugging/fixing errors 45
error messages 45–46
external libraries

docstrings 27
finding documentation 25–28
IDE 26

functions 39–45
iterators and loops 34–39
module 95
print function 44–45
programming 12
prompt 16
syntax 46
type() 20
variables and operators

containers 23–25
Spyder IDE 21
strong-typing 20
updating variables 21–23

Python script 136–137
Broyden’s method 144
convection 234–235
CVS library 159
FEniCS implementation 248–249
finite difference approximation 238–239
forward Euler process 195–197
linear regression 164–168
Lorenz system 201
matrix problem 231–232
modified Euler method 198–199
numpy library 158
shooting method 214–216
SRK equation 138

q
quadratic polynomial 42
quadratic regression 118

r
random arrays 57

random floating point numbers 57
random vectors, numpy 57
range() function 35
range function 38
recycling code 95
regression

Clausius–Clayperon equation 114
function 9
linear regression 115–119
multivariable regression 126–129
nonlinear regression 119–125
quadratic regression 118

regression line 118
relaxation methods 105

s
SAGE 71, 72
SageMathCloud 18
SAS 156
scipy derivative approximation 181–183
scipy library 51, 136, 181
scipy.optimize.curve_fit() 124
Secant method see Broyden’s method
second derivative approximation 180–181
second-order depletion model 168
semilogy 125
shooting method 212–216

BVP 213
guess 213–214
initial location 212
initial velocity 212
projectile motion 212
Python script 214–216

single algebraic equation 75
Soave–Redlich–Kwong (SRK) nonideal

equation 135–136
SOR see successive over-relaxation (SOR)
sort() function 58
spatial variation 227
Spyder IDE 16, 17
SRK equation of state 138
SRK model 144
standard deviation 163
standard score 164
statistics

advanced linear regression 164–168
analysis 162–164
reading data

array, parsing an 162
CVS library 159
numpy library 157–158
pandas 159–162

U.S. electric utility companies and rates
168–172

steady-state PDEs, finite difference method for
227–223

Stiff differential equations 203–206
stochastic reactions 64

�

� �

�

Index 259

successive over-relaxation (SOR) 105
sum of square 9
symbolic derivatives 78–79
symbolic integration 80
symbolic mathematics packages 71–72
SymPy library

derivatives and integrals 78–81
factoring and expanding functions 76–78
multiple equations 75–76
solve() function 74

sympy.method() format 72
sympy.solve() function 73
SymPy Symbol class 72
SyntaxError 46
System for Algebra 71

t
tangent line 144
Taylor polynomial 140, 143, 176–177
Thiele modulus 221
transient PDEs 236–241
trapezoid rule 185–186
t-test 163
TypeError 46

u
Ubuntu Linux 245
under-relaxation 105

upwind difference approximation 234
U.S. electric utility companies and rates

168–172
user-defined function 120

v
ValueError 46
van der Waals equation 74
vapor pressure 113
vector norms 100
Vigenère cipher 82
virtual machine 14

w
water-gas shift reaction 77
weak form 248
Wolfram Alpha 71

x
xdata 120

y
ydata 120

z
ZeroDivisionError 46
zscore 164

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

	Cover
	Title Page
	Copyright
	Contents
	Preface
	About the Companion Website
	Chapter 1 Problem Solving in Engineering
	1.1 Equation Identification and Categorization
	1.1.1 Algebraic versus Differential Equations
	1.1.2 Linear versus Nonlinear Equations
	1.1.3 Ordinary versus Partial Differential Equations
	1.1.4 Interpolation versus Regression

	Problems
	Additional Resources
	References

	Chapter 2 Programming with Python
	2.1 Why Python?
	2.1.1 Compiled versus Interpreted Computer Languages
	2.1.2 A Note on Python Versions

	2.2 Getting Python
	2.2.1 Installation of Python
	2.2.2 Alternative to Installation: SageMathCloud

	2.3 Python Variables and Operators
	2.3.1 Updating Variables
	2.3.2 Containers

	2.4 External Libraries
	2.4.1 Finding Documentation

	Problems
	Additional Resources
	References

	Chapter 3 Programming Basics
	3.1 Comparators and Conditionals
	3.2 Iterators and Loops
	3.2.1 Indentation Style

	3.3 Functions
	3.3.1 Pizza Example
	3.3.2 Print Function

	3.4 Debugging or Fixing Errors
	3.5 Top 10+ Python Error Messages
	Problems
	Additional Resources
	References

	Chapter 4 External Libraries for Engineering
	4.1 Numpy Library
	4.1.1 Array and Vector Creation
	4.1.2 Array Operations
	4.1.3 Getting Helping with Numpy
	4.1.4 Numpy Mathematical Functions
	4.1.5 Random Vectors with Numpy
	4.1.6 Sorting and Searching
	4.1.7 Polynomials
	4.1.8 Loading and Saving Arrays

	4.2 Matplotlib Library
	4.3 Application: Gillespie Algorithm
	Problems
	Additional Resources
	References

	Chapter 5 Symbolic Mathematics
	5.1 Introduction
	5.2 Symbolic Mathematics Packages
	5.3 An Introduction to SymPy
	5.3.1 Multiple Equations

	5.4 Factoring and Expanding Functions
	5.4.1 Equilibrium Kinetics Example
	5.4.2 Partial Fraction Decomposition

	5.5 Derivatives and Integrals
	5.5.1 Reaction Example
	5.5.2 Symbolic Integration
	5.5.3 Reactor Sizing Example

	5.6 Cryptography
	Problems
	References

	Chapter 6 Linear Systems
	6.1 Example Problem
	6.2 A Direct Solution Method
	6.2.1 Distillation Example
	6.2.2 Blood Flow Network Example
	6.2.3 Computational Cost

	6.3 Iterative Solution Methods
	6.3.1 Vector Norms
	6.3.2 Jacobi Iteration
	6.3.3 Gauss-Seidel Iteration
	6.3.4 Relaxation Methods
	6.3.5 Convergence of Iterative Methods

	Problems
	References

	Chapter 7 Regression
	7.1 Motivation
	7.2 Fitting Vapor Pressure Data
	7.3 Linear Regression
	7.3.1 Alternative Derivation of the Normal Equations

	7.4 Nonlinear Regression
	7.4.1 Lunar Disintegration

	7.5 Multivariable Regression
	7.5.1 Machine Learning

	Problems
	References

	Chapter 8 Nonlinear Equations
	8.1 Introduction
	8.2 Bisection Method
	8.3 Newton's Method
	8.4 Broyden's Method
	8.5 Multiple Nonlinear Equations
	8.5.1 The Point Inside a Square

	Problems

	Chapter 9 Statistics
	9.1 Introduction
	9.2 Reading Data from a File
	9.2.1 Numpy Library
	9.2.2 CVS Library
	9.2.3 Pandas
	9.2.4 Parsing an Array

	9.3 Statistical Analysis
	9.4 Advanced Linear Regression
	9.5 U.S. Electrical Rates Example
	Problems
	References

	Chapter 10 Numerical Differentiation and Integration
	10.1 Introduction
	10.2 Numerical Differentiation
	10.2.1 First Derivative Approximation
	10.2.2 Second Derivative Approximation
	10.2.3 Scipy Derivative Approximation

	10.3 Numerical Integration
	10.3.1 Trapezoid Rule
	10.3.2 Numerical Integration Using Scipy
	10.3.3 Error Function

	Problems
	Reference

	Chapter 11 Initial Value Problems
	11.1 Introduction
	11.2 Biochemical Reactors
	11.3 Forward Euler
	11.4 Modified Euler Method
	11.5 Systems of Equations
	11.5.1 The Lorenz System and Chaotic Solutions
	11.5.2 Second-Order Initial Value Problems

	11.6 Stiff Differential Equations
	Problems
	References

	Chapter 12 Boundary Value Problems
	12.1 Introduction
	12.2 Shooting Method
	12.3 Finite Difference Method
	12.3.1 Reactions in Spherical Catalysts

	Problems
	Reference

	Chapter 13 Partial Differential Equations
	13.1 Finite Difference Method for Steady-State PDEs
	13.1.1 Setup
	13.1.2 Matrix Assembly
	13.1.3 Solving and Plotting

	13.2 Convection
	13.3 Finite Difference Method for Transient PDEs
	Problems
	Reference

	Chapter 14 Finite Element Method
	14.1 A Warning
	14.2 Why FEM?
	14.3 Laplace's Equation
	14.3.1 The Mesh
	14.3.2 Discretization
	14.3.3 Wait! Why Are We Doing This?
	14.3.4 FEniCS Implementation

	14.4 Pattern Formation
	Additional Resources
	References

	Index
	EULA

