

MATLAB for Brain and Cognitive Scientists

MATLAB for Brain and Cognitive Scientists

Mike X Cohen

The MIT Press

Cambridge, Massachusetts

London, England

© 2017 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any elec-

tronic or mechanical means (including photocopying, recording, or information

storage and retrieval) without permission in writing from the publisher.

This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia

Limited.

Library of Congress Cataloging-in-Publication Data

Names: Cohen, Mike X., 1979- author.

Title: MATLAB for brain and cognitive scientists / Mike X. Cohen.

Description: Cambridge, MA : MIT Press, [2017] | Includes bibliographical

references and index.

Identifiers: LCCN 2016033649 | ISBN 9780262035828 (h : alk. paper)

Subjects: LCSH: MATLAB. | Neurosciences--Data processing. | Cognitive

science--Data processing.

Classification: LCC QP357.5 .C56 2017 | DDC 612.8--dc23 LC record available at

https://lccn.loc.gov/2016033649

10 9 8 7 6 5 4 3 2 1

Contents

Preface xv

Part I: Introductions 1

1 What Is MATLAB and Why Use It? 3
1.1 “I Want to Be a Scientist; Do I Also Need to Be a Good
Programmer?” 3
1.2 Octave 4
1.3 Python, Julia, C, R, SPSS, HTML, and So Forth 5
1.4 How Long Does It Take to Become a Good Programmer? 6
1.5 How to Learn How to Program 6
1.6 The Three Steps of Programming 7
1.7 How Best to Learn from This Book 8
1.8 Exercises and Their Solutions 10
1.9 Written Interviews 11
1.10 Where Is All the Code? 11
1.11 Can I Use the Code in This Book for Real Data Analyses? 11
1.12 Is This Book Right for You? 12
1.13 Are You Excited? 12

2 The Philosophy of Data Analysis 15
2.1 Keep It Simple 15
2.2 Stay Close to the Data 16
2.3 Understand Your Analyses 17
2.4 Use Simulations, but Trust Real Data 17
2.5 Beware the Paralysis of Analysis 18
2.6 Be Careful of Overfitting 19
2.7 Noise in Neuroscience Data 21
2.8 Avoid Circular Inference 22
2.9 Get Free Data 23

vi Contents

3 Do Replicable Research 25
3.1 Avoid Mistakes in Data Analysis 26
3.2 Have a “Large Enough” N 27
3.3 Maximize Level 1 Data Count 27
3.4 Try Different Analysis Parameters, and Trust Analytic
Convergence 28
3.5 Don’t Be Afraid to Report Small or Null Effects, but Be Honest
About Them 29
3.6 Do Split-Half Replication 29
3.7 Independent Replications 29
3.8 Write a Clear Methods Section 30
3.9 Make Your Analysis Code or Data Available 30

4 The MATLAB Program 31
4.1 The MATLAB Program Graphical User Interface 31
4.2 Layouts and Visual Preferences 32
4.3 Color-Coordinating MATLAB 35
4.4 Where Does the Code Go? 35
4.5 MATLAB Files and Formats 37
4.6 Changing Directories inside MATLAB 38
4.7 The MATLAB Path 38
4.8 Comments 40
4.9 Cells 41
4.10 Keyboard Shortcuts 41
4.11 Help Box and Reporting Variable Content 43
4.12 The Code Analyzer 45
4.13 Back Up Your Scripts, and Use Only One Version 46
4.14 MATLAB Etiquette 46

5 Variables 49
5.1 Creating and Destroying Variables 49
5.2 Whos Are My Variables? 50
5.3 Variable Naming Conventions and Tips 50
5.4 Variables for Numbers 52
5.5 Variables for Truth 54
5.6 Variables for Strings 55
5.7 Variables for Cells 56
5.8 Variables for Structures 56
5.9 The Colon Operator 57
5.10 Accessing Parts of Variables via Indexing 58
5.11 Initializing Variables 60
5.12 Soft-coding versus Hard-coding 61

Contents vii

5.13 Keep It Simple 62
5.14 Exercises 62

6 Functions 67
6.1 Introduction to Functions 67
6.2 Outputs as Inputs 68
6.3 Multiple Inputs, Multiple Outputs 69
6.4 Help 70
6.5 Functions Are Files 71
6.6 Writing Your Own Function 72
6.7 Functions in Functions 74
6.8 Arguments In 74
6.9 Think Global, Act Local 75
6.10 Stepping into Functions 76
6.11 When to Use Your Own Functions 79
6.12 When to Modify Existing Functions 80
6.13 Timing Functions Using the Profiler 80
6.14 Exercises 80

7 Control Statements 85
7.1 The Anatomy of a Control Statement 85
7.2 If-then 85
7.3 For-loop 91
7.4 Skipping Forward 93
7.5 While-loop 94
7.6 Try-catch 97
7.7 Switch-case 98
7.8 Pause 98
7.9 Exercises 99

8 Input-Output 103
8.1 Copy-Paste 103
8.2 Loading .mat Files 103
8.3 Saving .mat Files 107
8.4 Importing Text Files 109
8.5 Exporting Text Files 112
8.6 Importing and Exporting Microsoft Excel Files 113
8.7 Importing and Exporting Hardware-Specific Data Files 113
8.8 Interacting with Your Operating System via MATLAB 114
8.9 Exercises 114

9 Plotting 117
9.1 What You Need to Know Before You Know Anything Else 117
9.2 Plotting Lines 119

viii Contents

9.3 Bars 121
9.4 Scatter Plots 122
9.5 Histograms 123
9.6 Subplots 124
9.7 Patch 127
9.8 Images 128
9.9 Get, Set, and Handle 132
9.10 Text in Plots 135
9.11 Interacting with MATLAB Plots 137
9.12 Creating a Color Axis 138
9.13 Saving Figures as Picture Files 140
9.14 Exercises 141

Part II: Foundations 145

10 Matrix Algebra 147
10.1 Vectors 147
10.2 Vector Addition and Multiplication 150
10.3 Matrices 153
10.4 Finding Your Way around a Matrix 155
10.5 Matrix Multiplication 156
10.6 When to Use .* and ./ versus * and / ? 158
10.7 Linear Independence and Rank 159
10.8 The Matrix Inverse 160
10.9 Solving Ax = b 161
10.10 Making Symmetric Squares from Rectangles 162
10.11 Full and Sparse Matrices 163
10.12 Exercises 164

11 The Fourier Transform 167
11.1 Sine Waves 167
11.2 The Imaginary Operator and Complex Numbers 168
11.3 The Complex Dot Product 171
11.4 Time Domain and Frequency Domain 175
11.5 The Slow Fourier Transform 176
11.6 Frequencies from the Fourier Transform 177
11.7 The Fast Fourier Transform 180
11.8 Fourier Coefficients as Complex Numbers 181
11.9 DC Offsets in the Fourier Transform 182
11.10 Zero-Padding the Fourier Transform 184
11.11 The Inverse Fourier Transform 186

Contents ix

11.12 The 2D Fourier Transform 187
11.13 Exercises 188

12 Convolution 193
12.1 Time-Domain Convolution 194
12.2 The Convolution Theorem 196
12.3 Convolution Implemented in the Frequency Domain 198
12.4 Convolution in Two Dimensions 200
12.5 Exercises 201

13 Interpolation and Extrapolation 205
13.1 The MATLAB Functions griddedInterpolant and
scatteredInterpolant 206
13.2 Interpolation in Two Dimensions Using
scatteredInterpolant 208
13.3 Using interp* Functions 212
13.4 Zero-Padding Theorem and Zero-Padding 213
13.5 Down-sampling 214
13.6 Exercises 218

14 Signal Detection Theory 221
14.1 The Four Categories of Correspondence 221
14.2 Discrimination 222
14.3 Isosensitivity Curves (a.k.a. ROC Curves) 224
14.4 Response Bias 226
14.5 Conditional Accuracy Functions 227
14.6 Exercises 231

15 Nonparametric Statistics 233
15.1 The Idea of Permutation-Based Statistics 233
15.2 Creating an Empirical Null Hypothesis Test 234
15.3 Creating a Null Hypothesis Distribution 238
15.4 Evaluating Significance 240
15.5 Example with Real Data 241
15.6 Extreme Value–Based Correction for Multiple Comparisons 244
15.7 Meta-permutation Tests 246
15.8 Exercises 246

16 Covariance and Correlation 249
16.1 Simulating and Measuring Bivariate Covariance 249
16.2 Multivariate Covariance 252
16.3 From Covariance to Correlation 255
16.4 Pearson and Spearman Correlations 259
16.5 Statistical Significance of Correlation Coefficients 261
16.6 Geometric Interpretation of Correlation 262
16.7 Exercises 263

x Contents

17 Principal Components Analysis 265
17.1 Eigendecomposition 265
17.2 Simple Example with 2D Random Data 267
17.3 PCA and Coordinate Transformation 271
17.4 Eigenfaces 272
17.5 Independent Components Analysis 278
17.6 Exercises 280

Part III: Analyses of Time Series 285

18 Frequency Analyses 287
18.1 Blitz Review of the Fourier Transform 287
18.2 Frequency Resolution 288
18.3 Edge Artifacts and Data Tapering 289
18.4 Many FFTs for Many Trials 291
18.5 Defining and Extracting Frequency Ranges 297
18.6 Effects of Nonstationarities 301
18.7 Spectral Coherence 302
18.8 Steady-State Evoked Potentials 305
18.9 Exercises 306

19 Time-Frequency Analysis 311
19.1 Complex Morlet Wavelets 312
19.2 Morlet Wavelet Convolution 314
19.3 From Line to Plane 314
19.4 From Single Trial to Super-trial 319
19.5 Edge Artifacts 323
19.6 STFFT 325
19.7 Baseline Normalization 327
19.8 Time-Frequency Analysis in Real EEG Data 330
19.9 Exercises 331

20 Time Series Filtering 335
20.1 Running-Mean Filter 335
20.2 Running-Median Filter 337
20.3 Edges in the Frequency Domain 339
20.4 Gaussian Narrow-Band Filtering 341
20.5 Finite Impulse Response Filter 345
20.6 The Hilbert Transform 350
20.7 Exercises 351

21 Fluctuation Analysis 355
21.1 Root Mean Square to Measure Fluctuations 355

Contents xi

21.2 Fluctuations in Time Series 355
21.3 Multichannel RMS 356
21.4 Detrended Fluctuation Analysis 358
21.5 Demeaned Fluctuation Analysis 362
21.6 Local and Global Minima and Maxima 363
21.7 Exercises 367

Part IV: Analyses of Action Potentials 369

22 Spikes in Full and Sparse Matrices 371
22.1 Spike Times as Full Matrices and as Sparse Vectors 371
22.2 Mean Spike Count in Spikes per Second 375
22.3 Peri-event Time Spike Histogram 376
22.4 Exercises 377

23 Spike Timing 379
23.1 Spike Rhythmicity 379
23.2 Spike Rhythmicity via the Frequency Domain 381
23.3 Cross-Neuron Spike-Time Correlations 383
23.4 Spike-Field Coherence 384
23.5 Frequency-Specific Spike-Field Coherence 387
23.6 Exercises 389

24 Spike Sorting 393
24.1 Spike Amplitude and Width 393
24.2 Spike Features via Principal Components Analysis 395
24.3 Spike Features via Independent Components Analysis 400
24.4 Clustering Spikes into Discrete Groups 402
24.5 Exercises 403

Part V: Analyses of Images 405

25 Magnetic Resonance Images 407
25.1 Importing and Plotting MRI Data 407
25.2 fMRI Data as a Four-Dimensional Volume 408
25.3 fMRI Statistics and Thresholding 412
25.4 Exercises 415

26 Image Segmentation 417
26.1 Threshold-Based Segmentation 417
26.2 Intensity-Based Segmentation 421
26.3 Once More, with Calcium 423
26.4 Defining Grids in Images 428

xii Contents

26.5 Fractals and Boxes 433
26.6 Exercises 436

27 Image Smoothing and Sharpening 439
27.1 Two-Dimensional Mean Filtering 439
27.2 Two-Dimensional Median Filter 441
27.3 Gaussian Kernel Smoothing 442
27.4 Image Filtering in the Frequency Domain 443
27.5 Exercises 447

Part VI: Modeling and Model Fitting 451

28 Linear Methods to Fit Models to Data 453
28.1 Least-Squares Fitting 453
28.2 Evaluating Model Fits 455
28.3 Polynomial Fitting Using polyfit and polyval 459
28.4 Example: Reaction Time and EEG Activity 462
28.5 Data Transformations Adjust Distributions 465
28.6 Exercises 467

29 Nonlinear Methods to Fit Models to Data 471
29.1 Nonlinear Model Fitting with fminsearch 471
29.2 Nonlinear Model Fitting: Piece-wise Regression 473
29.3 Nonlinear Model Fitting: Gaussian Function 477
29.4 Nonlinear Model Fitting: Caught in Local Minima 479
29.5 Discretizing and Binning Data 480
29.6 Exercises 482

30 Neural and Cognitive Simulations 487
30.1 Integrate-and-Fire Neurons 487
30.2 From Neuron to Networks 490
30.3 Izhikevich Neurons 492
30.4 Rescorla-Wagner 494
30.5 Exercises 500

31 Classification and Clustering 503
31.1 Neural Networks with Backpropagation Learning 503
31.2 K-means Clustering 508
31.3 Support Vector Machines 511
31.4 Exercises 515

Part VII: User Interfaces and Movies 519

32 Graphical User Interfaces 521
32.1 Basic GUIs 521

Contents xiii

32.2 Getting to Know GUIDE 522
32.3 Writing Code in GUI Functions 524
32.4 Exercises 529

33 Movies 531
33.1 Waving Lines 531
33.2 Moving Gabor Patches 534
33.3 Spinning Heads 540
33.4 Exercises 543

References 545
Index 549

List of Interviews

Chapter 13: Robert Oostenveld 215
Chapter 16: Hualou Liang 258
Chapter 17: Pascal Wallisch 276
Chapter 19: Arnaud Delorme 321
Chapter 21: Simon-Shlomo Poil 364
Chapter 24: Rodrigo Quian Quiroga 399
Chapter 26: Dylan Richard Muir 429
Chapter 30: Eugene M. Izhikevich 496
Chapter 32: Vladimir Litvak 526

MATLAB changed my life. It wasn’t the first programming language I
learned (that was Basic) nor was it the only one (C++, HTML/CSS, and a few
others not worth mentioning). But somehow MATLAB has the right bal-
ance of usability, visualization, and widespread use to make it one of the
most powerful tools in a scientist’s toolbox. I started learning MATLAB in
the context of computational modeling, and the MATLAB environment
allowed me to understand and to visualize models and to explore parameter
spaces when staring at equations gave me nothing but a vague and superfi-
cial feeling (coupled with a stronger feeling of anxiety and fear that I was in
way over my head).

When I started using MATLAB for data analysis, the ease of inspecting,
implementing, and modifying code and the ease of plotting data at each
step of the analysis gave me the deep and satisfying feeling of comprehen-
sion that reading online tutorials and methods papers could not provide.
In fairness, MATLAB is not the only programming language or environ-
ment that can be used to understand and to implement data analyses,
and I have too little expertise in other languages to claim unequivocally
that MATLAB is The Best. It became my go-to tool because so many neu-
roscience toolboxes and analysis scripts are already written in MATLAB,
and because almost everyone around me was using MATLAB. But I
have yet to encounter a data analysis or visualization problem I could not
solve in MATLAB, so my motivation to gain expertise in other languages
is fairly low.

I wrote this book because I want you to be able to use MATLAB the way
I use MATLAB—as a means to two ends: (1) to understand data analyses and
(2) to analyze data. The Internet is ripe with MATLAB introductions and
tutorials, many of which are excellent, and I encourage you to find and go
through them. But most of them will guide you gently and slowly from
total novice to dipping your toes into the water, and then promptly drop

Preface

xvi Preface

you in the middle of the ocean. What we as a psychology/neuroscience
community are lacking is a corpus of resources that will help you gain real
expertise in MATLAB with a focus on the applications that you will actually
use in your scientific career. I hope this book is a useful contribution to
building such an educational corpus. Above all else, I hope that this book
helps you to develop and sharpen your skills as a scientist. Good luck and
have fun!

I Introductions

Welcome to your new life as a MATLAB programmer and data analyzer.
If you ask your colleagues what MATLAB is, they might give you some of

the following answers:

• It’s a platform for data analysis.
• It’s a high-level programming language.
• It’s a fancy calculator.
• It’s that thing you open to use analysis toolboxes.
• It’s software that lets you write and customize data analysis tools.
• It’s a program to make nicer plots than Excel or SPSS.
• It’s an unceasing source of suffering, frustration, and red font.

These points are all true (except the last; the frustration does eventually
diminish), but they are not the whole truth. MATLAB is a culture, a way of
thinking, a language that cuts across countries, and a way of sharing and
collaborating with other scientists regardless of whether they are in your
research lab or even scientific field. The purpose of this book is to teach you
how to program in MATLAB, with a focus on applications most commonly
used in neuroscience and psychology.

1.1 “I Want to Be a Scientist; Do I Also Need to Be a Good
Programmer?”

There are at least three reasons why being a good programmer is increas-
ingly becoming part of being a good scientist. First, the brain is really com-
plex, and technology for measuring it is getting really sophisticated. For
better or worse, simple univariate tests (e.g., the one-sample t-test) are
becoming less and less insightful for studying the brain. A lot of the simple
questions in neuroscience are answered (“Does activity in the visual cortex
increase when the light turns on?”), and thus more nuanced and specific

1 What Is MATLAB and Why Use It?

4 I Introductions

questions are becoming important (“Do neurons fire in a specific temporal
sequence and does this depend on stimulus features?”). Neuroscience data
analyses are moving away from simple one-size-fits-all analyses toward cus-
tom-tailored analyses. And custom-tailored analyses means custom-tailored
code.

Second, and related to the previous point, even if you want to be a scien-
tist and not a programmer, your programming skills are a bottleneck for
your research. As experiments and analyses get more complicated, point-
and-click software tools will impose stronger limits on the experiments you
can do and the analyses you can perform. This is not good. The bottleneck
in science should be our neuroscientific theories and our understanding of
biological processes, not your MATLAB skills.

Third, learning to program is learning a skill. Programming is problem
solving. To program, you must think about the big-picture problem, figure
out how to break down that problem into manageable chunks, and then
figure out how to translate those chunks into discrete lines of code. This
same skill is also important for science: You start with the big-picture ques-
tion (“How does the brain work?”), break that down into something more
manageable (“How do we remember to buy toothpaste on the way home
from work?”), and break that down into a set of hypotheses, experiments,
and targeted data analyses. Thus, there are overlapping skills between learn-
ing to program and learning to do science.

1.2 Octave

Octave is a free software that emulates many of MATLAB’s capabilities.
There are continual developments that make Octave an attractive alterna-
tive to MATLAB, particularly with the release of version 4, which includes a
graphical interface similar to that of MATLAB. Octave can interpret nearly
all MATLAB functions and works in all major operating systems (Windows,
Linux, and even Mac).

The main advantage of Octave is the price (zero units of any currency).
The main disadvantage of Octave is speed—tests generally show that Octave
is several times slower than MATLAB, and MATLAB already is not known
for its computation speed. If MATLAB is available, use it. If costs or licensing
are limiting factors, use Octave.

Sometimes systems administrators, particularly when residing over large
compute clusters, prefer Octave over MATLAB to reduce the number of
MATLAB licenses that are required. If MATLAB licenses are limited, and if
some computational time can be sacrificed, then it’s a good idea to check

1 What Is MATLAB and Why Use It? 5

that your code runs in Octave. If you do the kinds of off-line data analyses
where you can start the script at night and look at the results the next
morning or the next week, then the slight decrease in computation time is
not prohibitive, and using Octave will free up MATLAB licenses.

All of the code in this book was tested in Octave. Occasionally, the
Octave code looks slightly different than the MATLAB code or the MATLAB
code does not work in Octave; this is noted in the code. Because nearly
everything in this book can be implemented in Octave with little or no
modification, the term “MATLAB” for the rest of this book really means
“MATLAB and probably also Octave.”

1.3 Python, Julia, C, R, SPSS, HTML, and So Forth

In terms of neuroscience data analysis, there really is no viable alternative
to MATLAB. True, many or perhaps all of what can be accomplished in
MATLAB can be accomplished in Python or C++ or Julia or several other
programming languages, but this does not make them viable alternatives.
For one thing, despite some hype about other languages, MATLAB remains
a dominant language for data analysis in psychology, neuroscience, cogni-
tive neuroscience, and many other branches of science. In part this is
because MATLAB is specifically designed to work with multidimensional
matrices, and neuroscience data nearly always reside in matrix form.

To be clear, there is nothing wrong with these other programming
languages. There will be situations where other languages are superior to
MATLAB and should be used. R and SPSS, for example, are well suited for
analyses of multifactor parametric statistical models such as mixed-effects
linear modeling. Python is arguably better than MATLAB at searching
through online text databases to locate specific entries and associate them
with information from other databases. C is generally much faster than
MATLAB. But within the context of neuroscience data analysis, these are
the exceptions. By far, the majority of neuroscience data analyses are done
in MATLAB.

In practice, you will use several programming languages in your scien-
tific career. It would behoove you to gain some familiarity with other lan-
guages, but if the topics listed in the table of contents of this book fit the
description of the kinds of analyses you will be doing, MATLAB is the best
option. For example, in addition to MATLAB, I occasionally use R, SPSS,
Python, Presentation, and hoc, but I use these relatively infrequently and
am no expert in these other languages.

6 I Introductions

Non-MATLAB languages are also not viable alternatives simply because
so few people use them. Many research labs, researchers, and neuroscience
data analysis toolboxes use MATLAB. That is why MATLAB is also a culture
and a means of collaborating and sharing data and data analysis tools.

1.4 How Long Does It Take to Become a Good Programmer?

That depends on how “good” a programmer you want to be. It can take
only a few weeks to gain a basic working knowledge of MATLAB. Obviously,
the more time you spend working in MATLAB, the better programmer you
will become.

Psychology research shows that what is important in skill acquisition is
not just the amount of time spent on the activity but the amount of focused,
attentive time dedicated to acquiring the new skill (Ericsson, Krampe, and
Tesch-Römer 1993). If you try to learn how to program while watching
television and eating, your progress will be really slow. If you dedicate 45
minutes a day to learning to program while doing nothing else (not even
Facebook!), you will learn much faster. Programming is no easy business,
but every hour you spend learning how to program is an hour invested in
your future.

1.5 How to Learn How to Program

Programming languages are languages. They have vocabulary and syntax,
they have sentences (lines of code), paragraphs (sections of code), and dis-
course, and they have styles and ways of thinking.

The only way to learn to speak a human language is by speaking. And
the only way to learn how to program is by programming. Looking at some-
one else’s code will help you learn how to program in the same way that
looking at a Russian newspaper will help you learn to speak Russian. The
chapters in this book close with exercises; take them seriously. It’s often
possible to cheat and to find the solution to the exercises somewhere else in
the book code. Some people might argue that this isn’t “cheating” because
part of learning to program is learning to spot the right code and paste it in
the right place. I don’t entirely disagree, and knowing which code to copy
and how to modify it is a useful skill. The question is whether you want to
learn a little bit and be an okay programmer or whether you want to learn
a lot and be a good programmer.

In the words of Cohen (2014): “No one is born a programmer. The differ-
ence between a good programmer and a bad programmer is that a good

1 What Is MATLAB and Why Use It? 7

programmer spends years learning from his or her mistakes, and a bad pro-
grammer thinks that good programmers never make mistakes.”

1.6 The Three Steps of Programming

Step 1: Think. Writing code starts in your head with the big-picture idea.
What exactly do you want the code to do? What are the steps to accomplish
this goal? I find that thinking about pictures helps—what will the data look
like in the beginning, middle, and end of the script? Even if the script does
not do any plotting, it’s still useful to think about what plots would look like.

Now turn to MATLAB and open a new blank script. Don’t write any
actual code yet. Instead, make an outline using comments (comments, as
will be explained later, are not interpreted by MATLAB and are indicated
with %) of what the code should do. These comments should be descrip-
tions of what needs to be done in what order. For example, at the end of the
first step of programming, your script might look like this:

%% define parameters

% here I need to define frequencies of interest

% and the time windows to export to a .mat file

% also initialize the output matrices

%% load and process data

% find the right file, maybe with a simple GUI?

% load the file, checking whether it contains

% the variable “raw_data” with 3 dimensions

%% extract frequencies

% this part needs to loop over channels

% run fft on the data

% there are many trials, maybe one fft?

% extract just the frequencies of interest

%% save data to output file

% create a filename

% check to see whether this file already exists

% save the data to the .mat file

This is the hardest but most fun part of programming. And it feels like real
science while you’re doing it.

Step 2: Write the code. This involves translating what you specified in
English in the comments into the language of MATLAB. The more detailed
your comments, the easier this step is.

Is it Anglo-centric to suggest that comments be written in English?
Yes, but in the same way that it is Anglo-centric to write this book in

8 I Introductions

English. One of the advantages of MATLAB is that code can be shared
across countries. English is, at present and for the foreseeable future, the
lingua franca of science. International scientific journals, conferences,
websites, and e-mail lists are nearly always in English. If you want other
people to be able to use your code, it’s useful to write the comments in a
language that they are likely to understand. If English is not your native
language, then don’t worry; grammar and spelling are less important here
than in formal scientific communications. Just make sure the comments
are comprehensible.

This step of programming is either fun or painful, depending on your
level of programming skills and on how much you enjoy programming.
This step is a real part of science because you are forced to convert ideas and
plans that might initially be vague and underspecified into concrete and
specific steps.

Step 3: Debug. Yes, MATLAB will print a lot of red font indicating errors
and warnings, so prepare yourself. Some errors are easy to find and fix, like
simple typos. Other errors are easy to find but harder to fix.

The worst and most dangerous errors happen when MATLAB does not
issue a warning or error message because you technically did nothing ille-
gal, but the result is wrong. There is really only one way to find these
errors: Plot as much data as you can, in several different ways, and think
carefully about what the data should look like, and whether the data actu-
ally look like what you expect. If you expect to see local field potential
(LFP) traces but see a line of all zeros, something went wrong. Go back to
previous lines, and keep plotting the data until it looks like something
you’d expect.

The process of thinking about what a result should be and then checking
or plotting to confirm is called “sanity checking.” The importance of sanity
checks cannot be understated. This book will offer many suggestions for
sanity checks, and many exercises contain code with errors that you need
to find and fix.

This step of programming is not much fun for anyone. You probably
won’t really feel like a scientist while doing this. But it is necessary and it
must be done. The good news is that you will experience a deep sense of
satisfaction after finally fixing all errors and resolving all warnings.

1.7 How Best to Learn from This Book

1. First the obvious points: Read the book, look at the MATLAB code, and
run the code on your computer.

1 What Is MATLAB and Why Use It? 9

2. Slightly less obvious: Don’t just run the entire script and then look at
the plots. Run the code line by line. If there are multiple functions or
variables on a single line, run each one in turn. Try to predict what
each line does before running it. For example, if you see the following
line of code,

plot(max(data,[],2), 'o’)

don’t run the line and passively wait for something to happen. Instead,
first say to yourself: “This line will take the two-dimensional matrix
called data, return the maximum value from the second dimension of
this matrix, and plot it as a series of circles. I expect there will be 40
points because the size of the variable data is 40 × 100. This matrix
contains non-normalized spike counts, which can only be positive, so
if I see any negative values in the plot, something must be wrong. And
if I see any zeros, then it could be okay but I'll be suspicious and inves-
tigate.” And then run the line. If you get it right, congratulations. If the
result was different from what you expected, figure out where you got
it wrong and learn from it.

3. The code in this book is written to be a tool to help you learn, not as a
set of “black-box” scripts with which to analyze your data. After run-
ning the code and figuring out how it works, make more plots and
different kinds of plots. Change parameter values to see what the effects
are. Start with code that works, change something in the code to make
MATLAB produce an error, and then figure out why it gave an error. See
if you can write new code such that the input data are the same, the
resulting outputs are the same, but your code looks and works slightly
differently from the book code. Study the code for a bit, then open a
blank script and see how much of the original code you can rewrite
from scratch.

4. Integrate across chapters. For example, in chapter 11 you will learn
about the Fourier transform, and in chapter 31 you will learn about
classification. Try performing the Fourier transform on some data and
then classifying the power values from the Fourier coefficients.

5. In the medical world they have a saying: “See one, do one, teach
one.” In pedagogics they have a similar saying: “To teach is to learn.”
Work with other people while going through the book. Not too many
other people—if there are more people than lines of code, that’s a
party, not a MATLAB learning session. Work on code together with
one or two other people, and meet in groups to discuss programming
or mathematical or conceptual problems. It’s likely that someone

10 I Introductions

else can explain something you struggle with, and that you can
explain something that someone else struggles with. If you are the
better programmer in the group, let the less experienced person do
the typing while you act as “backseat driver” (remember to be nice
and patient).

6. Use the index. There are a lot of tips and tricks in this book, but
the book is organized according to analysis topic, not according to
MATLAB function. That was intentional, to make the content more
approachable to a reader interested in neuroscience or psychology. But
it means that some MATLAB-specific functions may be difficult to find
from the table of contents. I tried to make the index as detailed and
helpful as possible.

1.8 Exercises and Their Solutions

Chapters end with exercises that test and develop the skills taught in
each chapter. You should do the exercises. Really. You will develop your
MATLAB programming skills much more from the exercises than from
reading the text and looking at my code. To encourage you to do the exer-
cises, I occasionally put material in the exercises that is not presented in the
chapter.

You should try to start and complete the exercises from scratch. If
you need a hint, download the exercise starter-kit from my website (www.
mikexcohen.com). This code is not a complete set of solutions, but it
provides some skeleton scripts and hints to help you along. Also available
online are screenshots of plots that correct solutions might produce.
If your code produces a plot that looks like the ones online (random
numbers notwithstanding), it’s likely you got the correct solution (there
are usually several correct ways to solve a MATLAB or data analysis
problem).

If you really want to maximize your knowledge, complete the assign-
ments multiple times. I'm not kidding. Come back to the same problems
after a few days or weeks, and solve them again. Each time you re-solve the
same problem, you'll find different or more efficient solutions. And you will
start being able to recognize the types of problems that come up over and
over again.

1 What Is MATLAB and Why Use It? 11

1.9 Written Interviews

I thought it would be insightful and encouraging for you to read interviews
with some of the top MATLAB programmers in the cognitive and neurosci-
ence fields. The interviews are placed throughout the book; all interviewees
were asked the same questions, and their answers reflect their own opin-
ions. Interviewees were selected because they have made contributions to
the scientific field in part through programming in MATLAB. Of course,
many people—from students to postdocs to professors to full-time pro-
grammers—contribute to their scientific field in part through MATLAB pro-
gramming; please know that your efforts are highly appreciated even if you
were not interviewed. The interviews are thought provoking, and I hope
you enjoy them.

1.10 Where Is All the Code?

There are more than 10,000 lines of code that accompany this book (I know
that sounds really impressive, but there are a few redundant lines). Printing
every line of code in the book would greatly increase the page count and
would require a lot of manual typing on your part. Therefore, the most
important pieces of code are printed in the book, and all of the code can be
downloaded from www.mikexcohen.com.

The code printed in the book does not always exactly match the online
code. In some cases, variable names are shortened for formatting purposes;
in some cases, the online code provides additional options or examples;
and in some cases, the book shows additional code to facilitate comprehen-
sion. Although this requires you to spend more time going back and forth
between the book and the online code, the extra effort forces you to appre-
ciate that there are multiple ways to accomplish the same goal when pro-
gramming. I want you to become a good and flexible programmer, not to
memorize a few elementary programming sentences.

1.11 Can I Use the Code in This Book for Real Data Analyses?

Yes you can. The code here is valid for application to real data analysis. That
said, the primary goal here is to learn how to use MATLAB—the focus is
more on the learning aspect than on the applications aspect. The code is
not a cookbook for data analysis, and you definitely should not simply
copy and paste the code into your analysis scripts without understanding
what the code does (in part because the code occasionally contains

12 I Introductions

intentional errors that you need to find!). Yet the main purpose of using
MATLAB in neuroscience is to analyze neuroscience data, and it doesn’t
make sense to learn programming without learning some analyses. Thus
each chapter deals with one specific aspect of data analysis, but the focus is
more on the programming implementations, tips and tricks, and potential
mistakes to avoid, rather than on mathematical derivations and proofs.

Because of this, the analysis methods presented in this book are not nec-
essarily the most cutting-edge methods that reflect the state of the art in
neuroscience. Instead, they are the analyses that are commonly used in the
literature and that provide a good framework for learning how to program
in MATLAB. This separates MATLAB for Brain and Cognitive Scientists from
the book Analyzing Neural Time Series Data, which goes into great detail
about how to analyze electrophysiologic data while providing some instruc-
tion about MATLAB programming. MATLAB for Brain and Cognitive Scientists
goes into great detail about MATLAB programming while providing only
the necessary background details about the intricacies of data analysis, sta-
tistics, and interpretation.

1.12 Is This Book Right for You?

This book is written specifically for those studying or considering the
fields of neuroscience, psychology, and cognitive neuroscience. The level is
intended for advanced undergraduates up to professors, but probably mas-
ter’s students, PhD students, and postdocs will benefit the most. The book
starts with the most elementary introduction to MATLAB but then quickly
progresses to more medium-level and advanced material. This is inten-
tional—there are many excellent resources for beginner-level introductions
to MATLAB, but there are very few structured resources that can guide you
from beginner to moderate level. If your goal is to spend a year slowly work-
ing your way up to writing a for-loop, then this book is probably not for
you. If you have limited time, a positive attitude, and want to learn a lot of
MATLAB quickly so you can start your data analyses before your hair turns
gray, I hope you find this book to be the right resource.

1.13 Are You Excited?

If you are patient and motivated, learning how to program in MATLAB will
change your life. It will open new possibilities for scientific discovery, it will
make you more independent, and it will make you more competitive for
your next job as a student, postdoc, or professor. If you are exploring a

1 What Is MATLAB and Why Use It? 13

career outside science, programming skills will likely be important for any
job in our increasingly digitized and programmed world. I don’t know if it’s
good or bad that programmers are taking over human civilization, but hey,
if you can’t beat ’em, join ’em.

I tried to write this book to be approachable and encouraging, with a few
subtle jokes here and there to keep you engaged. While writing, I tried to
imagine that I'm sitting next to you, talking to you, and helping you each
step along the way (don’t worry, in my imagination I brushed my teeth and
hadn’t eaten canned tuna fish in several days). When I write “you” I am
speaking directly to you, the reader. When I write “we,” it’s not the Royal
We; I am imagining that you and I are sitting together working through
MATLAB, and I'm trying to make you feel better by giving the impression
that I'm in the process of figuring this stuff out along with you.

So, turn the page and let’s begin!

Do no harm.

—Often misattributed to the Hippocratic oath, according to Wikipedia

Just because you can, doesn’t mean you should.

—Common saying

When it comes to analyzing your data, MATLAB is simultaneously an amaz-
ing resource that gives you the freedom you need as a scientist and the
biggest danger to doing good science.

“Philosophy of data analysis” is not about analyses per se; it is about
how to think about data analysis, a set of guiding principles that you should
keep in mind when analyzing your data.

2.1 Keep It Simple

Data analyses should be as simple as possible, and you should use more
complicated analyses only when necessary. Don’t run an independent com-
ponents analysis (ICA) when an average will suffice. Don’t run a mixed-
effects hierarchical linear model with 15 covariates and all interaction terms
using Monte Carlo simulations to estimate a posteriori distributions of the
width of possible parameter estimates when a one-sample t-test will suffi-
ciently provide evidence for your hypothesis.

This advice is difficult to give and difficult to take. Analyses are fun, and
the brain is complicated. Many neuroscientists believe (unfortunately,
despite its probable truth) that more fancy analyses will make a manuscript
more likely to be accepted, particularly at high-impact-factor journals.

Complicated data require complicated analyses, and the brain is
certainly complicated. The argument here is not that you should avoid
complicated analyses. Rather, always start with simple analyses and move

2 The Philosophy of Data Analysis

16 I Introductions

to more complicated analyses only when the simple analyses are insuffi-
cient to provide evidence for or against the hypotheses.

2.2 Stay Close to the Data

Imagine this situation: You start with raw data. Then you filter the data.
Then you apply a regression model in which each time point of the data is
predicted by two independent variables and their interaction. Next, you
filter the regression weights for the interaction term. Then you convolve
those filtered regression weights with a kernel defined by the output of
a computational model. Then you compute the Fourier transform of the
convolved signal, take a weighted-by-distance average of several frequency
components, and perform a k-means clustering to separate the averaged
Fourier coefficients into three groups. Then you compute the Euclidean
distance from each point to the center of mass of each cluster. Finally, you
run a one-factor analysis of variance (ANOVA) to determine whether the
point-to-center distances within those three clusters are different between
the Alzheimer-model mice and the control mice.

How can we relate the final ANOVA results back to the raw data (i.e., the
activity of the brain that you measured)? Probably your answer is, “I have
no idea.” This is not a situation you want to be in with your scientific
research.

Each of the steps described above gets further away from the data. Steps
away from the data are nearly always necessary, partly because most data
contain noise, and partly because multiple signals can be embedded in the
data simultaneously. The purpose of data analysis is to recover what cannot
be obviously visually observed in the data, and this necessarily involves
moving away from the raw data. Multivariate or multidimensional data
entail even bigger difficulties, because the raw data may be too complex to
use or even visualize directly.

There are two primary dangers of letting your analyses get too far away
from the raw data. First, errors, suboptimal parameters, or poor fits of mod-
els to data carry forward to all future steps. These issues will compound as
you get further away from the data, meaning that a small error early on can
produce large errors later on. Second, the more steps between the data and
the final results, the more difficult it becomes to interpret those results or
to link the results to other findings, theories, and so forth.

This is not to say that you should avoid any analyses or interpretations
of parameters and meta-parameters. Rather, each step away from the raw

2 The Philosophy of Data Analysis 17

data should be made with increasing caution and should be done only
when it can be justified.

2.3 Understand Your Analyses

“Understand” can be interpreted on many levels. It is ideal to have a deep
mathematical understanding of everything that happens to your data. One
might interpret this to mean that you should be able to program any analy-
sis yourself from scratch. This level of understanding is a noble goal that
you should work toward, at least for the analyses you use most often.

But limiting yourself to analyses that you fully mathematically under-
stand involves excessive constraints, particularly for those without a strong
formal mathematical background or those relatively new to programming.

A more realistic interpretation of “understand your analyses” is that for
any analysis you want to apply to your data, you should be able to explain

1. generally how the analysis works;
2. how to interpret the results;
3. what the effects of different parameter settings are; and
4. how to determine if something went wrong.

If you want to use a data analysis method, try to be comfortable with
the four points listed above before publishing or presenting the results in a
formal scientific setting. Being a good programmer helps enormously for
understanding analyses, because you will be able to write code to test and
inspect results after testing many different analysis parameters, input data,
and so on.

2.4 Use Simulations, but Trust Real Data

The main advantage of simulated data is that you get to define the ground
truth, which means you know what the outcome of the analysis should be.
If you are trying to understand what a data analysis method does or are
developing a new or modified analysis method, simulated data is a great
place to start. In this book, you will learn several techniques for simulating
data to evaluate data analysis methods.

The main disadvantage of simulated data is that simulated data often
lack characteristics of real data. Methods might work well in simulated data
and then fail to produce sensible results in real data. Or you might fine-tune
an analysis method to capture a simulated dynamic that does not exist in
real data.

18 I Introductions

When testing new methods, the best kind of empirical data to use are
data where there is a simple and large effect that you can anticipate a priori.
For example, if you are testing a novel data analysis method for fMRI data,
evaluate the method on a task in which visual stimuli are presented to the
left or right of fixation, and the human research participants make responses
with their left or right hand. Experiments like this may not be very interest-
ing from a neurocognitive perspective, but they are a good model for analy-
sis methods because you know what the results should be.

2.5 Beware the Paralysis of Analysis

Because analyzing data is fun, because the parameter space for complex
analyses tends to be large, and because most neuroscience data sets are mul-
tidimensional, it is easy to get caught in a loop where you keep reanalyzing
the same data using different methods or different parameters. To make
matters worse, there are many ways to analyze data, and there are new pub-
lications each year describing even more ways to analyze data or to improve
existing analysis methods.

It is tempting to think that there is a really amazing and novel finding in
your data, and you just need to keep searching for the right analysis method
to get that result to come out. When you are stuck reanalyzing the same
data without moving forward, this is called the paralysis of analysis. There
are two major problems with the paralysis of analysis.

1. You increase the risk of overfitting and explaining noise rather than or
in addition to signal. This point is discussed in more detail in the next
section.

2. No data set is perfect, and repeatedly reanalyzing the same data
increases the risk of nonreplicable results (this point is discussed in
more detail in the next chapter). Progress in science is more likely to
come from independent replications than from obsessive reanalyses of
the same data set, particularly if that data set contains a limited amount
of data.

At some point you hit the data analysis version of the law of diminishing
returns: More time and energy goes into the analyses, but no new results
come out. This is when you need to stop analyzing and move on. The dif-
ficult part is knowing when to stop. Ideally, you will decide the end point
of the analyses before you even start. In practice, I suspect this rarely
happens.

2 The Philosophy of Data Analysis 19

Here are my criteria for stopping data analysis: I stop analyzing data
when different parameters or different analysis methods produce (a) the
same pattern of results (including null results) or (b) completely different
results. If different analyses produce the same results, I trust that there is a
real finding and that it is robust. If different analyses produce qualitatively
different results, I become suspicious that the effect is either very weak or is
an artifact that some analyses are sensitive to. If the effect is theoretically
relevant, I would report it but interpret it cautiously.

2.6 Be Careful of Overfitting

Probably you’ve seen a graph like figure 2.1 before. If you haven’t, the idea
is fairly straightforward: Data contain signal and noise, and you want to fit
only the signal and not the noise.

There are both qualitative and quantitative methods to avoid overfitting
data. Qualitatively, you should begin with models that have few parame-
ters, and then increase the number of parameters only when necessary.
Visual inspection of data and model fits is sometimes sufficient to
determine whether the model is more complex than necessary (discussed
in chapters 28 and 29). Quantitative methods include formal model

Figure 2.1

An illustration of overfitting. Two data sets were generated using the same linear

trend plus independent random noise. The top left panel illustrates overfitting by

using a 10-parameter polynomial model, and the top right panel illustrates properly

fitting using a two-parameter linear (intercept and slope) model (you will learn more

about these kinds of models in chapter 28). One of the problems of overfitting is that

while the model fits data A, it cannot generalize to new data B.

Over�tting Fitting

D
at

a
“A

”
D

at
a

“B
”

20 I Introductions

comparisons, in which the fit of various models to the data (as measured,
e.g., through log likelihood) are compared; the number of model parame-
ters is used to penalize more complicated models. Akaike and Bayes infor-
mation criteria are perhaps the most commonly used model comparison
methods.

This is the easy-to-understand, textbook example of overfitting data.
There is another, and more insidious, form of overfitting, which is more
problematic and probably more widespread.

This can be called “researcher overfitting” and results from the large
number of choices that the data analyzer has during all the steps of process-
ing and analyzing the data. Each time you re-run the analysis using a differ-
ent time window, different frequency band, different filter cutoff, different
smoothing kernel, different data rejection criteria, and so forth, you are
refitting the data with a slightly different “model.”

If you keep changing these parameters and reanalyzing the data, there is
a danger that you will be optimizing the data processing pipeline in part
to capture noise or at least an idiosyncratic effect that might not replicate
in an independent sample. A striking illustration of this possibility is a
study showing that different combinations of processing steps in an fMRI
study (processing steps included temporal filtering, slice-time correction,
spatial normalization, and spatial smoothing) can produce a wide range
of supra-threshold results that in many cases were qualitatively different
(Carp 2012).

There are two strategies to avoid researcher overfitting. One strategy is
to use a subset of data to optimize the parameters, and then apply those
parameters to the rest of the data. The subset could be one subject or it
could be one half of the data. It should not be more than one half of the
data, because fitting to 99% of the data and then applying those parameters
to 1% still runs the risk of overfitting. This strategy is advantageous because
you can use the characteristics of your particular data set to optimize the
analysis pipeline. The steps you took to optimize your analysis and process-
ing pipeline should be reported in a publication so other researchers can
evaluate and reproduce your methods. This is useful to the field because it
will minimize the time other researchers will need to spend on processing
steps unlikely to be successful.

A second strategy is to find other published studies that use similar anal-
ysis methods and use their processing and analysis protocols. This is a com-
pletely unbiased approach and runs zero risk of overfitting your data. But it
comes with the risk that the processing pipeline might be suboptimal for
your particular experiment. For example, imagine that a published study

2 The Philosophy of Data Analysis 21

on the same topic and using a similar experimental design used a time win-
dow of 400–700 milliseconds for averaging action potentials. Inspecting
your data, however, reveals that the spiking activity peaks earlier, say from
300 to 600 milliseconds. A window of 400–700 milliseconds might yield
weak or nonsignificant results. This difference in activation timing might
be meaningful (e.g., if there are differences in motivation or age) or it might
simply reflect natural sampling variability.

In practice, a balance between these two strategies is probably the best
way to go. Many research labs have standard in-house processing and
analysis protocols that generally work well and that they use for most of
their research. The important aspects are to detail all of your processing
steps so they can be evaluated and replicated, and to apply the same pro-
cessing steps to all subjects, data sets, and conditions. To the extent that
there are biases, those biases should at least be consistently applied to all
of the data.

2.7 Noise in Neuroscience Data

It is important to realize and to accept that data contain noise. Thinking
that fancy filtering techniques can completely denoise data is dangerous:
Signal and noise are often coupled, and filtering out too much noise
typically entails filtering out some signal. Relatedly, some noise is easy to
remove, while other noise is difficult or impossible to remove. There are no
cookbook procedures that blindly and successfully denoise any data set.

The good news is that a lot of noise can be successfully removed from
data, and the more you know about your noise and how to isolate it in
time, frequency, or space, the cleaner your data can become. Still, try to
avoid excessively pre-processing your data. With each filter or processing
step, the risk of losing signal increases. In other words, use a chisel, not a
sledgehammer.

Of course, the easiest and best way to remove noise is to avoid it during
recording. If you see excessive noise in the data, try as best you can to find
the part of your experimental setup that produces the noise. Noisy data
cause major headaches during analyses, and a few extra days/weeks/months
hunting down and eradicating experimental noise sources will improve the
rest of your research.

Finally, before trying to denoise your data, think about whether it’s even
necessary. If some vibrating equipment causes an artifact at 748 Hz but your
analyses will focus on activity below 40 Hz, it might be unnecessary to
worry about removing this high-frequency artifact.

22 I Introductions

2.8 Avoid Circular Inference

Imagine generating 100 random numbers from a normal distribution
(mean of zero and variance of one). Now pick the 20 largest numbers and
use a t-test to determine whether the collection of those numbers is statisti-
cally significantly greater than zero. Would you be surprised if the p-value
associated with that t-test is less than 0.05? Of course not—you selected
numbers because they were larger than zero.

This is an example of circular inference (also sometimes called “double-
dipping”). Circular inference means that a subset of data is selected in a way
that is biased toward obtaining a specific result, even if there is no true
result. This issue arises often in neuroscience, because data sets tend to be
large and thus data selection is often necessary. To avoid circular inference,
the method of selecting data must be independent of the pattern of results
that the statistical analyses are designed to test.

In many cases, circular inference is easy to detect by critical thinking.
The key here is to repeat the thought experiment described above: What
would happen if you generated random numbers and applied the same
data selection procedure and statistical analysis? Would you expect statisti-
cally significant results? If you select neurons that show increased firing in
condition A compared to condition B, testing whether the firing rate differs
between conditions A and B is a biased test. However, selecting neurons
based on A versus B, but then testing the firing rate differences between
conditions C and D, is not circular inference (assuming C and D are inde-
pendent of A and B).

In some cases, circular inference is more difficult to detect. When in
doubt, ask a colleague to evaluate your data selection and statistical proce-
dures. Better to be a little confused in front of a colleague than to be embar-
rassed about a published result.

Circular inference is not illegal per se. There are situations where biased
statistics can be informative when interpreted correctly and in the context
of other analyses. In these situations, it is important to clarify explicitly
which results are based on a biased selection and which are not. For exam-
ple, if you select neurons based on a difference between conditions A and
B, and then enter the data from those neurons into an ANOVA with factors
condition (A vs. B) and state (anesthetized vs. awake), the statistically signifi-
cant main effect of condition is biased and must be reported as being biased
by the selection procedure, but the main effect of state and the interaction
between the two factors are not biased and can be safely interpreted. To
read more about circular inference and how to avoid it, see Kriegeskorte
et al. (2009).

2 The Philosophy of Data Analysis 23

2.9 Get Free Data

If you want to analyze neuroscience data but don’t have your own data,
there are several online repositories where you can download published
data sets. Occasionally, data sets are incomplete, undocumented, or other-
wise unusable, but most publicly available data sets have passed through
some quality-control check. There was a special issue in the journal Neuro-
Image in 2015 on data repositories (http://www.sciencedirect.com/science/
journal/10538119/124/supp/PB). This is not a complete list; two other
repositories, for example, are CRCNS (https://crcns.org) and modelDB
(http://senselab.med.yale.edu/ModelDB/). Open-access data is becoming
increasingly popular in neuroscience, and new repositories are continually
being developed. Printing an exhaustive list makes little sense because the
list would be outdated by the time you read this. But searching the Internet
will reveal extant repositories.

Many fields in biology, including psychology and neuroscience, have been
experiencing a sometimes-ignored but unavoidable crisis of nonreproduc-
ible findings. One alarming study estimated that somewhere between 30%
and perhaps up to 90% of findings in scientific papers are not reproducible
(see, e.g., the recent special issue in Nature on this topic: http://www.nature
.com/news/reproducibility-1.17552).

Who is “to blame” for this? We can blame the researchers for rushing
through experiments to publish more papers faster. We can blame the uni-
versity departments that evaluate researchers on the basis of the number of
their publications and the impact factors of the journals in which those
publications appear. We can blame funding agencies for preferring to fund
novel, high-risk projects instead of more trustworthy, incremental, replica-
tion-based science. We can blame the editors of high-impact-factor (some-
times called “luxury”) journals for promoting novel and surprising findings
(and therefore necessarily more likely to be statistical flukes) over more
methodologically sound research that is more likely to reflect the true state
of the world.

But I prefer a more positive outlook. Yes, we all could and should be try-
ing to do better. But above all else, I blame Mother Nature for being fickle
and creating a world full of incredible diversity and complexity that perme-
ates every aspect of biological systems on our lovely green planet Earth. H.
G. Wells wrote more mildly about human attempts to understand and con-
trol our environment in The Time Machine (1895): “nature is shy and slow
in our clumsy hands.” This incredible diversity produces biological systems
that are complex, that change over time, and that can be highly sensitive to
even minor fluctuations in the environment. This makes measuring and
studying those systems difficult and dirty, even when the measurement
devices (and the scientists using them) are nearly perfect. In other words,

3 Do Replicable Research

26 I Introductions

no matter how hard we might try to control everything and produce repli-
cable research, nature will find a way to rebel.

We should all be concerned about findings that do not replicate. But
we should not be so quick to assume that nonreplicable findings are the
product of rushed, lazy, or unethical behavior. Certainly there are cases of
outright fraud and scientific misconduct (see, e.g., http://retractionwatch.
com), but I believe that most researchers try to do the best they can, given
the constraints of limited time and budget resources and the pressure
to publish in order to survive the competitive job market of scientific
research.

There are many reasons why findings may fail to replicate. There could
be statistical flukes (type I errors), small effect sizes, effects that are highly
sensitive to minor experimental manipulations, seasonal or time-of-day
effects, cultural or linguistic differences, developmental differences, and so
on. There are also honest mistakes in experimental design or data analyses.
Some of these factors are beyond our control. But there are strategies to
improve research and produce findings that are more likely to replicate.
The rest of this chapter provides a nonexhaustive list of tips that should
help you do replicable research.

This discussion may seem out of context in a book on MATLAB program-
ming, but I believe that striving for solid, replicable research is an impor-
tant topic that should permeate our conversations, our research, and our
education. It should not be relegated to occasional special issues of scien-
tific journals and vague complaints in online forums.

3.1 Avoid Mistakes in Data Analysis

This is easier said than done, of course. And some errors are more likely to
be detected than other errors. In particular, errors that produce strange or
null effects are more likely to be found than errors that produce positive or
plausible effects.

There are three ways to help prevent—or find and fix—mistakes in data
analyses. The first is to use simulated data to confirm that the analyses can
reveal the true result. The second is to perform many sanity checks on the
MATLAB code by examining and plotting the data at each step of the analy-
sis. Throughout this book, you will have many opportunities to learn how
to sanity-check code and results.

The third way to prevent mistakes in data analysis is to keep detailed
records of what analysis steps were applied, in what order, and using what
parameters. This is not only for the sake of other people to follow your

3 Do Replicable Research 27

analysis; you’d be surprised how quickly analysis details are forgotten, so
detailed notes allow you to reproduce your own analyses after months or
years. One advantage of programming your analyses is that the code, along
with comments, provides an unambiguous list of what happened in what
order.

3.2 Have a “Large Enough” N

Sample size is important to make sure you have sufficient statistical power,
that the findings are generalizable to the population from which they are
drawn, and that your analyses are not overly sensitive to outliers or extreme
data values.

There is no magic number that makes a sample size “large enough.” It
depends on the method, the experimental paradigm, the effect sizes, the
quality of the data, and so on. For human scalp EEG, somewhere around N
= 20 subjects is often a sufficient number, but this is just a rule of thumb.
Some of the factors that influence whether a sample size is large enough
cannot be precisely determined in advance, such as the effect size and the
quality of the data.

To estimate the sample size that is likely to be sufficient, you can use
statistical power calculators (e.g., Faul et al. 2007). You can also report effect
sizes and post hoc power analyses in publications. For most kinds of neuro-
science research, it is wise to collect at least 10% more data than you think
you need, because data are often discarded due to artifacts, technical prob-
lems, attrition (meaning the subject does not complete the experiment or
dies before the data are collected), or other factors.

3.3 Maximize Level 1 Data Count

There is a distinction between level 1 data and level 2 data. Level 1 data are
the lowest level of observations. For example, in a cognitive task in which
the subject repeats many trials of some condition, level 1 would correspond
to trials in each condition. For neurophysiology experiments, this might
correspond to neurons within an animal or within an in vitro slice prepara-
tion. For individual differences research, level 1 might correspond to the
entire animal or research participant. Level 2 data are averages of level 1
data. And level 3 data would be one step higher than that.

Here is a brief example of the different levels. Imagine a study comparing
teaching styles in different classroom settings. Level 1 might be the test
performance of each student. Level 2 might be the entire classroom

28 I Introductions

comprising a dozen students, where each classroom uses one of several
teaching strategies. Level 3 might be classrooms in different neighborhoods
to compare the effects of socioeconomic status. Level 4 could be different
countries to compare cultural effects.

In psychology and in neuroscience, most experiments comprise level 1
and level 2. Generally, the idea of these two levels is that level 1 averaging
and statistical procedures are designed to estimate the direction of effects
within each individual, while level 2 averaging and statistical procedures
are designed to determine whether the effects are likely to be observed
in many individuals across the population from which the data were
sampled.

The amount of data acquired at these two levels differs markedly. In
neuroscience research, it is typical to acquire hundreds or thousands of tri-
als within each individual, while only 10–20 individuals are tested, and
sometimes fewer. Having more within-subject trials (or neurons, or what-
ever is the level 1 variable) is important for ensuring stability of the results
during level 2 (group) analyses. Therefore, you should try to maximize the
amount of level 1 data you can acquire.

3.4 Try Different Analysis Parameters, and Trust Analytic Convergence

A real finding should be robust to a reasonable range of analysis parameters.
If you get a significant effect when using a filter that has a 6-dB roll-off
but not when using a filter that has an 8-dB roll-off, this is not an effect
that should inspire much confidence. However, even real effects with
large effect sizes can be obliterated by extreme or inappropriate analysis
parameters, so you need to know what constitutes a “reasonable range” of
parameters for each type of analysis (see chapter 2.3).

Similarly, a real finding should be observed when using different
analysis approaches. For example, if you observe prestimulus alpha power
when using wavelet convolution, you should observe the same pattern of
findings when using the short-time Fourier transform.

Any time you change an analysis or an analysis parameter, the results
will necessarily change at least a bit. The important question is whether the
results remain stable enough to lead you to the same conclusion about
the findings. If your interpretation of the results changes with each minor
modification to the analysis procedure, then you should be suspicious of
those results.

3 Do Replicable Research 29

3.5 Don’t Be Afraid to Report Small or Null Effects, but Be Honest About
Them

If you have an effect that borders on statistical significance, for example
depending on the filter characteristics, particularly if it is a theoretically
relevant finding, it is okay to report the finding. But you should be explicit
and honest about the effect size. You could write something like “this find-
ing was relatively small and dependent on analysis parameters. It is thus
an interesting possibility, but must be confirmed in future experiments.”
Sometimes, effects are small because the study was designed to maximize
other effects. Reporting small effects also facilitates future meta-analyses.

3.6 Do Split-Half Replication

Split-half replication is a good way to demonstrate that your findings are
robust and a good way to avoid overfitting. The idea is very simple: Perform
all of the analyses on one half of your data, then repeat the analyses using
the same parameters and procedures on the other half of the data.

The data could be split according to subjects, or according to trials (e.g.,
even trials vs. odd trials), or according to blocks of trials. You should make
sure that the way you split the data preserves the global characteristics
across the two subgroups. For example, you should not split the data by
gender, and you should not separate the first half versus the second half of
trials if the outcome measure is likely to differ early versus late in the
experiment.

The ability to perform split-half replication requires having a sufficient
amount of data to perform statistics on each half of the sample. This is
another good motivation for collecting a sufficient amount of data.

3.7 Independent Replications

Of course, the best way to determine whether a finding is replicable is to try
to replicate it. The best kind of replications are from independent research
groups using different equipment. A real finding shouldn’t depend on
whether the data were collected with Brand X or Brand Y equipment, and
many fundamental brain processes shouldn’t depend on whether the data
were collected by Scientist M in the Netherlands or by Scientist R in Lithu-
ania (unless, of course, the research involves human cultural or linguistic
processes, in which case one would predict that the results differ meaning-
fully across countries).

30 I Introductions

But independent replications don’t always happen, in part because dif-
ferent research groups do different research. Thus, you should try to repli-
cate your own findings in subsequent experiments. This does not need to
slow down your progress or scientific output, but you should try when pos-
sible to incorporate replications of previous findings into new experiments.
This will happen naturally if your research follows a programmatic line of
investigation.

3.8 Write a Clear Methods Section

The purpose of a methods section in a scientific publication is to provide
sufficient detail for other researchers to replicate your scientific methods.
Unfortunately, methods sections are too often written in a vague manner
with few details, and interested researchers would be unable to replicate the
exact procedures. Occasionally, the methods section is so poorly written
that it’s not even clear what was done in that experiment. Please do the
world a favor and make sure your methods section is complete and compre-
hensible. Most journals allow supplemental online sections, so there is
rarely an excuse of insufficient space. It’s better to err on the side of provid-
ing too much rather than too little detail.

If you use toolboxes or software packages, include the names of the
functions and procedures that you used, and specify any nondefault
parameters.

3.9 Make Your Analysis Code or Data Available

Making your analysis code freely available has at least three benefits. First,
other people will be able to learn from and use your code, which benefits
the scientific community. Second, and relatedly, if someone uses your code
in their publication, they will cite your paper, which increases the visibility
of your research. Third, even if no one ever uses or even looks at your code,
just knowing that your code will be available for the world to inspect will
help motivate you to write error-free and well-commented code, which can
have only positive effects on the quality of your research.

There are many ways to make your code available. You can put it on
your own website or your lab website, upload it to https://github.com or
http://code.google.com (or any other related website), or you can simply
note in the publication that code is available upon request (this is the least
preferred option).

4.1 The MATLAB Program Graphical User Interface

When you start the MATLAB program, one or several windows will open. It
might look something like figure 4.1. The MATLAB program has around six
subwindows that show relevant information that you can optionally show
or hide. The purpose of this chapter is to introduce you to the MATLAB
environment. If you are completely new to MATLAB, this chapter is a pre-
requisite for every other chapter in this book. If you already have some
experience with MATLAB, it would behoove you to skim through this chap-
ter just in case there are a few things you don’t already know.

All of the programming and executing of MATLAB scripts happens in the
MATLAB graphical user interface (GUI). It is possible to batch MATLAB jobs,
meaning you tell MATLAB which script to run, and that script runs on a
server with no interface. But most of the time, you will run MATLAB in the
so-called interactive mode.

It is possible to have multiple instances of MATLAB running on the same
computer. That is, you can open MATLAB four times and run four com-
pletely different analysis jobs. If you have a multicore computer, it is good
to have maximum N – 1 MATLAB instances, so that one core can be kept
free for other computing needs. Multiple MATLAB instances is an easy way
to parallelize your work: You can analyze half of the data sets in one MAT-
LAB instance and half of the data sets in another MATLAB instance. If you
are sharing computing resources with other people, don’t use all the cores
for your MATLAB instances (more on this in the MATLAB etiquette section
at the end of this chapter).

The MATLAB GUI changes somewhat with each version. This chapter is
based on the R2015a version. Other versions may have slightly different
layouts, but the differences will be minor. If you have a version of MATLAB

4 The MATLAB Program

32 I Introductions

older than R2007, you should consider upgrading, because several impor-
tant MATLAB functions have changed since then.

4.2 Layouts and Visual Preferences

The MATLAB window is highly customizable. Each MATLAB user (i.e., you)
has personal preferences for layout and color schemes, so you should feel
free to modify the layout to be most comfortable for you. Windows can be
made visible or hidden by selecting Home, Layout from the main Menu bar.
The important windows include the following (these numbers correspond
to numbers in figure 4.1).

1. Command window. This is where you interact with MATLAB. All code is
evaluated here, and all of the variables and stored data are accessible
and viewable here. Your MATLAB experience will be extremely limited
without the Command window being visible.

2. Editor. This is where you view and edit MATLAB scripts and functions.
“Scripts” and “functions” are text files that contain code and com-
ments. It is likely that you will spend most of your MATLAB time using
the Editor, so you should keep this visible as well. Multiple files can be

Figure 4.1

When you open MATLAB for the first time, it might look something like this.

(1)

(2) (4)(6)

(3)

(5)

4 The MATLAB Program 33

kept open at the same time, and these will be stored in different tabs,
similar to the tabs of an Internet browser.

There is a small dark-gray horizontal bar on top of the scroll bar in
the Editor window. If you click-and-drag that bar downward, it will
split the Editor in two, allowing you to view the same script in two
different locations. This is useful if you have a long script and want
to compare the code on lines 200–220 with the code on lines 10–30.
Double-clicking the splitting horizontal bar will make it disappear.

3. Current Folder. This window is similar to a File Explorer you might see
in Windows or Mac. It shows your current directory, all the files in that
directory, and the subdirectories.

4. Workspace. This window shows all of the variables that are stored in
MATLAB’s memory buffer. It also provides some information about
each variable, such as the size, dimensions, and type (cell, double,
structure, etc.). If you double-click a variable, a new window will open
that shows the contents of that variable as a spreadsheet, similar to
Excel. This works only on some types of variables.

5. Command History. This shows the previous commands that were typed
into the Command window. If you keep the important lines of code
in the Editor, you might not need to use this Command History
window.

6. Figures. This is where your data are visually represented. The Figures
window is not visible unless you have figures open. When there are
multiple figures open, you can choose to have them be grouped
together into one window, in which case you can view different figures
by selecting their tabs, similar to selecting different tabs in an Internet
browser, or you can choose to have each figure be its own separate win-
dow. The former is useful if you have many figures and want to keep
them organized; the latter is useful when you want to inspect several
different figures at the same time.

Each of these windows can be “docked” (stuck) inside the main window
or “undocked” (free to be moved around on your monitor, outside the
main MATLAB GUI). If you have multiple monitors or have a big monitor,
you might prefer to have some windows undocked. If you like to keep your
MATLAB session neat and tidy, you might prefer to have all windows
docked (I like having everything docked).

Windows can be moved around the MATLAB GUI by clicking-and-
dragging the colored bar on the top of each window. As you move your
mouse around with the left button kept down, MATLAB will show an

34 I Introductions

outlined frame so you can see where the window will be once you release
the mouse button.

At any given time, only one window is considered the “active” window.
The active window is the one to which keyboard presses are directed. You
can select which window is active by clicking on it, and you can scroll
through active windows by pressing Ctrl-Tab (Apple-Tilde or Ctrl-Tab in
Mac, depending on your settings). You can see which window is active by
looking at the bar on top of the window—if it is colored, it’s active; if gray,
it’s inactive.

You can see that there are many ways to custom-tailor your MATLAB
experience. My preference for layout is to have the Command window,
the Editor, and the Figures visible and docked, and all other windows hid-
den, as shown in figure 4.2. Spend some time trying out different layouts;
you want your MATLAB experience to be comfortable and efficient. As
you become more comfortable with MATLAB, your preferences will likely
change.

Tip to students: You might think that changing your layout preferences
counts as “working in MATLAB,” but your supervisor is likely to disagree;
therefore, try to keep the monitor facing away from your supervisor.

Figure 4.2

This shows my preference for organizing the MATLAB window.

4 The MATLAB Program 35

4.3 Color-Coordinating MATLAB

If you like black font on a white background, then you will be happy with
MATLAB’s default color scheme. But if you feel that the MATLAB visual
environment should reflect your colorful personality, then you might want
to take a few minutes to change MATLAB’s color preferences.

This can be done by selecting the Home tab on the top left, and then the
Preferences button. The MATLAB Preferences window allows you to specify
many options for how MATLAB interacts with you. Click on the option
Colors in the left tab, and uncheck “Use default colors.” Then modify the
colors under Programming Tools (under the main Colors option). Pick some
nice colors. Just make sure to pick colors that facilitate your experience—
dark-gray text on a black background may look great on the cover of a
1980s metal band album, but it might not be the best color scheme for
spending hours staring at MATLAB code.

You can also change other visual features here, including the font
size and type (menu option Fonts). Don’t use a font size that is too small,
though—doctors say it’s bad for your eyes. It is possible to change the
font type; however, in programming it is best practice to use a monospace
font such as Courier. This helps to keep the code visually clean and easy
to read.

4.4 Where Does the Code Go?

All MATLAB code is run in the Command window. You can type in code
manually or copy and paste code. This is useful when you have only a few
short lines of code to run. In practice, however, you will want to save the
code you are writing to keep it organized for the future. This is what scripts
are for.

MATLAB scripts are just plain text (ASCII) files. They have an extension
of .m, but they are normal text files and can be opened in any non-MATLAB
text editor, even Microsoft Word. Having code in a script is nothing more
than a convenient way to store a lot of code so you don’t need to memorize
and retype hundreds of lines of code each day. Just having code in the
script, however, does not mean the code will run. The code will run only if
it is evaluated in the MATLAB Command window.

Let’s try an example. Open a new script (click on the Home tab, then
New Script). Type figure, text(0.5,.5,'hello world!') in the script.
Did anything happen? No, nothing happened. You wrote some code in the
Editor but that does not run the code. You need to execute the code (we

36 I Introductions

often say “evaluate” or “run” the code, perhaps because it’s a bit macabre
to go around constantly thinking that you should be executing things).
Evaluating the code can be done using any of the following methods; try
them all to gain familiarity.

1. Manually type the code into the Command window.
2. Copy the code from the Editor and paste it into the Command

window (using Ctrl-C, Ctrl-V, or by selecting with the mouse and
right-clicking).

3. Select the code in the Editor using the mouse and then right-click and
select Evaluate selection.

4. Same as no. 3 but press the F9 key (depending on your keyboard
and operating system, you might need to press an additional function
key).

5. With the Editor as the active window, press Ctrl-Enter (Apple-Enter on
a Mac).

6. Save the script in the current directory (call it “myFirstScript.m”)
and then in the command line, type myFirstScript and then
Enter.

7. Same as no. 6 but press the F5 key (perhaps with an additional function
key) with the Editor as the active window.

Taking any of the above actions will cause something to happen (if
you take actions 1 or 2 and nothing happens, try pressing the Enter key to
run the code). The code you wrote tells MATLAB to open a new figure
and then draw the text hello world! at locations [0.5 0.5] on a standard
Cartesian axis.

You can edit MATLAB code from any text editor you want. However,
it’s best practice to use the MATLAB Editor, for three reasons: First, you
can run code directly without copy-paste annoyances (via actions 3, 4,
and 5 above); second, you won’t have to worry about other text editors
putting hidden formatting characters into the script that will confuse
MATLAB; third, you can take advantage of MATLAB’s text coloring to help
you read the code.

Normally, this would be a good time to save the script so you don’t lose
your work. But this one line of code is fairly easy to reproduce and is not
very useful for real data analysis, so saving is unnecessary (although if you
want to print it out and hang it on your mother’s refrigerator, I guess that’s
probably okay). But you should always keep in mind that saving scripts
each time you make a few changes is a good idea.

4 The MATLAB Program 37

4.5 MATLAB Files and Formats

There are several native MATLAB file formats. Three of them you will
encounter very often, and several others you should be aware of but will
infrequently use, particularly as a novice-to-moderate MATLAB user.

1. filename.m: As mentioned above, .m files are plain ASCII text files that
contain code. They can be scripts or functions (a subtle but important
distinction that is explained later). They are very important because
they contain a detailed record of exactly what code gets run and in
what order.

Because these are just plain text files, they do not necessarily need
to be labeled “.m.” You could also name them .txt, .dat, .code, or
.anything. However, keeping MATLAB scripts and functions with a .m
extension helps your computer and other users anticipate the contents
of the file.

2. filename.mat: These files contain MATLAB-readable data. They are
binarized and compressed, so you cannot see the contents of the file
with a text editor. You can import .mat files into MATLAB through the
Command window by typing load filename.mat, or by clicking on
Home and then Import data, or by double-clicking the file in the Current
Folder window. In practice, using the load command will be the most
frequent method to import data. To create MATLAB data files, use the
function save. You’ll learn more about how to import and export data
in chapter 8.

3. filename.fig: .fig is short for figure. Figures contain graphical represen-
tations of your data. They can also contain raw data and other informa-
tion, although this is less efficient than saving your data in .mat
files. .fig files are also used for creating and saving your own GUIs (see
chapter 32).

4. .mex*: These are library files for compiled code. “Compiled” means
that the code is binarized rather than printed in ASCII letters. Com-
piled code can run faster than noncompiled code, and it is also not
viewable with text editors, thus making the algorithms hidden (this is
often used in proprietary functions). Compiled code is operating sys-
tem specific, meaning that a .mex file from a Mac will not work on a
Windows computer, and a .mex file for a 64-bit machine is unlikely to
work on a 32-bit machine.

Compiling your own MATLAB code is not discussed in this book, because
in practice it is often more hassle than it’s worth. This is because a lot of the

38 I Introductions

time costs associated with neuroscience data analyses come from importing
and exporting data and from using functions that are already compiled
such as the fast Fourier transform. These processes are not significantly
improved by compiling code. Compiling code is most often helpful in com-
putational neuroscience, in which a few basic functions need to be called
trillions of times.

4.6 Changing Directories inside MATLAB

MATLAB is always working “in” a directory (the terms directory and folder
are used interchangeably). By default, MATLAB starts in a home directory in
Windows and Mac, and in the directory from which it was called in Linux.
Being able to change directories is important because your data and scripts
are probably kept in different locations for different experiments. The
address bar at the top of the main MATLAB GUI tells you the current direc-
tory. You can also type pwd or cd in the command window, and MATLAB
will print its current directory.

There are three ways to change directories. You can use the mouse in the
Current Folder window; you can use the “Browse for folder” button, which
is the small folder icon immediately to the left of the address bar; and you
can change directories in the command line using the Unix function cd.
Many Unix commands also work in the MATLAB command, so there is
some overlap between learning Unix and learning MATLAB.

You need to be comfortable using the cd function from the Command
window, because you want your analysis scripts to be able to change direc-
tories. To move MATLAB into a subfolder of the current directory, type
cd subfoldername. Typing cd .. will take you up one folder in the folder
structure. You can also use absolute directory names: cd C:/Users/mxc/
folder. You will learn more advanced ways to use cd in chapter 8, but it’s
good to gain some familiarity with the command already.

To create a new subfolder in the current folder, use the function mkdir
(make directory). For example, type mkdir tempfolder. Then check in a
File Explorer that a new folder appeared. You can also type cd tempfolder
in the MATLAB Command window. The command ls will list all of the
files in the current directory.

4.7 The MATLAB Path

A little experiment will help teach you about the MATLAB path and how
MATLAB knows where to find files. To begin this experiment, you need

4 The MATLAB Program 39

to cd MATLAB into a folder that is not the default starting location. For
example, you can create a new folder on the desktop and cd MATLAB into
that folder.

Open a new script. You already know how to do this via the menu.
You can also type edit in the Command window or you can press
Ctrl-n. We will write a script to generate some random numbers, compute
their average, and then display the average. Type the following code in the
script:

numbers = randn(10,1);

average = mean(numbers);

disp(['The average is ' num2str(average)])

If you are really new to programming and have no idea what you just
typed, then don’t worry, it will all become clear over the next few chapters.
Briefly: The first line produces 10 numbers drawn at random from a normal
distribution and stores those numbers in a variable called numbers; the
second line computes the average of those 10 numbers and stores that aver-
age in the variable called average; the third line prints a message to the
Command window that includes that average. You can run the code and
see that it prints the average of 10 randomly generated numbers. To con-
vince yourself that these are randomly generated, run the code multiple
times. (The function randn generates random numbers around a mean of
zero, so don’t be surprised when the average is close to zero each time you
re-run the code.)

Save the script in the current directory using the name “showmean.m.”
Now you can call that script from the command line by typing showmean
and then press the Enter key. Notice that you are not running this script
from the code in the Editor window. In fact, you can close that file in the
Editor window and run it again from the Command window. When you
type showmean in the MATLAB Command window, MATLAB reads that
text file and evaluates it line by line. It doesn’t matter if the file is currently
open in the Editor window.

Now create a new folder called “temp” in the current directory and
cd into that folder. Type showmean again. What happened? You got an
error about Undefined function or variable ’showmean'. That
doesn’t make sense! You just created and evaluated the file, so why did it
crash now?

The answer is that MATLAB is no longer able to “see” that file. MATLAB
cannot see all of the files on your computer. It can only know about files
that are in its path. A path is a list of folders that MATLAB searches through

40 I Introductions

to find files. The current directory is always in the MATLAB path, and there
is also a saved path that you can edit.

Now we will change the MATLAB path to include the folder in which the
file showmean.m lives. Click on the menu Home then Set Path. You can see
a long list of folders; this list is MATLAB’s path. Warning! Do not remove
folders from the MATLAB path unless you are certain you know what
you are doing. Instead, you want to add a folder. Add the folder that con-
tains showmean.m and click Close at the bottom of the window. You should
not click the Save button. This is a bit confusing. The Close button really
means “save the path for this session but do not permanently save this
new path,” and the Save button really means “save the modified path
forever.” If you click Close, your changes will take effect in this MATLAB
session, but those changes will be lost when you close MATLAB and open a
new MATLAB session.

Now that the folder is in MATLAB’s path, try again to run showmean.
Now it works! The reason why it works now is because the script
showmean.m is in a folder in MATLAB’s path, and so MATLAB can find that
file even though you are not in the folder where the script lives.

You can modify the path from the command line or in a script using the
functions addpath and genpath. Similar to clicking Close in the menu,
adding folders to the MATLAB path from the command line will not perma-
nently change the MATLAB path. It is generally a good idea not to modify
the MATLAB path permanently, and instead to add folders to the path from
scripts. This is particularly the case when using MATLAB on a shared com-
puter or server. On server computers that allow different users, you can
store your own specific modifications to the path. You’ll read about this in
the MATLAB etiquette section later in this chapter.

4.8 Comments

Comments are the second most important aspect of programming (after
the code itself). A comment is a piece of text that is embedded in the script
but is not evaluated by MATLAB. In MATLAB, comments are indicated by
a percent sign (%). Comments can be placed after code, but code cannot be
placed after comments. Always use comments. But keep comments brief.
Examples:

% The next line of code computes the average

average = mean(data); % data is a variable

4 The MATLAB Program 41

If you have many lines of code to comment, you can use block comment
formatting:

%{

These are comments but have no percent sign.

Instead, they are encased in curly brackets.

%}

4.9 Cells

A cell is a grouping of related lines of code. For example, you might have a
cell for finding and importing the data, another cell for filtering the data,
another cell for separating the data according to different experiment con-
ditions, and so on. Cells are demarcated by a double-percent sign (%% at
the start of the line; %%% will not create a cell). In the Colors option of the
Preferences window, you can define active cells to be in a different color.
Cells are a great way to separate blocks of code, so make sure to use them.
If you think about programming as a written language, then cells are the
paragraphs.

One useful feature of cells is that you can run all of the code in a
cell—but none of the code outside the cell—by pressing Ctrl-Enter (Apple-
Enter on a Mac). That saves a lot of time and is really convenient, particu-
larly when you want to test some code after changing parameters or input
files.

4.10 Keyboard Shortcuts

MATLAB keyboard shortcuts can save you time and reduce the hassle of
having to switch between the keyboard and the mouse (but don’t keep your
hands on the keyboard too long—your supervisor and I don’t want you to
get repetitive stress–related wrist injuries). There are several built-in key-
board shortcuts, and you can define new keyboard shortcuts in the Home,
Preferences menu window. Below is an explanation of some of the most
commonly used keyboard shortcuts.

• Ctrl-Enter: When pressed in the Editor, this will evaluate all of the code
within the highlighted cell.
• Tab: The Tab key can be used to move four spaces over, but it can also be
used to complete a function, variable, or file name. In the Command win-
dow, type showme and then hit the Tab key. MATLAB autocompletes the
script name showmean, because this is the only variable or function or file

42 I Introductions

that starts with showme (assuming you still have this script and it is still in
your path; if not, you can follow the earlier section to create this file and
put it in MATLAB’s path). If there are multiple possible options, MATLAB
will give you a list. For example, type sh and then Tab. You will see an
alphabetical list of all functions, variables, and files that start with sh. Tab-
complete also works with function inputs, including cd (change directory)
and ls (list files in the current directory).
• Ctrl-r: When pressed in the Editor window, this will comment out the
entire line. You can comment multiple lines at a time by selecting several
lines and then pressing Ctrl-r.

This and the next few keyboard shortcuts are considered the “Windows
defaults”; on Mac and Linux operating systems, the keyboard shortcuts are
a bit different. In the Home, Preferences, Keyboard, Shortcuts menu option,
you can select whether to use the Windows Default or the Emacs Default
(Mac and Linux). I prefer the Windows default shortcuts, even when using
Linux and Mac.

• Ctrl-t: Uncomment a commented line or multiple selected lines of code.
• Ctrl-i: “Smart indent.” This automatically puts spaces into the selected
lines of a script in order to improve readability. For example, smart indent
would turn the code

for i=1:3

for j=i:10

disp(i*j)

end

end

into a more readable version of the same code:

for i=1:3

 for j=i:10

 disp(i*j)

 end

end

In general, you should try to make your code look visually clean and
organized. It will help you and others read and understand the code. This is
particularly important when you have multiple nested loops and other
command statements.

• Ctrl-c: The same as in many other programs, Ctrl-c will copy selected text.
However, if no text is selected and if you press this combination in the

4 The MATLAB Program 43

Command window, Ctrl-c will break whatever MATLAB is doing and give
you back control of the command. This is useful if you run a long script and
realized you made a mistake or if you are stuck in an infinite loop and want
to break out of it. (Wouldn’t it be nice if life had a simple keystroke for this
situation?)
• F9: If you highlight some code in the Editor window and press F9, the
highlighted code will be evaluated in the Command window. If you are
using a laptop or a Mac, you might need to press some other key combina-
tions (e.g., function keys) to get the computer to recognize that you want to
use the F9 key instead of whatever else is also mapped onto that key, such
as “play-next-song.”
• F5: Pressing F5 will run whichever script is currently active in the Editor
window. Note that F5 runs the entire script, equivalent to calling the script
from the command line as you did with the showmean example earlier.
Pressing F5 automatically saves the script first, so it is redundant to save and
then press F5.
• Up-arrow: In the command line, press the up-arrow key to see a list of
previous commands, in reverse order from when you typed them. Then
keep pressing the up-arrow key or down-arrow key to scroll through them.
Once you’ve found a command you want to run again, you can press the
Enter key to run the code immediately or you can press the Tab key to print
it in the command line without executing it.

You can also filter through previous commands by typing the first
few letters of the command. For example, type sh in the Command win-
dow, and then press the up-arrow key. Now you see only the previous com-
mands that start with sh. If you are using MATLAB for the first time and
followed this chapter, the only previous command that matches this filter
is showmean. If you have a tendency to type out your frustrations, you
might see some other previous attempted commands.

• Standard keyboard shortcuts: Many other system-wide shortcuts also
work in MATLAB, such as Ctrl-s for save, Ctrl-arrow to skip forward/
backward by one word, Home/End keys, and so forth.

4.11 Help Box and Reporting Variable Content

MATLAB provides two features for quick help while you are programming.
One is called “function hints” and is a small window that tells you how to
complete functions in terms of the number and types of inputs (figure 4.3).
You can close the little window by hitting the Esc key, and you can disable

44 I Introductions

all function hints in Home, Preferences, Keyboard. (I find this option distract-
ing and leave it disabled.)

A second useful tool is used to show the contents of a variable. If you
hover the mouse on top of a variable name in the Editor window, a small
window will show you information about that variable (similar to the infor-
mation you get from typing whos <variable>). This is useful because you
can see the contents and sizes of variables without having to type whos or
evaluate the variable. It works only after you create the variable; that is,
MATLAB will not guess the content of a variable based on the code, it will
only print information that is contained in its buffer. If you don’t see these
little windows, check the “Enable datatips in edit mode” option in Home,
Preferences, Edit/Debugger, Display.

Figure 4.3

MATLAB can provide hints while you are typing. Function hints (top panel) remind

you of the inputs to a function you are currently writing. Variable content hints (bot-

tom panel) tell you the size, type, and contents of a variable in the current work-

space. These hints can be disabled if you find them annoying.

4 The MATLAB Program 45

4.12 The Code Analyzer

MATLAB has a built-in program that analyzes the code in the Editor win-
dow. It will give various warnings and error messages. A warning is given
when the code analyzer detects that some piece of code will most likely
work, but could be problematic in some circumstances or could be opti-
mized to improve efficiency. For example, write the following code in the
Editor:

for i=1:3, asdf(i)=i; end

You will see a red squiggly line under the variable asdf, and if you hover
the mouse over this variable, you will see a warning message about the vari-
able asdf growing with each iteration, along with a suggestion to preallo-
cate for speed. This is MATLAB’s way of telling you that you should initialize
variables to improve speed and prevent possible unwanted effects. You will
learn in chapter 5 what this warning means and why MATLAB is right to
warn you.

To tell MATLAB to ignore this warning, you can right-click on the under-
lined piece of code and select for the warning to be ignored, either on this
line or in the whole script. Warnings in the code have no consequence for
whether MATLAB will run the code, so forcing MATLAB to ignore the warn-
ing has only aesthetic value, not programming value. Other warnings are
issued if the function you are using will change in future versions of
MATLAB.

If the code analyzer gives an error message, it means that MATLAB will
crash on that line. Sometimes, when you are in the middle of program-
ming, you will get error messages because lines or loops are incomplete.
That means MATLAB is analyzing your code faster than you can type. You
can ignore these error messages while you are still programming (or type
faster).

The locations of warnings and errors are indicated in the scroll bar as
orange (warnings) and red (errors) horizontal lines. By hovering the mouse
on top of these horizontal lines, you can see what the message is, and
by clicking on the horizontal bar, MATLAB will take the cursor to the
offending line.

It is good practice to inspect all of the code analyzer’s warnings. Most of
these warnings contains useful suggestions for improving code and avoid-
ing mistakes. But do not feel obligated to correct all of them to MATLAB’s
satisfaction (MATLAB is satisfied when the colored square on top of the
scroll bar is green). The code analyzer is not perfect, and its suggestions are
not demands. There are times when the warnings can be ignored and when

46 I Introductions

the offending code is actually the best or the only way the code can be
written.

4.13 Back Up Your Scripts, and Use Only One Version

Needless to say, you should back up your analysis scripts. I will go a bit fur-
ther and state that it’s really stupid not to back up your analysis scripts.
They are very small and therefore very easy to back up.

However, it is dangerous and sloppy to keep multiple different versions
of the same script on different computers. You don’t want to be in a situa-
tion where you change different parts of the script on your laptop at home,
on your desktop computer in your office, and on your USB stick on a differ-
ent computer. You’ll have three slightly different scripts that do three
slightly different things, and it can be quite a headache to figure out what
was most recently modified in which version.

The best solution to this problem is to use a cloud-based sharing/
archiving system such as Dropbox, Copy, Box, Google Drive, Github, or
any other similar service. This solves two problems at the same time: It
allows you to use one version of the script on all of your computers (or any
computer with Internet access), and it automatically backs up your files
every time it updates (which, for a continually Internet-connected com-
puter, is each time you save the file) so you don’t have to worry about
remembering to back up your files manually. Better still is to have a shared
folder for the entire research group, so that everyone can keep their analysis
scripts in a centralized location. This also facilitates sharing code with your
colleagues.

While we’re on the topic of backing up, don’t forget to back up the
experimental data as well. Usually, experimental data are too big for cloud-
storage solutions, unless you have paid service subscriptions or an unusu-
ally small amount of data. The data should be stored in at least two
physically separate locations, and ideally one of these locations is a RAID
storage or other similar backup device. Losing analysis scripts is annoying
and time-consuming; losing data is terrible and potentially suspicious if the
data are lost during or shortly after publication.

4.14 MATLAB Etiquette

If you are the sole user of MATLAB on your computer, then go ahead and
personalize anything and everything. But if you use the same copy of MAT-
LAB that other people share (this happens often in computer clusters,

4 The MATLAB Program 47

network servers, and small research labs), use some etiquette and be nice to
the other MATLAB users.

Mainly, MATLAB etiquette means not changing the path, colors, or other
settings. If you want to have your own personalized default settings, put all
of your settings into a script called startup.m, and put this file in your local
MATLAB home directory. When MATLAB starts, the last thing it will do
before letting you use it is to search for and run a file called startup.m. You
can also add motivational encouragement to the startup.m so it prints out
a friendly message each time MATLAB starts. Try adding the following code
to the end of your startup.m, then open a new MATLAB session:

disp('Stop facebooking and get back to work!!');

The MATLAB local home directory is something like C:/Users/<username>/
Documents/MATLAB/ for Windows, /home/<username>/.MATLAB for
Unix systems, and is something like /Users/<username>/Documents/
MATLAB for Mac.

Finally, if you are using MATLAB on the same computer that other peo-
ple are using, for example a shared server computer in your department or
research group, then be mindful of when to run the big memory-intensive
analysis scripts. If you need a lot of computer resources for an analysis that
takes 7 hours to run, your colleagues will appreciate it if you start the analy-
sis at 8 p.m. rather than at 8 a.m. That’s called MATLAB Karma, and ancient
superstitions suggest that building up MATLAB Karma reduces the number
of programming errors you make. It’s probably just legend, but to my
knowledge this has not been definitely scientifically disproved.

Unless you have superhuman memory abilities and superhuman typing
speed, you are going to need variables. Variables are basically just conve-
nient placeholders for information (mostly numbers, sometimes letters).
There are several types of variables and ways to combine variables. This
chapter will introduce you to working with variables of different types.
Learning how to work with different types of variables is the first hoop to
jump through on your way to becoming a good programmer.

5.1 Creating and Destroying Variables

Creating variables in MATLAB is simple: You assign a value to them. For
example, to create a variable called asdf that is a placeholder for the
number 7, simply type the following (not the >>, just the text thereafter):

>> asdf=7

asdf = 7

MATLAB, being a polite program, has confirmed what you just wrote:
The variable asdf is a placeholder for the number 7. Each time you type
in some code, MATLAB will confirm by printing out its interpretation of
what you typed in. This can get annoying after a while, and it can also con-
siderably slow down your analyses, because it takes time to print out all of
those confirmations. Thus, in practice, it is best to ask MATLAB not to con-
firm each line. The semicolon is MATLAB’s polite way of letting you say
“shut up”:

>> asdf=7;

>>

In general in this book, MATLAB code will be printed without the
command-line prompt (“>>”). The prompt is used only when necessary to
illustrate output formatting.

5 Variables

50 I Introductions

You can reassign any value to an existing variable in the same way that
you first created the variable. Keep in mind that the value previously
assigned to the variable will be lost.

asdf=7.6

All variables take up space in MATLAB’s memory buffer. Often, you will
want to clear variables out of the memory buffer. You might want to clear
variables to create space for other variables, you might want to clear vari-
ables to avoid confusing the contents of the variables across different data
sets, or you might want to clear variables just because you don’t like them
anymore (MATLAB is sometimes better than real life).

To clear a variable from MATLAB’s buffer, type clear asdf. You can also
type clear as* to clear all variables that start with as. Type clear or
clear all to clear all of the variables in MATLAB’s buffer.

5.2 Whos Are My Variables?

To see a list of the variables in your workspace, use the function whos:

>> whos

>>

If you’ve followed this chapter so far, you won’t see anything printed
after whos, because we cleared out all of the variables from MATLAB’s
buffer.

>> asdf = 10;

>> whos

Name Size Bytes Class Attributes

asdf 1x1 8 double

The function whos also shows you important information about the
type and sizes of the variables. As you learn more about MATLAB, these
categories of information will make more sense. In general—during learn-
ing and when writing analysis code—it’s a good idea to type whos often to
make sure that variables have the sizes and properties that you expect them
to have.

5.3 Variable Naming Conventions and Tips

There are a few rules, and a few guidelines, for naming variables. Here are
the important rules.

5 Variables 51

1. Variables cannot contains spaces. This is sensible; otherwise, it would
be impossible to know how to parse the code. Instead of spaces you can
use the underscore character: name_of_variable.

2. Variables cannot start with numbers. The exception to this rule is the
imaginary operator, which is the square root of –1. For the imaginary
operator, use 1i or 1j. You’ll learn more about imaginary numbers and
how they are used in data analysis in chapter 11. Variable names may
contain numbers, though, and this can be useful. For example, you can
have variables named frequency4plotting or data2export.

3. Variables cannot contain most non-alphanumeric characters. Non-
alphanumeric characters include !, @, #, $, %, ^, &, *, (,), -, and +. Most
non-alphanumeric characters have other uses in MATLAB, such as
power (^), function handle (@), or comment (%). The main exception
to this rule is the underscore (_), as mentioned above.

Those are the rules, and MATLAB will give an error if you try to break
them. In addition, there are a few guidelines to improve your programming
experience and make your code easier to read.

1. Don’t use the same name as existing functions. In the previous chap-
ter you were introduced to the function mean, which computes the
average of the input numbers. Technically, you can also use mean as a
variable name (such as mean = 7;), but this will take precedence over
the function mean, which is likely to cause errors or at least confusion.
If you would like to use a variable name and are unsure whether it is
also a function name, type which variablename. The which com-
mand tells you where a function is located on your computer. If MAT-
LAB tells you that the function or file name is not found, you are safe
to use it.

2. Use capital letters carefully. MATLAB variables are case-sensitive. The
variables asdf and aSdf are completely different. For computers, this
distinction is easy because the ASCII codes for asdf and aSdf are
different. But for humans, the distinction can be confusing. Use capital
letters in variable names only when it improves readability; for exam-
ple, dataToExport instead of datatoexport.

3. Use meaningful variable names. Avoid using variable names like m or x,
particularly if you are going to use the same variables throughout a
long script. The best variable names are those that provide information
about the content of the variable. Examples of good variable names
include averageSpikes, frequencies2analyze, times2save, and
conditionLabels. (In this book I sometimes use variable names that

52 I Introductions

are shorter than optimal, in the interest of preventing code from over-
flowing into the following line.)

4. Don’t use variable names that are really long. MATLAB has a maximum
number of characters for variable names, which is 63 in version R2015a.
But you should try to keep the length of variable names shorter
than that. Really long variable names make really long lines of code,
and really long lines of code are difficult to read and difficult to debug.
Try to make variable names as short as possible while still being
meaningful.

There are a few other variable naming tips that will be presented through-
out this book in the context of other material.

5.4 Variables for Numbers

This is the easiest and most commonly used type of variable. You’ve
been using variables for numbers since you first learned algebra. The exam-
ple earlier in this chapter with the variable asdf was a numeric variable.
Variables for numbers can contain single numbers (also called scalars),
arrays, matrices, and high-dimensional matrices (greater than three dimen-
sions). Chapter 10 provides an introduction to matrix algebra and will
describe matrices in more depth, but you are already familiar with the idea:
A matrix of numbers is a list of numbers that have some geometric organi-
zation, like a line (one dimension), box (two dimensions), or a cube (three
dimensions).

Arrays are one-dimensional matrices and can be created using square
brackets:

anArray = [1 3 2 5 3 6 7 9];

Two-dimensional matrices can be created by using the semicolon to
indicate where the next row of numbers begins:

aMatrx = [1 3 2; 5 3 6; 7 8 9];

What is the size of aMatrix? It has three numbers and then a semicolon,
then another three numbers and a semicolon, then another three numbers.
So it is a 3 × 3 matrix. You can confirm this by typing whos or whos
aMatrix.

Try to create aMatrix, but put the first semicolon between the 3 and 2
instead of between the 2 and 5. MATLAB gives an error because each row of
a matrix must have the same number of elements; matrices cannot be
jagged.

5 Variables 53

Once you have some variables, you can use them in mathematical
expressions exactly like you would in paper-and-pencil algebra. Most math-
ematical operations use the keys you would expect:

a = 4;

b = 3;

b^2

a+b

a*b

(a*4) + (b/2)

a*4+b/2

What is the difference between the last two lines of code? For MATLAB,
there is no difference; those two lines produce exactly the same result. But
which line is easier for a human to read? Clearly, it’s the penultimate line,
because the parentheses and spaces provide visual grouping that helps you
understand which variables go together. The lesson here is that spaces and
parentheses—even when technically unnecessary—should be embraced as
a programming technique to help make your code easier to read.

Numbers can be represented in MATLAB in different formats, including
integers or floating-point decimals. Here I’ll discuss “doubles” and “sin-
gles,” which are both floating-point types. MATLAB uses 64 bits of detail to
represent double-precision numbers and 32 bits of detail to represent sin-
gle-precision numbers. Most numeric data such as time series data are rep-
resented as floating-point numbers, which means they include decimal
points. Images are often integer-based (no decimal points). Some MATLAB
functions work better with or can only accept floating-point numeric input.
Thus, in practice it is often useful and occasionally necessary to convert
your data to double-precision floating-point, which can be done using the
function double:

data = double(data);

If you have very large data sets, it is often useful to convert the data to
single precision before saving. This can reduce file size by up to a factor of
2. “But space is cheap” people often retort. Yes, hard drive storage space can
be cheap, but reading files into and out of MATLAB costs time. If your
analysis scripts involve a lot of importing and exporting of data, then
reducing file sizes is not only about reducing data storage but also about
reducing analysis time.

However, converting from double- to single-precision format involves
some data loss. The question then is whether any actual information is

54 I Introductions

lost. Extreme precision (greater than 32 bits) is often unnecessary in neu-
roscience data, considering the level of noise that is present. An example
of significant information loss by changing from double to single preci-
sion is with magnetoencephalography data that are stored in teslas (T). In
this case, the data are in the range 10–14 to 10–16 T, and converting to single
precision may involve information loss. However, in this case, you could
multiply the original, double-precision data by, for example, 1015, and
then convert to single precision. Most other neuroscience measurement
ranges are not affected by reducing the precision to single. You should
check carefully whether you will lose information, but if not, then con-
verting to single precision is something to consider when saving data
to disk.

As mentioned earlier, several MATLAB functions require double-
precision data, including many filtering functions. If you convert your data
to single precision for saving, remember to convert it back to double preci-
sion for analyses.

5.5 Variables for Truth

MATLAB has a special type of variable for “logical” (sometimes also called
“Boolean”) values. Logical variables contain only two states: true or false.
Logical variables are often used in data analysis; for example, as a toggle to
decide whether to run a piece of code or to mask a large data set to extract
information out of a subset of the data. Logical variables contain entries
that look like normal numbers, but MATLAB interprets the number zero to
mean “false” and any other number to mean “true.”

To create a logical variable, you can use a double-equals sign, which is
MATLAB’s way of letting you ask a question. Try this:

isEverythingOK = 1==2

This looks confusing at first. We are using 1==2 to ask the question “Does
1 equal 2?” The answer can only be true or false. MATLAB then stores that
answer in the variable called isEverythingOK (the single equals sign). You
can type whos to see that isEverythingOK is a logical variable (i.e., its
class is type logical).

The MATLAB treatment of logical variables can be confusing. Sometimes
it is possible to use a logical variable as a normal number. For example, if
you type a = isEverythingOK + 3; and type whos, you will see that the
variable a is a double, which means that MATLAB automatically converted
isEverythingOK to the number zero and then added 3. You can also

5 Variables 55

confirm this by setting isEverythingOK to be the result of 1==1, and then
test that “true” plus 3 is 4.

Logical variables can also be created using the functions true and false:

var = true; % or var=false;

var + 4

In general, avoid the temptation to rely on MATLAB’s ability to convert
logical variables to numbers on the fly. It can make your code more flexible
when used correctly, but it can also produce confusion and errors. You will
see a few examples in later chapters where this trick is used to simplify some
code, and other examples where it will produce errors.

5.6 Variables for Strings

Variables can also store characters. This becomes useful for storing file
names, experiment labels, and so on. Use single quotes to let MATLAB
know you want to use strings:

nameVariable = 'Mike X Cohen@#$%';

Note that spaces and non-alphanumeric characters are fine here; unlike
in variable names, these are just normal letters. Numbers inside quotes are
not recognized as numbers, but rather as strings. And MATLAB in turn
stores strings according to their ASCII codes.

string4 = '4';

number4 = 4;

number4 + string4

MATLAB doesn’t give an error here, but it gives an answer that you might
not expect: 4 + ‘4’ is 56. You are probably now wondering what crazy uni-
verse MATLAB comes from to produce 4 + 4 = 56. The ASCII code for the
string ‘4’ is the number 52, and so 52 + 4 = 56. Try this in MATLAB: 4 +
'1234'. Until a few seconds ago, you would have expected to see the
number 1238, but instead you get four numbers (53, 54, 55, 56). Now
you know that MATLAB thinks of '1234' as containing four separate char-
acters (strings, not numbers) that are represented using four separate ASCII
codes.

If you feel confused now, then don’t worry; that’s normal. The situation
of 4+'4'=56 is an example of one of the worst mistakes you could make
when programming in MATLAB, because MATLAB does not do what you
expect it to do, but it also does not give an error because you did nothing

56 I Introductions

illegal. The lessons here are (1) always do sanity checks, and (2) always
be mindful of variable types. Needless to say, you should avoid at all costs
performing mathematical operations between strings and numbers.

5.7 Variables for Cells

What if you want to store numbers and strings in the same variable? You
can use square brackets to concatenate strings, so you might initially try
something like this:

a = [52 'hello' 52]

And again you get something that causes confusion. In the previous
section, you learned that the ASCII code for the string ‘4’ is the number
52. This means that to MATLAB, [52 'hello’ 52] is the same thing as
['4hello4']. Assuming that isn’t some offensive Internet meme (my
apologies if it is), 4hello4 is not a meaningful statement.

Instead, to have different types of data in the same variable, we use cells.
You can think of a cell like a cage. It isolates and stores something, and dif-
ferent cages can have different sizes and store different types of beasts. Cells
are indicated in MATLAB using the curly brackets, {}. Below is an example
of a cell array:

celery{1} = 52;

celery{2} = 'hello’;

celery{3} = 52;

Now if you type whos, you will see that variable celery is a 1 × 3 cell
array. You can type celery in the Command window to see the contents
of the cells.

Cells, like number variables, can be multidimensional matrices. You can
see this by initializing an empty two-dimensional cell array:

celery2d = cell(2,4)

Each element (cage) in the cell array can be accessed by indexing, which
you will learn about soon.

5.8 Variables for Structures

Structures are perhaps the most useful variable type for storing a lot of dif-
ferent kinds of information. You can think of a structure as if it were a small
database. Each property is called a “field” and is indicated by a period. Let’s
call our structure mouse.

5 Variables 57

mouse.name = 'mickey';

mouse.surgeryDate = '24 March';

mouse.geneType = 'wildtype';

mouse.age = 65; % in days since birth

mouse.numElectrodes = 3;

Typing whos reveals that mouse is a 1 × 1 structure. You may be tempted
to disagree with this size, because we typed in five pieces of information.
But all of these fields are part of one instance of mouse. Soon we’ll create
additional instances. You can access the data inside each field as if they
were normal variables. For example: mouse.age + 10.

You can already see that structures are useful ways to store different
kinds of information. Structures can also come in arrays and matrices,
which makes them powerful tools for storing a lot of information.

mouse(2).name = 'minney';

mouse(2).surgeryDate = '2 April';

mouse(2).geneType = 'GAD2Cre';

mouse(2).age = 82; % in days since birth

mouse(2).numElectrodes = 6;

Now typing mouse will not show the contents, but rather all of the field
names. You can type mouse(1) to see the data from the first element in the
structure mouse and mouse(2) to see the contents of the second element.
In addition to listing all properties of one element in the structure, you can
also extract information from one field over the different elements of the
structure array.

mouse.age

mouse.geneType

Note that the results are printed out as separate answers, one for each
element of the structure. You can use square brackets, [], or curly brackets,
{}, to concatenate them. Try the above two lines again, encasing each in
square brackets or in curly brackets. What are the differences and when
would you want to use square brackets versus curly brackets?

5.9 The Colon Operator

The colon operator is not a variable per se, but it is important for creating
and accessing parts of variables. The color operator, very simply, is a way
to count numbers automatically. Type the following into the MATLAB
command:

58 I Introductions

1:5

1:2:5

What is the difference between these two lines? I’m sure you noticed
that the first command counts by 1 while the second command counts by
2. Implicitly, the command 1:5 is the same thing as 1:1:5. In English, the
command x:y:z translates to “count from x to z in steps of y.” The step-
ping part need not be integers. Try evaluating 1:.5:5. You can also try
1:.000000001:5, but this requires some patience. If you run out of
patience, press Ctrl-c (or Apple-c) in the Command window. Counting will
never go higher than the number specified; 0:2:5 will stop at 4 rather than
at 6. Counting backward involves stepping by –1.5:-1:-5.

You can use square brackets to concatenate numbers defined by the
colon operator and individual numbers. For example, if you want the num-
bers 1 to 3, 6, and 8 to 13:

[1:3 6 8:13]

5.10 Accessing Parts of Variables via Indexing

Big variables are great, but sometimes you want to access only part of
a variable. Let’s say you have a variable that ranges from 1 to 200 in steps
of 2:

numbers = 1:2:200;

If you want to know the number in the fifth position of that array, use
parentheses: numbers(5). This is called indexing: You are indexing the fifth
element of the variable numbers.

Now combine your new colon operator skills with indexing. How would
you access the third, fourth, and fifth elements in the variable numbers?

Of course you know the answer: numbers(3:5).
If you want to access elements 1–3, 6, and 8–13, use square brackets

inside the parentheses: numbers([1:3 6 8:13]).
You can also combine logical arrays with indexing to produce something

called logical indexing. Let’s say we want to get all of the elements of num-
bers where the index is larger than 50. That means we want to ignore the
first 50 elements of numbers, and extract only elements 51 through the last
(there are 100 elements in total). Of course you could do this the easy way:
numbers(51:100). But the hard way is much more fun (and will be much
more useful for many applications in the future).

5 Variables 59

Before writing the solution in code, let’s think about how this should
work. To use logical indexing, we want MATLAB to associate a “true” or a
“false” with each element in the array. For example:

c = 1:3;

c([true false true])

The second statement returns [1 3], because we used logical indexing
to extract the first and third elements while ignoring the second element.
Going back to the original problem, what we want is an array of Booleans
such that the first 50 are false and the next 50 are true. One solution to this
problem is

logicalIdx = 1:100>50

The abbreviation idx at the end of logicalIdx is often used for
indexing variables. Now use the variable logicalIdx inside the variable
numbers:

numbers(logicalIdx)

And voilà, we have only the elements of the variable numbers that are
contained in positions 51 to 100.

This works because although logicalIdx might look like it contains
zeros and ones, those are really falses and trues. There are two ways that this
can produce an error. First, you can actually use zeros and ones instead of
falses and trues:

numbers(double(logicalIdx))

Now you get an error because MATLAB cannot access the zeroth entry
of a matrix (MATLAB starts counting at one, not at zero, just like normal
human beings).

Next let’s just take all ones. Re-create the logical array to be logi-
calIdx=1:100>0. This variable is now all trues, because all of the numbers
between 1 and 100 are greater than zero:

numbers(double(logicalIdx))

Now what happens? You get all ones. A bit weird. To see if this can make
more sense, try evaluating numbers(double(logicalIdx)+1), and then
using +2 instead of +1, and so on.

What happened here is that you are accessing only the first element (or
the second or third), but you are re-accessing it 100 times. It’s equivalent to
numbers([1 1 1 1 1 1 1 1]) but with 100 ones. It can get confusing,

60 I Introductions

so you should always be careful with this. Don’t worry, you’ll have plenty
of opportunities to learn about indexing throughout this book.

5.11 Initializing Variables

Initializing variables means reserving a space in MATLAB’s memory buffer
for the variable before you actually create it.

Think of MATLAB’s memory buffer as a restaurant. It’s a big restaurant,
but it’s also very popular. Initializing variables is like calling ahead of time
and making a reservation for a group of 20. The restaurant will set a table
with empty chairs, and whenever you and your friends arrive (they don’t all
need to arrive at the same time) there are reserved places for them. Now
imagine that you don’t make a reservation but just show up by yourself. No
problem, the restaurant will make a little table just for you. Then one of
your friends shows up, and the waiter brings out another small table and
puts it next to yours. Then three more of your friends show up, and the
waiter has to bring more tables and chairs. And so on until you get to 20
people. In the end, it’s possible to end up with the same table of 20 people,
but it could take a lot longer (20 is a cute number; in practice you might
have 20 billion friends showing up one at a time, each demanding a table
and chair). And if the restaurant is nearly full, your friends who show up
late might not be allowed in. Or maybe the entire restaurant will crash and
you’ll have to reboot.

There are other reasons why initializing variables is important, but
appreciating these reasons requires some MATLAB skills that are beyond the
scope of this chapter (and they don’t really fit into the restaurant analogy).
Among the many reasons to initialize is that it forces you to think carefully
about what you expect to be contained inside variables. And the more you
think carefully about your code, the more likely it is to be efficient and
devoid of errors.

Initializing variables is very easy. You simply create the variable you
want before you start populating it. You can initialize variables to be all
zeros (generally the most common way to initialize), or all ones, or NaNs
(NaN is “not a number”; this is the result of division by zero), or logical
trues, or many other things. The examples below illustrate the varied ways
to initialize variables:

mat1 = zeros(3);

mat2 = zeros(3,3);

5 Variables 61

What is the difference between mat1 and mat2? What does this tell you
about how this MATLAB function works? Below are a few additional ways
to initialize variables:

mat3 = ones(2,4);

mat4 = 7.43*ones(2,4) + 10;

mat5 = true(1,3);

mat6 = nan(8,2,3,4,5,2);

In practice, it is usually best to initialize variables to zero or NaN, which
makes it easy to identify when part of a matrix was not filled in.

5.12 Soft-coding versus Hard-coding

If you are thinking that this section will be about softcore and hardcore
[insert impolite term here], then you are about to be disappointed.
Soft-coding and hard-coding refer to using variables to define parameters
(soft-coding) versus typing in specific parameter values as numbers (hard-
coding). Here is an example of soft-coding:

nbins = 10;

<200 lines of code…>

results_mat = nan(nbins,1);

<300 more lines of code…>

for bini=1:nbins

 <more code…>

end

The parameter nbins is soft-coded, meaning that you assigned the
parameter value (in this case: 10) to a variable at the top of your script, and
then the rest of the script uses this variable, rather than using the number
10. Here is the same script hard-coded:

<200 lines of code…>

results_mat = nan(10,1);

<300 more lines of code…>

for bini=1:10

 <more code…>

end

This second set of code would produce exactly the same result as the first
set. But what if you wanted to change the analysis to 12 bins instead of 10?
You would have to search through the entire code for every place where the

62 I Introductions

number 10 was used. And it could get confusing because there might be
other parameters or variables set to 10 and you would need to make sure to
change only the relevant ones. And if you missed one of those instances,
MATLAB might crash or—much worse—it won’t crash but your analysis
will be flawed.

In the soft-coding example, changing the number of bins is very easy.
You just change the one parameter at the top of the script, and voilà, the
rest of the script is adapted with no further adjustments.

You should soft-code as much as possible, even if it seems unnecessary
because your script is small. Analysis scripts have a tendency to grow,
and what may seem like one little innocent hard-coded parameter in the
early development of an analysis script may turn into a huge headache in
the end.

5.13 Keep It Simple

MATLAB has more options for variable types than discussed in this chap-
ter. Here you learned about the variable types most commonly used in
neuroscience analyses (floating point, string, logical, cells, and structures).
There will be situations in advanced applications in which other variable
types are needed. But whenever possible, try to stick to the basic variable
types.

Be mindful of which variables have which types. You saw how mixing
variable types in mathematical equations can be legal but confusing (e.g.,
4+'4'). Unless you have a strong reason otherwise, keep numbers as dou-
ble precision (unless saving in single precision after checking that informa-
tion is not lost), text as strings, and Booleans as logical.

Finally, always keep in mind that programming is just a tool to facilitate
science, not an end in itself. Try to keep your code as simple as possible.
Brain science is already challenging enough as it is.

5.14 Exercises

1. Initialize a 30 × 4 matrix. Then add a value into the (31,10) position.
Type whos after each step. What happened, and what does this tell you
about how MATLAB deals with matrix sizes and adding new content to
existing variables?

2. One of the important concepts in programming is to use the output of
one command as the input into another command. The code below uses

5 Variables 63

square brackets to put the ages of the mice into one array called ages,
and then to convert that variable to logical by testing whether the
ages are less than 70 days. Perform the same operation using one line
of code.

ages = [mouse.age];

ages = ages<70;

3. Which of the following lines of MATLAB code are legal, and which will
produce an error? Of the legal lines, which are likely to produce unin-
tended results, and how could you fix them? First think of answers and
then test them in MATLAB.

datamat(1:.5:end)

1:4:3

[[1 2:3 4:5] (6:10)']

[[1 2:3 4:5]; (6:10)]

cvar = 4;-5

var = ones(1,10)';

var = [1:10'];

4. Determine whether the following three lines produce different results,
and explain why or why not. Again, first think of your answer, then
confirm in MATLAB.

0:.1:(2>1)

(0:.1:2)>1

0:.1:2>1

5. Using the colon operator and square brackets, create an array that
counts from 1 to 10 and then back down to 1. Make sure 10 is not
repeated. Then, add 4 to all elements in the array. Then test whether
each element is equal to 8.

6. What is the difference between the following two lines of code?

clear a

clear a*

7. Using the mouse structure created earlier, write one line of code
that will produce the total number of electrodes in both animals (the
MATLAB function for summing is sum).

8. Initialize a variable to be a 50 × 40 matrix of zeros. Then set the first
10 and the last 5 elements in the first dimension to have the values
of 10 and 5, respectively, for the first 20 elements in the second
dimension.

64 I Introductions

9. Convert the following mathematical expressions into MATLAB code.

(a) 4 +
5
4

(b) 19 × 48–4

(c)
4 3

8
+

(d) 4 +
3
8

(e) − + −
×

(.)
.

4 5 39
2 17 26

3

4

10. What are the differences among the following lines of code?

n = zeros(3,5)/0;

n = 3+ones(3,5)/0;

n = nan(3,5);

11. Which of the following variable names are legal versus illegal? Of the
illegal ones, how would you fix the names? Of the legal ones, are these
good names to use, and why or why not?

data4analysis

7mac11

iHeartData!

j

data-set

data set

filter

thisOldVariable

variablesRgr8

this_is_a_variable_i_will_use_for_analysis_results

polyfit

12. Which of the following lines of code will produce valid matrices?
What’s wrong with the ones that produce an error?

aMatrx = [1 3 2 3; 6 7 8 9];

aMatrx = [1 3 2 3; 5 3 6; 7 8 9];

aMatrx = [1 3; 5 6; 7 8];

aMatrx = [1 3 2; 5 6; 7 8 9];

5 Variables 65

13. For the matrix or matrices in the previous exercise that are valid, per-
form the following basic arithmetic operations on them: add the num-
ber 4 to all elements; multiply each element by 6.4; subtract 100. Then,
use indexing to apply these three operations: only to the first element
of the matrices; only to the first row of the matrices; only to the second
column of the matrices.

6.1 Introduction to Functions

Now you are ready to learn about functions, and about how to write, mod-
ify, and debug functions. A function is basically the same thing as a script,
except that it is typically not modified as often as a script is, and it operates
in its own miniverse (more on this later). All functions have a function
name, which is generally the same thing as the name of the file that con-
tains the function.

You’ve already seen a few functions in the previous chapters. The func-
tion mean, for example, computes the average of the input numbers. The
function disp displays some text in the Command window.

Most functions take inputs and give outputs. The function mean, for
example, takes numbers as the input and gives the average of those num-
bers as the output. More generally, functions have the following syntax:

output = functionname(input);

Let’s try a few functions to give you hands-on experience. First, we will
create an array of normally distributed random numbers:

x = randn(15,1);

This example looks a little different from the canonical function syntax
shown above, because there are two inputs instead of one. The function
randn generates a matrix of random numbers drawn from a normal distri-
bution (mean of 0 and standard deviation of 1), up to however many
dimensions you want. To generate a 5 × 25 × 17 three-dimensional cube of
random numbers, you would type randn(5,25,17). If you provide only
one input (randn(10)), it will produce a 10 × 10 matrix.

Now let’s use the size function to see how big the variable x is. The
size function takes a matrix as input and gives the number of elements

6 Functions

68 I Introductions

across each dimension as the output. This is an important function for
debugging and finding programming errors.

sizeX = size(x);

The variable sizeX is a 2-element array that tells you the variable x has
15 elements in the first dimension and 1 element in the second dimension.
Notice how I used an informative variable name; if this were part of a really
long script containing many variables, there would be little ambiguity
about the meaning and contents of variable sizeX. Let’s test a few more
functions before moving on.

minX = min(x);

maxX = max(x);

medX = median(x);

You’re starting to get the idea.

6.2 Outputs as Inputs

An important concept in programming is using the output of one function
as the input to another function. This saves time and space while program-
ming. Let’s say you want to initialize a matrix of zeros to be the same size as
our random number matrix. This could be done as follows:

sizeX = size(x);

zmat = zeros(sizeX);

Or it could be done more efficiently:

zmat = zeros(size(x));

The output of the function size is being used as the input to the func-
tion zeros. Of course, it is possible that you want to create the variable
sizeX for later use in the script. But if you need to get size(x) only once,
there’s no need to create a new variable and take up a new line of code. Let’s
try something else:

zmat = zeros(max(x));

It is possible, though incredibly unlikely, that you did not get a MAT-
LAB error from running that line. Why did MATLAB give an error? The
function zeros expects the input to be the number of elements along
each dimension of the matrix of zeros. What is max(x)? It’s different each
time you generate a new variable x, of course, but it might be somewhere
around 2 or 3. I got 2.511… It is impossible to generate a matrix that has

6 Functions 69

2.511 elements in the first dimension (MATLAB deals only with integer
dimensions). We can fix this by applying the concept of using the output
of a function as the input to another function, but this time doing it
twice:

zmat = zeros(round(max(x)));

Now the output of max is the input to the function round, and the out-
put of round is the input to the function zeros. There is no limit to how
many functions you can nest like this, but code starts getting confusing
after too many nested functions. I recommend using three to four nestings
at most. Note also that I added spaces to make the code more readable,
although the spaces are not necessary.

MATLAB usage tip: If you click on or move the cursor on top of one of the
parentheses, it and the complementary parenthesis are underlined. This
helps you keep track of where function calls start and end. In this particular
example there is little ambiguity, but it becomes useful when using multi-
ple embedded functions with multiple inputs.

6.3 Multiple Inputs, Multiple Outputs

You’ve already seen that some functions take more than one input. In many
functions, the later inputs are optional. Consider the difference between
these two lines:

size(x)

size(x,2)

If you run this code in MATLAB, then you can probably figure out on
your own what the “2” means: The second input in the size function
returns the number of elements in that dimension. The variable x is a 15 ×
1 matrix, and so the second dimension has 1 element. Try replacing the “2”
with a “1.”

Some functions also have multiple outputs. Multiple outputs can be
separated by commas and need to be enclosed by square brackets, like this:

[out1, out2, out3] = function(inputs);

Try this one, for example:

[val,idx] = max(x);

Both outputs from the function max are used very often in data analysis,
so it’s worth spending some time to understand this one. The first (and
default, if you request only one) output of the function max returns the

70 I Introductions

largest value in the input matrix. But where is that maximum value located
in the variable x? Is it in the first position or the last position or the fifth
position? That’s where the second output becomes useful. The second out-
put tells you the index (position) in the matrix where the maximum value
can be found.

You can confirm this by checking the value of idx, outputting x into
the Command window (just type x in the Command window to display
the contents), and confirming that idx correctly identifies the element
that contains the maximum value. This is an example of sanity-checking
the code, and you should get in the habit of sanity-checking your code
whenever possible.

If the maximum value is repeated several times, the second output will
tell you only the first position where that maximum is found.

[maxval,maxidx] = max([1 2 1 1 5 5 1 5])

The variable maxidx tells you the maximum value (5) can be found in
element 5, although that maximum value also appears in other elements.
Exercise 4 in section 6.14 will ask you to program a solution to finding
repeated maximum values.

6.4 Help

Nearly all functions in MATLAB have a help text that helps you understand
what the function does and what its inputs and outputs are. You will
soon learn that these help texts are just comments in the beginning of the
function file.

To see a function’s help text, just type help <functionname>. Try it:

help mean

help max

help randn

MATLAB function help texts are usually fairly helpful. Sometimes they
can be difficult to understand at first, but the more experience you have
with MATLAB, the better you will be able to interpret the help texts.

Many functions have longer help files that can be viewed in a separate
window by typing doc <functionname>. For example, type help fft.
You’ll see some information about the fast Fourier transform. Don’t worry
now about reading it or trying to understanding it—you’ll learn all about
the Fourier transform in chapter 11. Now type doc fft. Notice how the
pop-up window gives you more detail and also has some examples with
plots.

6 Functions 71

Whenever you see examples in function help or doc files, don’t hesitate
to try them by pasting the example commands into the Command win-
dow. They usually produce plots that help you understand what the func-
tion does.

And of course, you can also look up MATLAB functions on the Internet.
If you search for “MATLAB <function> examples,” you are likely to find
examples and explanations of the function on MATLAB’s website and on
other websites.

More generally, there are thousands of MATLAB functions. It would be a
waste of space to list them all here and describe their basic functions. You
will learn the most important functions as you go through this book and
get more experience with MATLAB. If you know what you want a function
to do, but you don’t know whether there is a function to do it, try searching
the Internet. Memorizing a list of functions is as useful for learning to pro-
gram as memorizing the dictionary is for learning to speak a language.

6.5 Functions Are Files

In the Command window, type edit mean. A file called mean.m will
appear in the Editor window. That is the function mean right there. It’s just
a text file, really not much different from the script you wrote in the previ-
ous chapter.

You can scroll through the mean function. Rather long just to sum
and divide by N, wouldn’t you think? MATLAB functions are designed
for maximum flexibility and robustness. The function mean can handle
various kinds of inputs, including matrices and different variable types,
and it deals with them appropriately. That’s why the additional overhead
is necessary.

At the top of the function file are lots of lines of comments. These are
the comments that print out in the Command window when you type
help mean.

Being able to open functions as text files is great because if you want to
know how a certain function works, you can just look through the code.
(You can open these files in any text editor, not only in MATLAB.) You can
open function files by typing edit <function>, open <function>, by
selecting the typed name of the function (in the Command window or in
the Editor window) and pressing Ctrl-d, or by highlighting the typed func-
tion name, right-clicking, and selecting Open Function.

Not all functions are ASCII text files. Some functions are compiled (bina-
rized), which means you cannot view their contents. Compiling functions

72 I Introductions

is done either for speed or for proprietary reasons (e.g., to maintain secrecy
of algorithms). When a function is compiled, then you can see only the
help text. Try, for example, edit sum.

6.6 Writing Your Own Function

Wouldn’t it be fun to have a function that you wrote? Let’s do it. We’ll cre-
ate a function that takes a vector of numbers as input, displays some basic
descriptive statistical information about those numbers, and then gives
some outputs.

Open a new script and convert it to a function simply by stating at the
top of the script that it’s a function. On the first line of the file, type:

function stats = mikeIsANiceGuy(data)

Yes, we’re naming the function mikeIsANiceGuy. When you write a
book, you can name functions after yourself. The input will be called “data”
and the output will be called “stats.”

Typically, right underneath the function declaration is the commented
help text, as you saw with the mean and sum functions. Although you might
be tempted to jump right into the fun part of programming and get back
to the help section later (or never), this is not good programming skills.
Remember from chapter 1 that step 1 of programming is to think and plan
your code before writing any actual code. So we will start by writing the
help text, and that will provide the plan of action for the rest of the
function.

% mikeIsANiceGuy Compute descriptive statistics on input data

% stats = mikeIsANiceGuy(data) displays and returns descriptive

statistics:

% mean, median, minimum, maximum, count

% INPUTS:

% data: a 1D vector of numbers in single or double precision

%

% OUTPUTS:

% stats: a vector containing mean, median, minimum, maximum, count

%

% code written by <your name here> <your email address here>

Save the file. Function files should always have the same name as the
function name. Test the function by typing help mikeIsANiceGuy
in the Command window. You will see all of the text that you wrote in
the comments.

6 Functions 73

Before starting to write code, you should make an outline of the entire
function using comments. There are three parts to our function, and we
will therefore use three cells for (1) checking the input data, (2) computing
the statistics, and (3) displaying the outputs.

Checking the input data requires if-then statements, which will be the
topic of the next chapter. In this chapter, we’ll assume that the input data
are always valid. Leave this cell blank for now.

Next, compute the statistics.

%% compute the descriptive statistics

meanval = mean(data);

medianval = median(data);

minval = min(data);

maxval = max(data);

N = length(data);

% group outputs into one vector

stats = [meanval medianval minval maxval N];

Notice how I spaced the equals signs to be vertically aligned. This
improves readability and aesthetics.

Finally, we want to display the statistics in the Command window. To do
this, you can use the function disp in combination with the function num-
2str (this converts a number into its character representation, like turning
4 into ‘4’) or you can use the function fprintf. The function fprintf is
more complicated but has increased flexibility for formatting the text and
is the function of choice for writing out data to a file. You’ll learn more
about fprintf in chapter 8.

%% display output stats in order of output

disp(['Mean value is ' num2str(meanval) '.'])

disp(['Median value is ' num2str(medianval) '.'])

fprintf(['Minimum value is ' num2str(minval) '.'])

fprintf('Maximum value is %g.\n',maxval);

fprintf(['Number of numbers: ' num2str(N) '.\n'])

disp('Done.')

The second use of fprintf may look a bit confusing; this syntax will be
explained in chapter 8. For now you should just appreciate that there are
several ways to print information to the Command window. Notice that
the square brackets were not necessary in the final disp command, because
no variables were concatenated. For displaying simple messages, I generally
prefer the disp function.

74 I Introductions

It is time to use the function and make sure it works. Remember that you
should always start with sanity checks. We’ll do that here by simulating
data where we know the ground truth of what the output should be. Let’s
set the input data to be the numbers 1:5. We know even before calling the
function what the descriptive statistics will be. Now verify.

data = 1:5;

stats = mikeIsANiceGuy(data);

Congratulations! You’ve just written your first function (with only a
little help from me). This is, admittedly, not a very useful function, but it’s
good to start simple and then build up.

6.7 Functions in Functions

Functions can be embedded inside other functions. You’ll see this more in
chapter 32 (graphical user interfaces), but let’s do a simple introduction
here. Rather than using the MATLAB mean function, we’ll create our own
function that sums and divides by N.

Add the following lines of code to the end of the mikeIsANiceGuy
script:

function y=myMean(x)

y = sum(x) / length(x);

And then replace the meanval line with meanval = myMean(data);.
Now you have a subfunction. Subfunctions are private in the sense that
they cannot be called from the Command window (try it) or from any
other function; they can be called only from within the function file. If you
click on the Editor, Go To buttons, you will see a list of functions inside that
file. Selecting one will take the cursor to that function.

6.8 Arguments In

There is an important lesson in myMean about how MATLAB deals with
naming inputs and outputs: The input into myMean is called data, but
inside the function myMean the input is called x. MATLAB pays no atten-
tion to the names of inputs and outputs when they are passed through; it
cares only about their order.

In fact, you don’t even need to specify all of the inputs. If you define the
function to have one input called varargin (variable arguments in), all of
the inputs arrive as cells in the cell array called varargin. Try replacing

6 Functions 75

data with varargin in the function definition of myMean, and then add
this line before the descriptive statistics:

data = varargin{1};

Re-run the script to make sure it still works. Then undo this change so
data is listed as the input to the function.

6.9 Think Global, Act Local

You probably thought you were finished learning about variables after the
previous chapter. But there is one more thing you need to understand about
variables before really understanding how functions work. Variables can be
local or global.

And before you understand the difference between local and global vari-
ables, you need to understand that MATLAB can create and destroy mini-
verses at will (a miniverse is a miniature universe). Variables that are created
and live inside one miniverse do not know about variables that live in other
miniverses, just like we do not know about our doppelgangers in parallel
universes. And when the miniverse is destroyed, so are all of its variables
(don’t worry, I’m sure our universe will not be destroyed anytime soon).
These variables are called “local” variables, because they are local to a mini-
verse. Some variables can be endowed with powers that allow them to be
seen, accessed, and manipulated across miniverses; these variables are
called “global” variables. (I guess this is where the analogy of our real uni-
verse breaks down, sci-fi movies notwithstanding.) All variables are local by
default, and any variable can be anointed as a global variable by declaring
it to be global.

global variablename

In the first line of the mikeIsANiceGuy file where the function is
defined, remove the input by deleting (data) (including the parentheses).
Save the file and try running the function again from the command line.
What happened? It crashed, and MATLAB wrote that there is no variable
called data. But this makes no sense, because you did create a variable
called data. You can even type whos to confirm that the variable data still
exists.

Put the (data) back and run the function again. You can see inside the
function that several variables were created, including meanval, minval, N,
and so forth. But where are those variables? They don’t appear when you
type whos. But they must exist, because they are used and printed, and
MATLAB did not produce any errors or warnings.

76 I Introductions

You can guess where this is going: These variables are local variables.
They exist only in one miniverse. The variable data exists in the default
miniverse. MATLAB calls this miniverse “base” and it is the one you work
in when MATLAB starts. When you called the function mikeIsANiceGuy,
MATLAB created a new miniverse just for that function. The variable data
does not exist in that miniverse, and the variables meanval and so forth do
not exist in the base miniverse. And miniverses are stacked, because the
variables x and y exist only in the myMean function’s miniverse, which itself
is a miniverse inside the other miniverse. Passing an input into a function
is one way to pass information into that function’s miniverse.

Let’s make data a global variable. In the Command window, type
global data. MATLAB doesn’t like to reassign existing local variables to
be global variables, so you might get a warning or error (depending on your
MATLAB version) when you run the above declaration. You can first clear
the variable data and then define a global variable called data. Then you
need to reassign data=1:5.

From inspecting the output of whos, you can see in the “Attributes” col-
umn that the variable data is indeed global. So, now in theory, this global
variable should be accessible from any miniverse, including from inside the
function, right? Let’s try. Delete the (data) from the function declaration
at the top of the function file, and then save. Run the function without
passing through any inputs; just type mikeIsANiceGuy.

Oops, the function still crashes. That’s actually fairly sensible—it would
be inconvenient to have all global variables always accessible from every
function all of the time. Instead, we need to make this particular function
share this particular global variable. Inside the function and before any calls
to variable data appear, type global data. Save the function and run the
function again. It works!

The important lesson here is that defining variables to be global allows
them to be accessible from any MATLAB miniverse, but only if they are
declared.

I suppose now would be a good time to tell you that the official word for
miniverse is “stack.” Sometimes the term “workspace” is also used. Maybe
I’ve watched too many movies, but I find that thinking of them as mini-
verses is more intuitive and more fun.

6.10 Stepping into Functions

We will now step into the miniverse that MATLAB creates when running
the function mikeIsANiceGuy. In the file of that function in the Editor

6 Functions 77

window, click on the little horizontal line to the left of the final disp func-
tion, just to the right of the line number (figure 6.1). You’ll see that line
turn into a red circle. If you see a gray circle instead, it means there are
unsaved changes in the file. (You can also put the cursor on that line and
press F12; or select Editor, Breakpoints, Set/Clear from the menu.) This is
called a “breakpoint,” and it will allow you to visit the function’s mini-
verse. If you don’t see line numbers on the left side of the Editor window,
you can change the settings in the Home, Preferences, Editor/Debugger,
Display menu.

Before running the function again, create some new variables in the
workspace. These can be called anything you want and can contain
anything you want. You just want a few variables to help illustrate the
miniverse concept.

Now run the function mikeIsANiceGuy using the same code you used
before. It should bring you inside the function’s miniverse on the line
where you placed the breakpoint. MATLAB lets you know you are inside a
nondefault miniverse by changing the command prompt from >> to K>>.
Now type whos. What happened? All of the variables you just created are
“gone,” and all of the variables created inside the function are listed. Don’t
worry—the variables in the base miniverse are still there, they are just not
immediately accessible.

You can shift between miniverses (this is starting to sound like the plot
of a bad sci-fi movie) in the Editor, Function Call Stack menu. Select “base”
and then type whos again. Select the “mikeIsANiceGuy” stack again to go
back to the function miniverse.

Figure 6.1

To step into a function, place a breakpoint in the file where you want the function

to freeze. Breakpoints can be created by clicking on the horizontal line between the

line number and the code.

78 I Introductions

Now place another breakpoint inside the subfunction myMean. Then run
the line that calls myMean and you’ll be in the myMean miniverse. Going
back to the Call Stack menu will allow you to move across the three mini-
verses. Try typing whos in each stack.

Now destroy the miniverses by quitting the function. You can do this by
typing dbquit in the Command window or by clicking the big red button
labeled Quit Debugging in the Editor menu. The prompt in the Command
window should return to >>.

You know from the previous section that assigning variables to be global
is one way to share information across miniverses. There are also other
ways to transmit information across miniverses. Step back into the function
and type the following:

assignin('base','meanvalFromFunction',meanval)

The function assignin assigns a new variable in another stack (mini-
verse). This line will create a new variable in “base,” will name that variable
meanvalFromFunction, and will set the value of that variable to be the
value of meanval. Quit the function and type whos.

The tricky part of the function assignin is that the second input is the
name of the new variable in the base stack, while the third input is the con-
tent that you assign to that new variable. Try running this line again from
inside the function, but now putting single quotes around 'meanval'.
What is the new value of the function meanvalFromFunction?

If you are inside a function and want to access a local variable from the
base stack, you can use the function evalin. Let’s try it. Create a variable
in the base workspace: asdf = 10:10:100;. Then step into the function
again and type:

asdf2 = evalin('base','asdf');

This function evaluated the expression asdf in the base miniverse and
assigned it to the new variable asdf2. You could have called it asdf, but I
wanted to show that the variable names need not be the same.

The evalin function is not simply bringing the variable into the func-
tion miniverse; it is running a command in the base miniverse and saving
the output of that command. Try, for example:

asdf2 = evalin('base','asdf>50');

So far we’ve been stepping into functions where we want to step into
them. Another way to step into functions is to have MATLAB automatically
step into them when things go wrong. In the Editor, Debug menu, select Stop

6 Functions 79

on Errors. This means MATLAB will automatically step into a function when
the function crashes. It will take you to the line that crashed and print out,
in lovely red font, the error message. This is a useful method for debugging
scripts and functions.

Let’s try this by intentionally making an error in the script. In the line
that gets the number of elements (“N = ...”), change data to data1. Clear
all existing breakpoints in the file, save the function, and run it again.

There is more to know about stepping into functions, but you now know
enough to continue exploring on your own. Using this little script, try
the different operations under the menu options for Editor, Breakpoints and
Editor, Debug. Try modifying and saving the code while you’ve stepped-in to
see what happens. Being comfortable with the debug option is an impor-
tant part of learning how to program in MATLAB.

One note about the clear function: Typing clear clears all variables in
the local workspace, not in other stacks. Typing clear all will also clear—
in addition to all of the variables—breakpoints, pointers, javascript refer-
ences, and other things. In general, it is best just to use clear and not
clear all.

6.11 When to Use Your Own Functions

With great power comes great responsibility. Okay, let’s be honest here:
Being able to create your own functions is a pretty small power, but it does
come with some responsibility. Before you start writing functions for every-
thing, there are two things to keep in mind.

First, writing too many functions promotes bad programming and
increases the likelihood of errors. With many functions, it is easy to get
confused about what different functions do, what parameters are hard-
coded in different functions, whether different functions overwrite or
append data, and so on. Generally speaking: more functions, more
problems.

Second, functions can make code-sharing annoying, because you will
need to share all of the additional functions as well (also called dependen-
cies). If you have just a few functions, it might be only a minor hassle. But
if you write many functions and store them in various places on your com-
puter, keeping track of all these dependencies can become a headache. And
you might forget which functions are called in which scripts, particularly if
some functions call other functions. When I teach classes about program-
ming or data analysis, students lose points if they turn in assignments that

80 I Introductions

require functions that are downloaded or otherwise not bundled with
MATLAB.

The conclusion is that you should create your own functions sparingly
and only when it will significantly improve your analysis pipeline. I very
rarely create my own functions.

6.12 When to Modify Existing Functions

You should be extremely hesitant to modify existing functions, particularly
if they are functions that come with MATLAB. In fact, let’s just agree that you
should never modify existing MATLAB functions. If you want to change the
behavior of an existing function, the best way to do this is to make a copy of
the function file and change its name (also change the function name in the
top of the file to avoid confusion). You could add your initials to the end of
the function to personalize it, such as meanMXC instead of mean.

Modifying existing functions in toolboxes or other third-party code will
also make it annoying to share your code with others, because you will also
need to share the functions that you modified, and this could cause other
scripts that rely on those functions to crash or produce invalid results.

6.13 Timing Functions Using the Profiler

One of the best tools for improving the efficiency of your code is to use
MATLAB’s profiler. It’s a tool that, when turned on, will track how much
time is spent on each line of code. Try it using the following code.

profile on

mikeIsANiceGuy(data)

profile viewer

The viewer will open and will highlight how long each line of code took
(figure 6.2). For a puny function like this one, the profiler is not terribly
insightful. But for long scripts and functions, the profiler can help you
identify inefficient code, unnecessary loops, and other bottlenecks to com-
putation time. It is fun to use, helps you hone your programming skills, and
can shave minutes to hours off your analysis time.

6.14 Exercises

1. The code below will not produce an error, but it is a bad line of code.
Why? (Hint: Check out the size of zmat when you run it repeatedly.)

zmat = zeros(round(max(randn(30,1))));

6 Functions 81

2. Your friend Suzie needs help. Her code successfully creates the variable
zeromat, but there are too many lines of code. She offers you one piece
of chocolate for each line you can eliminate, while obtaining the same
final output. Can you earn three pieces of chocolate?

N = 14;

randnums = rand(N,2);

rn_size = size(randnums);

zeromat = zeros(rn_size(1),1);

3. Using the function sort instead of max, write a function that finds the
maximum value of an input vector.

4. The second output of the function max tells you only the location
of the first instance of the maximum value. Write code to find all

Figure 6.2

The profiler (left panel) reports how long MATLAB took to run each line of code and

each function. By clicking on one of the functions, another window will appear

(right panel) to provide details about the time-consuming parts of that function. The

profiler helps you find inefficiencies in your code.

82 I Introductions

instances of the maximum value. Test your code using a variety of
different vector inputs to make sure it works. (Hint: Try using the
function find.)

5. In mikeIsANiceGuy, the maximum and minimum values are dis-
played on different lines. Although we haven’t yet discussed the func-
tion fprintf in detail, on the basis of the code in that function can
you figure out how to print the maximum and minimum values on the
same line?

6. Generate a random number from a uniform distribution, and test
whether that value is greater than 0.5 (you’ll have to figure out how to
write an if-end construction; see help if). Report the results of the
test in the Command window. For example, the code should print
“The value is 0.123 and is not bigger than .5.” Put this code into a sepa-
rate function that you can call.

7. Generate a 4 × 3 × 2 matrix of normally distributed random numbers.
This is a three-dimensional cube of numbers. How does MATLAB repre-
sent such a matrix, and how does it show the matrix contents in the
Command window? Then compute the average and maximum values
along each dimension. What are the sizes of these results?

8. NaN stands for “not a number” and is the result of dividing zero by
zero. Find two ways to create NaN in MATLAB. What happens when
you divide a non-zero number by zero?

9. NaNs can create problems in many functions. Some functions also
have built-in methods to ignore NaNs. From the following vector, test
whether NaNs disrupt the max, mean, and sum functions. If they do, use
the help files or perhaps search the Internet for methods to apply these
functions without disruption from NaNs (come up with at least two
solutions to this problem).

v = [1 0 0 1 NaN 1 NaN 0];

10. The function randperm generates a random reordering of integers
from 1 to the first input. For example, randperm(2) could return [1
2] or [2 1]. How can you generate a random sequence of even num-
bers between 10 and 20 (for bonus points, use only one line of code)?
Solve this problem using randperm, and then find another solution
without using randperm.

11. Evaluating the code below produces the output [8 13]. Without read-
ing the help file, describe what the function strfind does. When you
think you understand it, check the help file, and try changing the code
to confirm your expected outputs.

strfind('Hello, my name is Mike.','m')

6 Functions 83

12. Another function for searching strings is called strncmp. Evaluate the
following line of code. Then reevaluate it, changing the third input to
2, 3, 4, and 5. Can you figure out what this function does based on the
output?

strncmp('Hello, my name is Mike.','Hell',1)

13. Create a five-dimensional matrix of random integers. You can define
the number of elements in each dimension. How many elements does
the matrix contain in total? You can answer this question by using the
functions size and prod or by using the function numel.

14. What defines “a line of code” in MATLAB? Is it the Enter key or a semi-
colon? Try the following lines of code in MATLAB to find out.

asdf=

4;

asdf=4; asdf2=6;

asdf = …

4;

You are on your way to becoming a good beginner programmer. The next
step is to learn how to control MATLAB in flexible ways. This is where
control statements (also sometimes called command statements, flow state-
ments, or flow-control statements) become necessary. There are only a few
control statements that you will use in programming, but they are impor-
tant and you will use them often.

7.1 The Anatomy of a Control Statement

All control statements evolved from the same primordial prototype. Under-
standing this prototype will help you learn the specific control statements
in the same way that understanding Latin will help you learn specific
Romance languages such as French, Italian, and Spanish (not to be
confused with romantic languages like German). Figure 7.1 illustrates the
anatomy.

7 Control Statements

Figure 7.1

Gross anatomy of MATLAB control statements. Try to keep this template in mind as

you learn about each specific control statement.

7.2 If-then

If-then statements (sometimes simply called if statements) are perhaps the
easiest control statements to understand and to implement, because you

86 I Introductions

use this logic every day of your life. “If it is raining, then I’ll bring an
umbrella.” All programming languages have if-then constructions, though
the syntax differs slightly across languages. In MATLAB, the “then” is
unnecessary.

if 2>1

 disp('I like big numbers.')

end

You can clearly see the anatomy of this simple if-then construction. In
if-then statements, the conditional part is always a logical—true or false.
Whatever code you write in the conditional must return a single logical
answer. If the conditional statement is not a logical, MATLAB will either try
to interpret it as a logical or give an error. Here is a good and simple sanity
check to make sure the condition is appropriate: Evaluate the code on the
“if” line (but not including the if) and make sure it returns a single value
that is either 0 (false) or 1 (true).

If the answer to the statement after if is true, then MATLAB runs all the
code between if and end, line by line. It is common practice and good
programming technique to indent these lines of code. This helps you see
which code is inside the control statement. If you type the code above into
the MATLAB Editor, try deleting the spaces before the disp function, then
highlighting the three lines, and then press Ctrl-i or right-click and select
Smart Indent.

But wait, there’s more! If-then statements can be expanded to include
elseif and else. These are alternate routes that you can have MATLAB
take. In the next example, we will test whether a randomly generated num-
ber is bigger than or smaller than certain cutoffs. (The important parts of
this code are lettered for reference.)

r = randn; % with no inputs, a single number

if r>0% A

 disp([num2str(r) ' is positive.'])

 elseif r>2% B

 disp('Snuffleupagus is real!')

 elseif r<0 && r>-1% C

 disp('r is small but I''ve seen smaller');

 else % D

 disp('r is really small')

end

7 Control Statements 87

Let’s start with the code section labeled A. Nothing new here, this is the
same format as the previous example. The code tests whether the random
number in variable r is positive.

Now for code B. Here’s a question: If you run this code 1 billion times,
how often will it print messages about the existence of Snuffleupagus? The
answer is exactly zero. And not because Snuffleupagus isn’t real—it’s because
as soon as one of the statements in an if-elseif-else-end construction
is true, the rest of the statements don’t matter; they are ignored. If r is
greater than zero, the statement in A is true, its associated content is run,
and the if-then control statement is finished. Nothing else gets evaluated.
It can never happen that the logical result of A is false and the logical result
of B is true. If you were to swap the order of A and B, this would work,
because it is possible for a number not to be greater than two, but to be
greater than zero.

Now let’s discuss C. The lesson here is that the conditional statement
can have multiple elements, as long as the entire conditional statement can
be true or false. Here we are saying that this conditional is true only when
r<0 and when r>-1. In human language, you’d say when the number r is
between –1 and 0.

Also notice in the disp function that there are two single quotation
marks (not a double quotation mark) in I’ve. That’s not a typo—it’s MAT-
LAB’s way of distinguishing between a single quotation mark to indicate a
boundary of a string and an apostrophe in text.

MATLAB allows AND (&&) and OR (||; this is not the letter l or the num-
ber 1, but the vertical line character that is usually above the Enter key on
a keyboard; in Unix it’s called the “pipe” operator). “And” means both
statements must be true; “or” means MATLAB will consider the entire line
to be true if at least one of the statements is true. For example:

True: 5>3 && 9>3

False: 5>3 & 9<3

True: (5>3) | (9<3)

False: 5<3 | 9<3

As usual, the parentheses in the third line above are not necessary, but
probably you agree that they make that line easier to interpret.

“And” and “or” operators are not limited to pairs; you can have as many
as you want. You will see this often in real data analysis scripts. For exam-
ple, you might want to extract the data from condition “4” AND cells that
have a firing rate greater than 10 AND that show differential responses in
the localizer task AND only during the anesthetized state AND so on.

88 I Introductions

Finally, we get to part D in the if-elseif-else-end construction. An
else statement just before the end captures anything that gets left over
when none of the previous statements is agreeable (your German colleagues
might call this the resteficken option). In the above example, anything that
doesn’t fit into the previous if or elseif statements is a number smaller
than –1. Actually, there is one possibility (exceedingly rare, but it could
happen) for that else statement to run but without the number being
negative. See if you can figure out what it is.

If-then constructions can be nested inside each other.

r = rand;

if r>0

 disp('r is definitely positive')

 if r>2, disp('>2'); end

 if r>1

 disp('>1'); end % don’t do this!

else

 disp('r is most likely negative')

end

You can see above that an entire if-then statement can be on a single
line if the conditional and the content are separated by a comma or a semi-
colon. This is okay if the statement is very short, like in this example, but
you should avoid putting too much code in one line.

You can also see that it is technically legal to have the end appear on the
same line as the content while both are on a different line from the if
statement. But don’t do it. It becomes difficult to see where each if state-
ment ends. It will also confuse MATLAB and elicit a warning about confus-
ing end statements.

Finally, with this code in the Editor window, click on or put the cursor
position over an if, else, elseif, or end. MATLAB will automatically
underline the associated if or end. In the toy examples you’ve seen here
with only a few lines of code, this may seem like an unnecessary feature.
But in real analysis scripts, when there are dozens or hundreds of lines of
code between an if and its end, and when there are multiple nested com-
mand statements, these visual programming tools can be really useful.

Let’s get back to the function in the previous chapter that computes,
displays, and exports some descriptive statistics on input data. (In case you
forgot, that function was called mikeIsANiceGuy.) In the previous chap-
ter, we skipped the first part of the function, which was to check the input
data to ensure our function will work. Now that you know how if-then
statements work, we can finish this function.

7 Control Statements 89

What are the conditions on the input variable? It must (1) contain num-
bers, (2) be a one-dimensional vector, and (3) be more than a scalar (a single
number). Let’s start with the first test.

%% check inputs

% check that data are numeric

if ~isa(data,'numeric')

 help mikeIsANiceGuy

 error(Input must contain numbers!');

end

The function isa checks whether the data type of the first input matches
the second input. The output of this function is a logical variable. The tilde
(~) before it is the MATLAB expression for negation—it turns trues into
falses and vice versa. Try it by typing ~(7==7). The answer is false (0). That
may be confusing at first, but it is accurate: 7 equals 7 (true), and negating
this makes it false. The code above checks whether the data are numeric. If
the result of that test is true, the conditional is false, and the content isn’t
run. If the result of that test is false (this would happen, e.g., if the input
data were strings), the conditional is true, and then the content is run. The
content prints out the help file for this function and then gives an informa-
tive error message—that dreadful red text that you see in the Command
window. When the error function is called from inside a function, MAT-
LAB immediately quits the function without running any further code.
Before moving forward, sanity-check that this input test works by inputting
correctly formatted data (and receive no errors) and incorrectly formatted
data (and receive an error).

Now for the second condition, that the input must be an array. (Techni-
cally, this function won’t crash if the input data is a matrix, but that com-
plicates matters and so we’ll stick to vectors here for simplicity.) We can test
for this condition using the size function.

% check that the input is a vector

if sum(size(data)>1)>1

 help mikeIsANiceGuy

 error('Data must be a vector!');

end

I admit, that’s a weird piece of code. sum(size(data)>1)>1 is actually
four separate pieces of code that are nested within each other. When you
are trying to decipher nested code, always start by finding the innermost
piece of code, and then work outwards. The innermost code is usually

90 I Introductions

inside the most number of parentheses. As I explain below how this condi-
tional statement works, you should follow along in MATLAB and run each
piece of code. That’s a good exercise to learn how to break down and under-
stand these kinds of code lines.

The innermost code here is data, which is the input data. The next piece
of code going outwards is size(data). This you know—it returns the
number of elements along each dimension. Using the example from the
previous chapter, the output of this function will be the two-element vector
[1 15].

Next, that vector is tested against the number 1 ([1 15]>1). This is a
logical test that will return another two-element vector, except that this
vector will contains zeros and ones. In this case, the result will be [0 1] for
[false true].

Next we apply the sum function to this vector. That converts the vector
from logical to numeric, which means the logicals [false true] become
the numbers [0 1] (I think I may have written in a previous chapter to
avoid doing this, but let’s pretend I have a terrible memory). Their sum is
one. Finally, we test whether this number is greater than one.

Think about what will happen to this conditional statement if the data
had more than one dimension of numbers, for example if it were a 2 × 15
matrix. The first logical test would be [1 1], and the sum would be two,
which is greater than one, and then the conditional would be true and the
script would give an error.

That’s quite a mouthful of code to have in one line. Don’t worry if you’re
not at the level of being able to produce code like that—it’s more important
to know how to piece apart and understand that kind of code. Never be
intimidated by complicated-looking code. Just take a deep breath and work
your way through it one function or variable at a time. And use your trusty
code-inspecting tools: evaluate, plot, and check sizes. Keep in mind that all
code—even the hairiest, ugliest code—is just composed of small and simple
pieces.

Finally, the third input check. This is the easiest. The data should con-
tain more than a single number. I’ll leave that one to you to solve. You can
use the functions size, length, or numel. The function numel stands for
“number of elements” and returns the total number of elements in the
entire matrix, regardless of how many dimensions it contains. The function
length returns the number of elements in whatever happens to be the
longest dimension of the matrix. And size, as you know, returns the num-
ber of elements along each dimension.

7 Control Statements 91

Now you are finished with your first MATLAB function. Before using
any new function, you should always sanity-check it. I know, you already
did some sanity checks, but we made modifications since the last sanity
check, and anything new must be checked. Try calling this function again,
inputting data that you expect to work and data that you expect to get
caught by the input checks. Are there any other input checks that we for-
got to include?

7.3 For-loop

For-loops are just as important as if-then statements. They are initially
slightly less intuitive because you don’t often use for-loops in language or
in thinking the way you use if-then statements. But you will quickly see the
logic.

for i=1:10

 disp(num2str(i))

end

You can see the prototype control statement in there. The main differ-
ence between for-loops and if-end constructions is that the content is not
run only once; it is run as many times as there are elements in the looping
variable. In the code above, the looping variable is i, and it goes from 1
to 10 in integer steps. The variable i is not explicitly changed inside the
loop—that is, there is no piece of code that changes the value of i—but
MATLAB changes its value on each iteration (an “iteration” is one of
several runs through the content between for and end). When you run
the code, you’ll see that the value of i starts at 1 and goes up to 10 in
integers.

The variable i is more generally called the “looping variable.” The loop-
ing variable does not need to start at 1, nor does it need to be integers.

for i=-5:1.1:6

 disp(['My favorite number is ' num2str(i) '.'])

end

However, it is often convenient to keep looping variables as integers,
because looping variables are often used as indices into matrices.

for i=1:5

 sq(i,1) = i;

 sq(i,2) = i^2;

end

92 I Introductions

In this loop, we are creating a matrix called sq, which will be a 5 × 2
matrix. The first element of the second dimension is the value of the loop-
ing variable at each iteration, and the second element of the second dimen-
sion is the squared value of that looping variable. Try running that loop
again using 1:.5:5 as the looping range. Which part of the code causes
MATLAB to produce an error and why?

For-loops are used very often in programming. You will have loops over
conditions, loops over frequencies, loops over time points, over electrodes,
over trials, over subjects, and so forth. Similar to if-end constructions, loops
can also be nested inside other loops.

In real MATLAB scripts, there are many nested loops, if-then statements,
and other control statements. You can imagine that this much nesting can
become confusing. So here are three MATLAB programming tips about writ-
ing loops and if-end statements.

1. Most important: Avoid loops and if-statements whenever possible.
Loops bring confusion and errors, and they will slow down your code.
They are often necessary but sometimes can be avoided. You will see
many examples throughout this book of places where loops can be
eliminated.

2. Give your looping variables meaningful names, and end them with
the letter i or idx. For example, a loop over conditions might have
a looping variable called condi. Other loops go over trials (triali),
frequencies (freqi), time points (timei), channels (chani), and
so on. This naming convention makes it easy to recognize and remem-
ber the looping variables. Equally sensible alternatives include
trialno or trialnum. The important things are interpretability and
consistency.

3. Put a comment after each end statement to indicate which loop it is
ending. Sometimes it can be useful to write additional information.
You might initially think of including the line number at which the
loop started, but unfortunately this is usually not a good idea: Each
time you add or remove a line of code, this number will change.

As with many other programming tips, these may seem unnecessary in
the toy examples in this chapter. But when you have four for-loops span-
ning hundreds of lines of code, calling your looping variables a, s, d, and f
is just asking for trouble. That said, if you have small and simple loops
comprising just a few lines, then it’s fine to use a short meaningless variable
name.

Below is an example of a well-written nested series of for-loops.

7 Control Statements 93

for chani=1:nChannels

 for condi=1:nConditions

 for freqi=1:nFrequencies

 tfd(chani,condi,freqi) = analysis_res;

 end % end frequency loop

 moreMatrix(chani,condi) = otherstuff;

 end % end condition loop

end; % end channel loop

This may look intimidating, but don’t worry, after a few more chapters
you’ll be able to write code that looks like this. Also, a small note: MATLAB
does not require semicolons after the end statement, although it’s fine to
put one there if you like the way the end appears to be winking at you.

7.4 Skipping Forward

You may want to skip iterations in a for-loop. Imagine, for example, that
you want to run an analysis on hundreds of data files, and each data file
takes a few hours to process. Some of the data files have already been ana-
lyzed, and you don’t want to waste time reanalyzing those files. In the next
chapter you’ll learn more about how to determine if files exist on the com-
puter. Now you’ll learn how to skip iterations.

Let’s start with something simple. We will use the first for-loop intro-
duced in this section, but now we want to print a message only when the
looping variable is odd (I don’t mean if the number is weird or has erratic
behavior; I mean if the number is indivisible by two). How would you pro-
gram this?

There are several ways to do this—in programming there are often mul-
tiple ways to solve a problem. One way is to use the control statement
continue. This is a useful statement, but it is a bit counterintuitively
named, because, in fact, when this statement is called, it does the opposite
of continue—it breaks out of the loop and goes immediately to the next
iteration of the loop. (I suppose the reasoning is that it continues to the
next iteration of the loop.)

for i=1:10

 if mod(i,2)==0, continue; end

 disp(['Running iteration ' num2str(i) '.'])

end

The function mod might be new to you; it computes the modulus, or
remainder, of a division between the first input and the second input. The

94 I Introductions

remainder of integers after dividing by two is zero for even numbers and
one for odd numbers. Here’s a quick sanity check:

[1:10; mod(1:10,2)]

The code above displays two row vectors, one containing the numbers
1:10 and the second containing the remainder after dividing by two. (How
could you modify this code to produce two column vectors? I can see three
ways to do it.)

So, the for-loop above first tests whether the value of the counting vari-
able at each iteration is even or odd. If it is even, it runs the continue com-
mand, which tells MATLAB to bypass all of the code after continue and
before end, and skip to the next iteration.

Now that you know about the mechanics of writing for-loops, it is time
to learn the most important thing there is to know about for-loops: Avoid
them whenever possible! (I realize I wrote this a few pages ago, but a bit
of repetition facilitates learning.) For-loops require extra code, increase
computation time (thus slowing down your analyses), and open up new
opportunities for confusion and for MATLAB errors.

Many examples will be presented throughout this book where loops can
be avoided by using computations and operations on matrices. Below is
one example:
p3 = zeros(1,10); % always initialize!

for i=1:10

 p3(i) = i^3;

end

The four lines above can be accomplished faster, more elegantly, and
with less possibility for errors using the one line below.

p3 = (1:10).^3;

7.5 While-loop

While-loops are very similar to for-loops. With a for-loop, you specify how
many iterations to have; with a while-loop, the iterations keep going until
you tell the loop to stop. Observe:

i=0;

while true

 i=i+1;

 disp(['Give me ' num2str(i) ...

 ' pieces of chocolate!'])

end

7 Control Statements 95

Run that code. Don’t hold your breath waiting for it to stop, though.
That loop keeps running and running without stopping (better than the
Energizer bunny). You can break it by pressing Ctrl-c in the Command win-
dow or by unplugging your computer (if it’s a laptop, you’ll have to wait for
the battery to drain). Why does it never stop? Because true (the condi-
tional statement) is always true. Try running it again, changing the condi-
tional statement from true to false. Now it displays nothing, and the
value of the variable i is never updated, because the content was never
evaluated.

There is another new piece of code, which is the ellipsis (…), the three
dots at the end of the line. Those are used to wrap long lines of code to the
following line. You can try writing something after the ellipsis, and you’ll
notice that MATLAB treats what you write as comments (green text). Ellipses
can sometimes be useful for organizing really long lines of code. Personally,
I find them annoying and use them infrequently. You’ll see the ellipsis sev-
eral places in this book for page-formatting purposes.

Anyway, let’s modify that while-loop so it eventually finishes.

i=0;

while i<50

 i=i+1;

 disp(['Give me ' num2str(i) ...

 ' pieces of chocolate!'])

end

Now the loop will eventually stop, because i<50 is true for the first 50
iterations (when i is 0 through 49). When i is equal to 50, i<50 is false,
which stops the while-loop. The conditional statement is reevaluated each
time the code gets to the last content line—the line just before end. If the
conditional is still true, it runs all the content again.

Unlike with for-loops, counting variables in while-loops are not auto-
matically updated or changed. That’s why we needed i=i+1; in the while-
loop, whereas we did not need such a statement in the for-loops.

While-loops are often used during optimization algorithms, in which a
parameter is continually modified until it is below a certain threshold. In
these situations, the while-loop quits either via a “logical toggle” or via the
break command. Below is an example using a logical toggle.

r = 50+rand*50;

toggle = true;

while toggle

96 I Introductions

 r = r/1.1;

 if r<1, toggle=false; end

 disp(['Current value is ' num2str(r)])

end

The first line creates a random number between 50 and 100. How do I
know it will be between 50 and 100? Because the function rand (not to be
confused with the related function randn) generates uniformly distributed
random numbers between zero and one. When those numbers are multi-
plied by 50, it scales the range from zero to 50. And then adding 50 brings
the range of possible numbers to between 50 and 100. Here is another good
opportunity for a sanity check: Type hist(50+rand(1000,1)*50,100).
You’ll learn more about how to use the hist function in chapter 9, but
briefly, that line creates a histogram with 100 bins.

After creating this random number, the while-loop keeps dividing the
variable r by 1.1 and printing its current value. In between these lines of
code, it checks whether the current value of r is less than one, which in this
case is our stopping criteria. If r is less than one, the toggle is set to false,
and then the while-loop will stop the next time it checks whether toggle
is true. Because MATLAB only checks whether toggle is true after it com-
pletes the final line of the content, the disp command will display the
final value of r, which will be less than one.

An alternative method to stop a while-loop is to use the function break.
Observe:

r = 50+rand*50;

while true

 r = r/1.1;

 if r<1, break; end

 disp(['Current value is ' num2str(r)])

end

In this example, when r is smaller than one, the disp command is not
evaluated. As soon as MATLAB sees the break command, it immediately
breaks out of the while-loop without evaluating any more content. This
difference between logical toggles and break is subtle but important,
because they can lead to different behaviors in the loop.

You can also use the break command in a for-loop:

for i=1:10

 if i>6, break; end

 disp(['You are number ' num2str(i) '.'])

end

7 Control Statements 97

Many programming goals can be achieved equally well using if-then
statements, for-loops, or while-loops. In general, when you know before-
hand exactly how many times to run through the loop (we’d call this “the
number of iterations”), you should prefer a for-loop; and when you don’t
know beforehand how many iterations there will be, you should prefer a
while-loop. If you don’t like that heuristic, then just use whichever code
structure you feel most comfortable programming.

7.6 Try-catch

Try-catch statements are also fairly intuitive, and you definitely use them
often in your life, particularly when applying for academic positions or try-
ing to get research funding. “Try this, if it doesn’t work, here's the plan B.”
We start with an example.

e = [1 4];

try

 if e(3)>6, disp('e(3) is big.'), end

catch me;

end

Run the code above. MATLAB should have produced an error, because
you are trying to access the third element of a two-element vector. In try-
catch statements, MATLAB tries to run the code between try and catch.
If it works, then MATLAB ignores all the code between catch and end and
proceeds with the rest of the script. If the code produces an error, however,
MATLAB will not crash; instead, it will put some information about the
error into the variable me (in case you thought I was being cutely poetic,
me stands for MATLAB exception and is the standard variable name for
these situations). Then the script will continue to run the code after end.
If this were inside a function, me would also tell you which function
(“stack”) and on what line of that file the error occurred. This is useful for
debugging.

MATLAB always wants a variable to be the first piece of code after the
catch statement. After that variable, you can include additional lines of
code if you want to have a backup plan B.

try

 if e(3)>6, disp('e(3) is big.'), end

catch me;

 if e(2)>6, disp('e(2) is big.')

98 I Introductions

 else disp('e(1) is my friend.')

 end

end

Perhaps you are thinking that try-catch statements are the best way to
write scripts that produce no errors. But be careful here—you should want
your script to produce errors, because errors tell you that something went
wrong. If you have too many try-catch statements, your script could be full
of horrendous and dangerous errors without you knowing about it. It’s like
blocking the pain receptors in your arm when your hand is on the stove,
and only 15 minutes later do you start wondering why the kitchen smells
like something is burning.

7.7 Switch-case

You may have heard the expressions “save the best for last” or “last but not
least.” Those don’t apply here. The switch-case control statement is the one
I see least often in data analysis scripts. It provides the same kind of control
as if-elseif-else-end statements. You might go the rest of your life and never
program a switch-case statement, and you’d have lived a full and rich life
with no regrets. But it is good for your general MATLAB knowledge to be
able to interpret and possibly use switch-case constructions.

species = 'rabbit';

switch species

 case 'rabbit'

 disp('rabbit analyses’)

 case 'rat'

 disp('rat analysis’)

 otherwise

 disp('alien analyses’)

end

The switch command works by holding the conditional statement “in
mind” and then testing whether that matches the various cases. The first
case that is satisfied is run and then the switch-case command finishes. The
otherwise statement at the end works the same as else in if-else con-
structions, and is optional.

7.8 Pause

Let’s learn one last function here that is not technically a control statement,
but is used to control the timing of processes in MATLAB. The function

7 Control Statements 99

pause is used to ask MATLAB to hold all processes until some time has
passed or until the user provides some input. For example, run the follow-
ing code.

pause(1); disp('time''s up!')

Now run it again, changing the “1” to “2” or “5.” I’m sure you’ve already
figured out that that input instructs MATLAB to freeze for that number of
seconds. The input need not be integers; you can also have MATLAB wait
for 100 milliseconds (pause(0.1)) or 7 milliseconds (pause(0.007)).

Typing pause with no input will cause MATLAB to freeze until a key is
pressed. One situation where you might use the pause command is when
looking through many results in sequence (e.g., the results from each of 20
channels). In this case, you can write a loop that shows each result in the
figure and waits until you press a key to show the next result.

7.9 Exercises

1. Using the mod function, can you turn the vector 1:15 into 1–2-3–1-2–3
and so on? You have to do it in one line of code, and the result needs
to start at 1 (not at 2 or 0). It should be scalable such that changing
only one number in your code will move from counting in threes to
counting in fours, sevens, or any other arbitrary number. This is a
pretty handy trick to know.

2. What’s wrong with this code, and how can you fix it?

if randn>1

 disp('big.')

elseif randn>-1 && randn<0

 disp(’small')

else disp(’super-small.')

end

3. This follows up on exercise 6 in the previous chapter. Create a 4 × 8
matrix of uniformly distributed random numbers. Loop through all
rows and columns and test whether each element is greater than 0.5.
Report the results of the test, but this time the printout should be
more specific. For example, the code should print “The value in the
3rd row and 7th column is 0.123 and is not bigger than .5.” Make sure
the code prints out “1st,” “2nd,” “3rd,” and so on, not “1th,” “2th,”
and “3th.”

100 I Introductions

4. Your friend Tim comes to you with this code and with tears in his eyes.
He knows it’s awful and it doesn’t work, but no one—not even poor
Tim—should ever be embarrassed to ask for help. Figure out what Tim
is trying to do and fix his code to get this for-loop to work (but you
have to keep the for-loop).

for i=-5:1.1:6

 sqxy(i,1) = i;

 sqxy(i,2) = i^2;

end

5. Typically, matrices are initialized before the loop. But sometimes it is
necessary to initialize a matrix inside the loop. Modify the previous
exercise to initialize the matrix sqxy inside the for-loop. Make sure it
gets initialized only once!

6. Remember that the best kind of for-loop is no for-loop. Write new code
that will replace the for-loop in the previous exercise. Make sure the
results are identical. One way to determine whether two results are
identical is to compute the mean squared error between them. Com-
pute the point-wise difference between your new variable and sqxy,
square the differences, and take the average of the squared differences.
If the average is zero, the results are identical.

7. Find and fix the errors in the following code. Next, write new code to
map asdf to data without the if-then statement. Any time you see an
if-then statement, you should think about whether you can solve the
problem without using a control statement.

asdf = 1;

if asdf=1

 data = 10;

elseif asdf=0

 data=5;

end

8. Rewrite the try-catch codes in section 7.6 using only if-then statements.
Your code should not produce any errors.

9. When using AND or logical statements, MATLAB makes a distinction
between && and &, and between || and |. Read the MATLAB help files
for these operators to learn when to use which. Write two commands,
one using && (or ||) and one using & (or |).

7 Control Statements 101

10. What’s wrong with the following code?

for i=1:6

 i=3;

 varA(i) = i*43;

end

11. Can you make an infinite loop using a for-loop? How about using an
if-then construction?

12. Determine whether the following lines of code will produce an error.
First come up with your answer, and then type the code into MATLAB
to confirm.

i=3; i=rand(i);

i=[3 2]; r=rand(i); r(3,3)

i=[3 2]; i(1), i(2)

i=3; i(1), i(2)

13. What are the differences between loops A and B below? Which will
print out more messages in the Command window? Or will their
outputs be the same?

%% loop A

i=0;

while i<5

 i=i+1;

 fprintf('%g ',i)

end

fprintf('\n')

%% loop B

i=0;

while i<5

 fprintf('%g ',i)

 i=i+1;

end

fprintf('\n')

8.1 Copy-Paste

The easiest way to get data into and out of MATLAB is simply by copying
and pasting. If you have a programmer’s mentality, such a brutish method
may be offensive to your delicate dignity. To be sure, when you have a large
amount of data, many separate files to import, or multidimensional matri-
ces, the copy-paste method will not scale. But for small amounts of data,
particularly if you need to get the data into or out of MATLAB only a few
times, don’t feel ashamed to open Excel or some text editor and copy-paste
the numbers.

8.2 Loading .mat Files

If you already have data stored in a .mat file, the task is easy. You can load
the data directly into the MATLAB workspace or you can load the data
into a structure. The data file filename.mat that comes with the online
MATLAB code for this chapter contains three variables: frex, timevec,
and tf_data.

load ch08filename.mat

The first line will put the three variables directly into MATLAB’s work-
space. (Recall from chapter 6 that if MATLAB is not in the folder where that
file is located or if the file is not in MATLAB’s path, you’ll get an error about
the file not existing.) Typing whos will confirm the presence of these three
variables. If you have any other variables in MATLAB’s workspace, you
might want to clear them for simplification. A clean MATLAB workspace is
a clean mental workspace. Now try running these lines:

clear

datafile = load('ch08filename.mat');

8 Input-Output

104 I Introductions

The second command will load the file but will not put the variables
directly into MATLAB’s workspace. Instead, the variables will become fields
of a structure called datafile. If you type whos, you will not see the vari-
ables from filename.mat, but if you type datafile, you will see them:

>> datafile =

 tf_data: [30x193 double]

 timevec: [1x193 double]

 frex: [1x30 double]

One advantage of loading the contents of a file into a variable is that it
prevents overwriting data. For example, if you have a variable timevec
in MATLAB, loading filename.mat will overwrite the existing timevec,
whereas loading the file contents into the variable datafile preserves a
separation between timevec and datafile.timevec. However, this can
also be a source of confusion, so be mindful (it’s good programming prac-
tice to give different variables different names).

The second method is also useful for loading in data from multiple sub-
jects. Imagine you have filename_rat1.mat, filename_rat2.mat, and so on
for 15 rats who volunteered to participate in your experiment. The follow-
ing code will load in the data for all rats without any overwriting.

data = cell(15,1);

for fi=1:15

 data{fi} = load(['data_rat' num2str(fi) '.mat']);

end

The contents of data{3} will contain the data only from rat number 3,
and so on.

You may not know a priori how many files there are or even what the
entire file name is. In this case, you can use the function dir to locate files.
This function is adopted from the DOS command and returns directory
information into a variable.

allFiles = dir;

someFiles = dir('*rat*.mat');

Let’s first examine the variable allFiles. It is a structure array with one
element per file or folder in the current directory. The structure contains
several fields, the most important one being allFiles.name, which stores
the name of each folder or file in the current directory. In addition to the
files and subfolders, you will also see two elements for the entries “.” and
“..”; these are standard Unix pointers for the current directory (“.”) and one

8 Input-Output 105

directory higher (“..”). They are always the first two entries from a nonselec-
tive dir call. You can remove them by typing

all = all(3:end);

Let’s say you want to have a list of all files in the current folder, and
you want to ignore all of the subfolders (including “.” and “..”). You can
use the structure field .isdir. This field tells you whether each entry is a
directory (1) or not (0). To solve this problem, you could write a for-loop
with an embedded if-then statement to check whether the isdir field in
each entry of allFiles is 0 or 1. Or you could help reduce the number
of control statements in the world and solve this problem using one line
of code.

allFiles = allFiles([allFiles.isdir]==0);

This line of code says to find the entries in allFiles that have all-
Files.isdir false (in other words, that they are files and not folders), and
then reassign those to be the new allFiles variable. This is another exam-
ple of a dense line of code with multiple embedded pieces. Try running it
piece by piece, from the inside out: allFiles.isdir, [allFiles.isdir],
and so forth. However, even when removing the directories, there are still
items in the allFiles variable that are not related to the rat data files. You
can see this by typing

{allFiles.name}'

Now that you know about the nonselective use of dir, it’s time to dis-
cuss the selective use of dir. The structure variable someFiles (bottom of
page 104) contains only the files in the current folder for which the file
name has the letter string “rat” somewhere in the middle and “.mat” at the
end. The asterisks are wildcards indicating that any other letters can be
before the “r” or in between the “t” and the “.mat” but not after “.mat.”

How would you find out information about the third file in the variable
someFiles? Of course you already know the answer: someFiles(3). If
you want to know the names of all files, you need to concatenate the field
“name” across all elements in the structure. These file names are most sen-
sibly placed in a cell array, so curly brackets are used:

{someFiles.name}

It is, admittedly, confusing to know when to use (), [], and {} for grouping
different variable types. The rules are that parentheses are used for func-
tions, numerical indices, and structure indices; square brackets are used for
concatenation; and curly brackets are used for strings and cells. Sometimes,

106 I Introductions

multiple types of brackets are legal but produce different behavior. I think
the best way to learn this aspect of MATLAB programming is not to try
to memorize the rules, but rather to try them all and learn which ones pro-
duce the results you want.

The function dir returns only the files in MATLAB’s current directory.
To access files in another directory, write the full path into the input of
the dir function. Using full paths when reading in files is always a good
idea because it allows the code to produce the same result regardless of the
directory MATLAB happens to be in.

files = dir('/path/mbcs/ch08/*rat*.mat');

Somewhat annoyingly, the field files.name will NOT contain the full
path; only the file names. You will need to rewrite the path when loading
in data. Soft-coding is a great solution here, as it often is.

filedir = '/home/mxc/mbcs/ch08/';

files = dir([filedir '*rat*.mat']);

data = cell(size(files));

for fi=1:length(files)

 data{fi} = load([filedir files(fi).name]);

end

If the file path changes, or if you use the same script on different com-
puters, you need only change the variable filedir and the rest of the
script should work as expected.

The most common source of errors when reading in files in this way is
that the file names or paths are incorrectly specified. If you see an error
Unable to read file <filename>. No such file or directory.,
the first thing to check is whether the folder path is correct. Keep in mind
that Windows interprets both “/” and “\” as indicating folder separations,
but Mac and Unix systems treat these two characters differently. (Hint:
Check out the function filesep.)

Another useful function for seeing MATLAB files is what. Typing what
reveals only the MATLAB files (.m, .mat, .fig, etc.) in the current directory,
and not any files with non-MATLAB extensions. It should not be confused
with the function why, which is something slightly different.

Another option for selecting files is to use a graphical user interface
(GUI). MATLAB has a built-in GUI for selecting files or folders. It is easy to
program and intuitive to use but is not a scalable solution for importing
dozens or hundreds of files, nor is it useful if you want the analysis to run
without any user input or intervention (figure 8.1).

[filename,filepath] = uigetfile('*rat*.mat');

8 Input-Output 107

The input string acts as the file filter to help select the right file names.
Try running this line of code again using different filter strings.

One final note about importing files: Reading MATLAB files from a net-
work server is slower than reading files that are stored on a local drive. If
your data are kept on a remote server, depending on how many files there
are and how often you need to import them, it might be worth copying
those files to the local hard drive while doing the analyses.

8.3 Saving .mat Files

Now let’s talk about writing data from the MATLAB buffer to a hard drive
using the native MATLAB file format .mat. To save data in a .mat file, sim-
ply type save. This will save all of the data in the entire workspace into a
file in the current folder called matlab.mat. This is generally not a good
idea: The file name is uninformative, and you might have many gigabytes
of data in MATLAB’s workspace while you need to save only a few mega-
bytes. Thus, you should specify the file name, and also specify exactly
which variables should be saved in the file.

save('output_filename.mat','var1','var2','var3');

Figure 8.1

Graphical user interface for selecting files and folders.

108 I Introductions

The variable names must be in single quotes. Without specifying a folder
destination, the file is saved in the current MATLAB folder.

It’s best to keep .mat files as small as possible. In addition to taking up
space on your hard drive or network folder, large .mat files take longer to
save and longer to load back into MATLAB. If your data are spread out
over many files, read and write time can be a major bottleneck to analy-
ses. There is also a hard limit—.mat files cannot be larger than 4 GB. To
keep file sizes small: don’t include large matrices in the .mat file if you
know you won’t need them; if appropriate, use multiple .mat files instead
of one huge .mat file; and convert the data to single-precision format if
the double precision is not necessary for numerical accuracy, as discussed
in chapter 5.

Imagine you have many data sets to process, and your analysis script
includes a loop over subjects. If the analysis takes a long time and some
data sets have already been analyzed, you might want to skip the loop itera-
tions where the output file already exists. The following code will achieve
this, using the continue command introduced in the previous chapter.
This code also shows you how to automate the creation of output file names
so that they are easily associated with input file names.

ddir = '/path/mbcs/ch08/';

filz = dir([ddir '*_file2analyze.mat'])

for fi=1:length(filz)

 outfname = [ddir filz(fi).name(1:end-16) ’res.mat'];

 if exist(outfilename,'file'), continue; end

 load([ddir filz(fi).name])

 <lots of analysis code...>

 save(outfname,'var1','etc')

end

There are a few new concepts in this code. First is the function exist,
which tests whether the first input string exists. You can test whether a
variable, function, or file exists. If the file does not exist, the output of the
exist function is false, which means the continue statement is not eval-
uated, and then the analysis script continues. If the file does exist, the
result is a non-zero number that gets interpreted as true, which means the
continue command gets evaluated, and this loop skips to the next itera-
tion in the loop (the next data set). This construction is useful when you
are adding new data files into the folder, because you won’t need to
change the code to process the new data without re-running the existing
data sets.

8 Input-Output 109

This code also shows how to soft-code the name of the output file. This
is good programming because it guarantees that all file names have the
same format, differing only by the data set–specific identifier, such as a
subject number or date in which the data were collected. The “(1:end-16)”
gets rid of the string “file2analyze.mat” in order to replace it with “res.
mat.” There is nothing special about the number 16; that just happens to
be the number of characters in “file2analyze.mat.”

More generally, it is good programming practice to have a consistent file-
naming convention for all data sets in your research. This facilitates reading
in and writing out data files without manually selecting and specifying
each individual data set name.

A final minor but important point: There is nothing special about
the extension .mat. MATLAB-formatted data files can be given different
extensions in the save command, including .set or .dat or .MATLAB (e.g.,
save('test.asdf')). However, unless you have a specific reason, it is
best to use .mat so everyone else knows it’s a MATLAB-format data file.

8.4 Importing Text Files

Importing ASCII text files can be simple if those files contain only numbers
and if every row of data contains the same number of columns (i.e., a full
matrix). Whenever possible, you should strive to make your ASCII data files
follow this organization.

data = load('textdata_easy.txt');

Life isn’t always so easy, though. You might have an ASCII data file that
has different numbers of columns in different rows or that has strings and
numbers mixed together. Before moving forward, use a text editor to inspect
the file “headache_data.txt.” It starts with text that has nothing to do with
the data we want to import. The data we care about are stored as one row
per trial, but the different stimulus and outcome parameters are stored in
different columns on different trials. Even describing the (lack of) organiza-
tion in this file gives me a headache. Please, never organize your scientific
data in this way. The only redeeming part about this nightmare of a data
file is that it gives us an opportunity to show how flexible MATLAB can be
when importing data.

For these kinds of files, you will need the fread function. This allows
maximal control over importing the data, although it also requires some
additional overhead code. The first step is to create a pointer in MATLAB to
the file you want to open.

fid = fopen('headache_data.txt','r');

110 I Introductions

The variable fid stands for file identifier (it is common practice to use
this variable name, although you could of course use any variable name
you want). The function fopen creates a pointer to the file name specified
in the first input. The second input tells MATLAB that we are going to read
from this file (as opposed to write to this file, which is the topic of the next
section). The variable fid may look like a normal variable (it might be “3”
for example), but MATLAB actually uses this variable as a pointer to a loca-
tion on the hard drive where that file is stored.

The next step is to read from the file. There are a few different ways of
reading in text files, but it’s often easiest to read them in line by line. You
might not know in advance how long the data file is, so a while-loop is
preferred over a for-loop. The while-loop should stop when the pointer
comes to the end of the data file. This is done using the function feof,
which stands for “file-end-of-file,” and which returns “true” when the
pointer is at the end of the file and “false” otherwise.

fid = fopen('headache_data.txt','r');

datavar = [];

row = 1;

while ~feof(fid)

 aline = fgetl(fid);

 aline = regexp(aline,'\t',’split');

 datavar(row,:) = cellfun(@str2double,aline);

 row = row+1;

end

fclose(fid);

There are several things to explain about this code. First, we initialize the
variable datavar to be empty. In previous chapters, I wrote that you should
always initialize matrices to be the size of the final matrix. Here, however,
the full size is not known in advance. At least with this empty initialization
you can be confident that any previous datavar variable will be cleared
out rather than being appended. An alternative is to initialize the variable
datavar to be, say, 100,000 rows long, and then cut out the all-zero rows
after the while-loop finishes.

Next we get to the aline line. The variable aline contains a line of data
from the file, using the function fgetl. Notice that each time we use an f*
function, we specify that we want to get data from the file associated with
the pointer fid; this gives you the freedom to read data from multiple files
in the same loop. A “line” in a text file is defined as all characters between

8 Input-Output 111

two next-line characters (a next-line character is what you insert into a text
file when you press the Enter key). The variable aline is a string. We want
to extract the entries in that string that are separated by tabs. For this, the
function regexp is used, which splits aline according to tabs. You could
change the second input to split the data according to spaces, commas, or
any other delimiter.

The function regexp can be used to convert one long string of charac-
ters into a cell array. Some practice will give you familiarity with it.

stext = 'Hello my name is Mike and I ride a bike.';

s1 = regexp(stext,' ',’split') % parse by spaces

s2 = regexp(stext,'M',’split') % parse by M

By typing whos, you can see that stext is a character array while s1 and
s2 are cell arrays. Each cell is defined by breaking the character string each
time the delimiter appears (space or M for s1 and s2). Change Mike to
mike and re-run the code. You will see that MATLAB treats delimiters as
case-specific.

Now that you have the data in a cell array of strings, you need to convert
the strings into numbers. There are two ways to accomplish this. One is to
use the function str2double, and another is to use the function sscanf.
Let’s see how these functions work:

aNumber = '42';

str2double(aNumber)

sscanf(aNumber,'%g')

The function sscanf is faster than str2double (demonstrated later in
the exercises) and therefore might be preferred for long files. Neither func-
tion will work on cell arrays, however, so you would need another loop over
each element of the cell. This is cumbersome.

Instead, you can use the cellfun function. The idea of cellfun is to
perform some function on each element of a cell array (“fun” here means
“function,” although it’s also fun to use). It works by specifying the func-
tion to be performed using the @ symbol, and then specifying the cell array
to which that function should be applied.

cellfun(@str2double,s1);

The cell array s1 contains one cell with a number; the rest of the cells
are converted to NaN. You can also use cellfun to extract the number of
elements in each cell by typing cellfun(@length,s1).

112 I Introductions

There’s more to importing this headache file to produce a usable data
matrix. The exercises will guide you along the process to complete the
import.

After you’ve finished reading in a file, you should always ask MATLAB to
close that file, using the command fclose(fid). If you leave the file open,
your computer operating system might block access of other programs try-
ing to access that file. Without closing the file, you might get a warning
from your operating system like “This action cannot be completed because
the folder or file is open in another program.”

8.5 Exporting Text Files

Similar to importing text files, there is an easy way and a difficult way to
write out text files from MATLAB. The easy way, which you should use
whenever possible, involves the function dlmwrite. You specify the output
file name, the name of the variable to write, and the delimiter. This func-
tion works only when the data are numeric and only when you can write
out a one-dimensional or two-dimensional matrix.

dlmwrite('filename',data,'\t');

The more complicated but also more flexible method involves fprintf.
This is the method to use when you have rows of different lengths or if
you want to write strings and numbers in the same file. The code below will
print some text before each number, which is not possible when using
dlmwrite.

fid = fopen(’data2write.txt','w');

fprintf(fid,'accuracy\treactionTime\n');

for r=1:size(data,1)

 fprintf(fid,'v1: %g\tv2: %g\n',dat(r,1),dat(r,2));

end

fclose(fid);

Let’s go through this code. First, notice that we defined fid using a sec-
ond input of 'w' instead of 'r'. The 'w' indicates that we want to write to
a file. The fprintf line inside the loop is a bit complicated. The first input
specifies where the data should be written to. In this case, the pointer to the
file (variable fid) tells MATLAB to write to that specific file. If you omit the
pointer, the information will print to the Command window, which you
saw in chapter 6. The second input specifies the information to be written
into the file. The \t writes the tab character, and the \n writes a new-line
character (same as the Enter key). The %g is a placeholder for a number that

8 Input-Output 113

should be written out as a string. There are several other placeholders for
different types of information (%s, %i, etc.); you can search the MATLAB
help files or the Internet for fprintf to learn more of the details. These
different printing options don’t change the fundamental organization of
the exporting shown above. Finally, the inputs after the second input are
the data corresponding to each placeholder.

Now that you know how to parse the fprintf line inside the for-loop,
you should be able to parse the fprintf line before the loop. At first glance
you probably read it as “accuracy SLASH treactionTime SLASH n.” But now
you know better: it is actually “accuracy TAB reactionTime NEWLINE.”

8.6 Importing and Exporting Microsoft Excel Files

To import Excel-formatted files, use the function xlsread. This function
can separate the numeric data from the text data and also optionally
imports the data in all cells as strings in a two-dimensional matrix.

[numericdata,textdata,alldata] = ...

 xlsread('exampleExcel.xls’);

The variables numericdata and textdata might have missing rows or
columns if those rows or columns contain no numeric or string data in the
Excel sheet. That is, the second row of numericdata might correspond to
the third row in the Excel file if the first row contains no numbers. This
behavior is a potential source of confusion or errors. The safest way to deal
with Excel-formatted data is to use the third output (alldata). You will
need to convert the strings to numbers, as described earlier. The comple-
ment to xlsread is xlswrite.

xlswrite('outputdata.xlsx',data);

R and SPSS software programs are often used in the behavioral and
social sciences for data analyses involving analyses of variance and other
mixed-effects models. As of 2015, MATLAB does not provide standard input
and output methods compatible with SPSS’s or R’s file formats. You will
need to export the data from those programs to a text file or to an Excel-
formatted file.

8.7 Importing and Exporting Hardware-Specific Data Files

Most or perhaps all data acquisition hardware systems export data files in a
specialized, and usually compressed, format. These file formats vary greatly,
and it is not feasible for MATLAB to provide cookbook code to import every

114 I Introductions

type of file. However, unless it is secretive proprietary data, manufacturers
are generally happy to provide formatting details and often will provide
MATLAB functions to import their files. Some MATLAB toolboxes such as
eeglab, fieldtrip, and SPM provide functions to import file types that are
often used in neuroscience data acquisition.

Although manufacturers sometimes provide code to export data from
MATLAB to their native format, you should avoid writing out data from
MATLAB to specialized formats, for two reasons. First, some manufacturers
require licenses or additional software to be installed in order to import
the data into MATLAB, and thus keeping the data in the manufacturer’s
format may limit the number of computers that you can use to re-import
the data. Second, keeping data in the MATLAB file format facilitates shar-
ing data.

8.8 Interacting with Your Operating System via MATLAB

Many basic file manipulations can be done from the MATLAB command.
For example, you can copy, move, and delete files by following these
examples:

copyfile('file1.txt','newfolder/file2.txt')

movefile('file1.txt','newfolder/file2.txt')

delete('newfolder/file2.txt')

Be careful when using the delete function—unlike when you move a
file to the trashcan, the delete function actually deletes the file (irretriev-
ably!) from your computer.

MATLAB users on Mac and Unix operating systems can use the function
unix('commands here') to have MATLAB send the command to a Unix
terminal. MATLAB users on Windows can use the function dos('commands
here'). These functions are useful, for example, if you want to have
MATLAB start non-MATLAB programs.

8.9 Exercises

1. Is there a difference between these two lines of code? Why or why not?

all([all.isdir])=[];

all = all([all.isdir]==0);

2. In section 8.4, the variable datavar was initialized as an empty vari-
able. Adjust the code to initialize the variable to be 100,000 rows long,
and then cut out the all-zero rows after the while-loop finishes.

8 Input-Output 115

3. There is a MATLAB function called csvread, which reads in comma
separated values (CSV)-formatted files. The online code includes a file
called somedata.csv. Based on the result of help csvread, figure out
how to import the data. Next, open the file using a non-MATLAB text
editor such as Excel or Notepad, and confirm that MATLAB imported
the data correctly (e.g., what happens to missing entries in the CSV
file?). Finally, generate a two-dimensional matrix of uniformly distrib-
uted random numbers between 10 and 35, and export this matrix to a
file using csvwrite.

4. Section 8.2 had the following line of code. Rewrite this functionality
using a for-loop and an embedded if-then statement. Not that I encour-
age using loops instead of single lines of code; it’s just for practice.

allFiles = allFiles([allFiles.isdir]==0);

5. I claimed that the function sscanf is faster than the function
str2double. Now it’s time for you to prove it. Write code that times
how long it takes to convert a string to a number using each of these
functions. To measure computation time, use the functions tic and
toc. You might not see much of a difference with one function call, so
you should re-run the test by looping over 1 million numbers.

6. Each of the following lines of code contains an error. Find and fix
them.

data = dlmwrite(“datafile.txt”);

data = load('rdata' num2str(fi) '.mat');

7. Inspect the following two lines of code (variable var4fname is a string
variable that contains the name of the output file). Neither contains an
error, but one will do something other than the intended action.
Which one is it and why?

save(var4fname,'var1','varB')

save('var4fname','var1','varB')

8. Are there differences among the following lines of code?

save(var4fname,'var1','varB')

save(var4fname;'var1';'varB')

save(var4fname,'var1';'varB')

Visual inspection of data is very important, particularly in neuroscience.
Visualization allows you to inspect your data for quality and to identify
artifacts, it allows you to do sanity checks, and it allows you to interpret the
results in more meaningful and insightful ways. For exploratory analyses
and for multidimensional results, interpretation might be nearly impossi-
ble without visual inspection. Have I convinced you that it’s important to
plot your data? (Did you even need to be convinced?)

9.1 What You Need to Know Before You Know Anything Else

Before starting to learn how to visualize data, you need to learn a few basic
MATLAB commands that will help you work with figures. A figure is a win-
dow in which data are drawn, and you can open a new figure simply by
typing figure. When you issue a plotting command, MATLAB will draw
the result in whatever is the most recently used figure. If there are no figure
windows, MATLAB will automatically create one.

The figure opens as a blank gray window. The top left of the window says
“Figure 1” (figure 9.1). You can have many figures open at the same time.
Try it:

figure, figure, figure

You can also specify the number of the figure.

figure(1)

figure(100)

fignum=400; figure(fignum)

Run that first line (figure(1)) before running the other two. There
were three figures before running that line, and there are still three figures
after. This happened because you called figure no. 1, and figure no. 1 already

9 Plotting

118 I Introductions

existed. Instead of creating a new figure, that command made figure no. 1
the active figure. The next two lines of code demonstrate that figures need
not be consecutively numbered. If you want to make a good impression,
start counting figures at a large number like 846; your supervisor might
think that you’ve been meticulously (or perhaps obsessively) creating hun-
dreds and hundreds of data plots.

Although there is no strict limit to the number of figures you can have
open, in the interest of maintaining your sanity (and your computer’s
graphics card capacity), try to avoid having too many figures open at once.
I like to have all of my figures docked inside the main MATLAB GUI, but
you should arrange them however you find most comfortable.

All plotting commands draw data into the “active” figure. This is the
figure you last opened, most recently mouse-clicked, or called directly by
number (as in, figure(4)). When you issue a plot command, MATLAB

Figure 9.1

A typical MATLAB figure window.

9 Plotting 119

does not draw the data directly in the figure per se; instead, it creates an
“axis” inside the figure, and then draws the data in that axis. The axis is the
white area inside the gray figure. Having data drawn in axes is useful for
creating many axes inside the same figure, which you will see later. Type
plot(rand(4)) and you will see that a new axis was created in the active
figure.

To close figures, you can click on the “x” in the top of the figure window.
You can close figures from the command line:

close % closes only active figure

close(10) % closes figure #10

close([2 3 5:8])

close all

Finally, if you want to remove the drawing from the figure, type clf,
which stands for clear figure. That will bring you back to a fresh and empty
figure. Typing cla will clear the axis. As you go through this chapter, you
might find it useful to clear the figure or axis before each section or to open
new figures.

9.2 Plotting Lines

The MATLAB function to plot a line is called plot. It can take several
inputs, the most important being what to plot on the y axis.

plot(1:10)

If only one input is provided, MATLAB assumes that the x axis should be
indices (1 to N in integer steps). You can also specify the x-axis values.

x = 1:2:20;

y = x.^2;

plot(x,y)

Notice that the new plot overwrote the previous plot. That is, when you
asked MATLAB to plot new data, the old data were first removed from the
plot. You can plot multiple lines on top of each other using the hold
command.

plot(x,y)

hold on

plot(x,log(y))

hold off

plot(x,y.^(1/3))

120 I Introductions

If you have MATLAB version 2014a or earlier, all of the lines on your plot
are blue. If you have MATLAB 2014b or later, each line is automatically
colored differently while the hold command is toggled. Even if you have
the latest MATLAB version, it’s better to maintain control of the line colors
yourself rather than let MATLAB pick the colors, in part because this behav-
ior is version-specific, and in part because losing control over the colors of
the lines can lead to confusion about which line corresponds to which data
vectors. An optional third input allows you to specify the line color (see
figure 9.2 for a grayscale version of this figure).

cla

plot(x,y/50,'r')

hold on

plot(x,log(y),'k') % log is the natural log

plot(x,y.^(1/3),'m')

After running this code to see three lines, run the code again but delete
the hold on command. Are you surprised to see the three lines still plot-
ted? The hold property of an axis is not cleared when you type cla. It is,
however, when you type clf. Now replace cla with clf and run the code
again (still without hold on). It is also possible to plot multiple sets of lines
without using the hold command, if those lines are in matrix form or if
you use the function plotyy. You’ll see examples of this later and through-
out the book.

Figure 9.2

Two MATLAB figures illustrating a line plot of y2 (left plot) and y2, ln(y), and y1/3 (right

plot).

9 Plotting 121

In addition to line color, you can also specify the marks used at each
point, the line thickness, and several other line properties.

hold off

plot(x,y,'ro-','linewidth',9) % default width is 1

You can type help plot to see more plotting options. I won’t list them
all here, but throughout the rest of the book you will see many different
plotting options and styles.

If you have labels for the lines, you can use the legend command.

plot(x,y,'bp')

hold on

plot(x,log(y),'r*--')

legend({'y=x^2' ; 'y=log(x^2)'})

There are two things to notice about the legend function. First, it takes
a cell array as input, and each element of the cell corresponds to each plot
item in the order in which it was called. Second, when plotting text in a
figure, MATLAB interprets some characters differently. For example, the
text x^2 is printed as x2, because MATLAB interprets the caret symbol (^) to
indicate that the next character should be superscripted. We’ll come back to
this issue in section 9.10.

9.3 Bars

Creating bar plots is just as simple as creating line plots.

bar(x,y)

An optional third input specifies the width of the bars.

bar(x,y,.2) % try other numbers

Bar plots often have associated error bars. The MATLAB function
errorbar is helpful here. In this function, you specify the x and y data as
above, and then also the size of the error bars (figure 9.3). By default,
MATLAB uses this input to create symmetric bars, such that when you
specific error e, the error line is e/2 on top of the bar and e/2 below the bar.
You can create asymmetric errors by inputting separately the upper and
lower error sizes.

e = 100*rand(size(x));

errorbar(x,y,e) % symmetric

errorbar(x,y,e/2,e/8) % asymmetric

122 I Introductions

Professional-looking error bar plots typically have both bars and error
bars without any lines connecting them.

bar(x,y), hold on

errorbar(x,y,e,'.')

9.4 Scatter Plots

Basic scatter plots can be created with the plot function, but the scatter
function provides additional options that can be particularly useful when
you need to show an extra dimension in your visualization.

scatter(x,y,'o')

It is the additional optional inputs that make the function scatter use-
ful. Let’s imagine you want to plot the relationship between firing rate and
firing variability, and you simultaneously want to indicate the cortical
depth from which the neurons were acquired (thus, three dimensions of
data in a two-dimensional plot). Firing rate and variability can be shown
on the x and y axes, and the depth can be shown by the color of each dot
(figure 9.4).

n = 100;

frate = linspace(10,40,n) + 10*rand(1,n);

fvar = frate + 5*randn(1,n);

ndepth = linspace(100,1000,n);

scatter(frate,fvar,100,ndepth,'filled')

Figure 9.3

Bar plots with different-sized error bars on top.

1 3 5 7 9 11 13 15 17 19

0

200

400

9 Plotting 123

The input 100 above specifies the size of the markers, ndepth defines
the color intensity of each circle (note that the size of ndepth is the same
as the size of the to-be-plotted vector), and 'filled' specifies that the
color should fill the circles rather than having empty circles with only a
colored outline (try that line again without that final input). Obviously,
these are fake data, but the interpretation of such a result would be that
neurons with higher firing rates (x axis) have more variable responses (y
axis), and that neurons found deeper in the cortex (“hotter” colors toward
dark red) have higher firing rates.

9.5 Histograms

Data distributions can be illustrated in histograms. MATLAB will cut the
data into N bins and create a bar plot showing the number of elements in
each bin.

r = randn(1000,1);

hist(r,50) % 50 bins (default is 10)

Rather than immediately showing the histogram, the hist function can
return the x and y values. This is useful if you want to show the histogram
in a line plot rather than a bar plot, and is useful for certain data analyses,
such as computing entropy and discretizing continuous variables. The out-
puts of the hist function will become important, for example, in model
fitting (see chapters 28 and 29).

Figure 9.4

One use of the MATLAB scatter function is to add a color to each dot, which can

be used to illustrate an additional dimension of information.

10 20 30 40 50

10

20

30

40

50

124 I Introductions

ru = rand(1000,1);

[y_r,x_r] = hist(r,50); % y outputs first

[y_ru,x_ru] = hist(ru,50);

plot(x_r,y_r,'k','linew',2) % linew = linewidth

hold on

plot(x_ru,y_ru,'r','linew',2)

legend({ 'randn';'rand' })

When you run this code, confirm that calling the hist function
does not produce a plot when outputs are requested. The result of the
separate plotting functions (figure 9.5) demonstrates the difference
between normally distributed versus uniformly distributed random num-
bers. Whenever you want to show multiple distributions on the same axis,
it’s better to plot them rather than calling the hist function sans outputs
multiple times.

MATLAB recently introduced a new function to create histograms, called
histogram, which provides some additional functionality beyond hist.
You’ll learn more about this in chapter 29. If you are feeling adventurous,
you can try to reproduce figure 9.5 using the histogram function.

9.6 Subplots

Subplots allow you to create multiple windows (axes) inside a figure. To cre-
ate subplots, define the spatial layout of the figure in terms of the number
of rows and the number of columns, and then specify which cell in that

Figure 9.5

Histograms (distribution plots) of normally distributed and uniformly distributed

random numbers.

0
0

1 2 3–3 –2 –1

Value

C
o

u
n

t

200

400

600

9 Plotting 125

grid you want to be the active plot (the one to which the next plotting com-
mand will be issued). Figure 9.6 illustrates this concept, and the code below
shows an example of a 2 × 2 figure arrangement.

subplot(221) % commas unnecessary for <10 subplots

plot(r), title('normal random numbers’)

subplot(2,2,2) % but commas help differentiate

plot(ru), title('uniform random numbers’)

subplot(223)

plot(x_r,y_r), title(’distribution of normal')

subplot(224)

plot(x_ru,y_ru), title(’distribution of uniform')

Figure 9.6

Four subplots in one figure. Subplots are useful to show several related plots.

126 I Introductions

You are not confined to having subplots in perfect grids. Subplot geom-
etry can be mixed.

subplot(221), plot(r)

subplot(222), plot(ru)

subplot(212), plot(x_r,y_r)

hold on, plot(x_ru,y_ru,'r')

Notice that I changed the 2 × 2 geometry to a 2 × 1 geometry. Figure 9.7
shows an even more flexible use of the subplot function. In fact, you can
create any number of axes with any arbitrary sizes and locations. This is
done using the set command, which you’ll learn about later in this chap-
ter and again in chapter 33.

Figure 9.7

Sometimes, people get bored on a Friday afternoon and spend too much time playing

around with subplot geometry. But at least I produced a nice figure illustrating the

flexibility of MATLAB’s subplot function.

9 Plotting 127

9.7 Patch

The patch command draws flat “tiles” of any shape you define. Patches are
often used in neuroscience illustrations; for example, to indicate regions
of statistical significance in line plots or to draw continuous error regions
around time courses. Other MATLAB drawing functions use patches (such
as contourf, which you will learn about below), particularly when export-
ing figures to vector-format files.

To create a patch, specify the x and y coordinates of a polygon, and
MATLAB will take care of the rest. You must also define the color of the
patch as a third input.

x = [1 2 3 4 3 2 1];

y = [9 9 7 4 1 3 2];

patch(x,y,'r')

The xy coordinates must be specified going around the polygon, as
shown in figure 9.8. This often means listing x-axis coordinates forward
and then backward, as is done in the code above. Watch what happens if
the points are specified in ascending order (figure 9.8, lower panel).

[~,idx] = sort(x);

patch(x(idx),y(idx),'r')

Figure 9.8

The patch function can be used to make a colored region around specified boundary

coordinates. The order of the inputs is important—these two different patches share

the same seven boundary points.

1 2 3 4

1 2 3 4

2

6

10

2

6

10

128 I Introductions

This may seem like a simple point in this toy example, but it can get tricky
in real analyses. For example, if you have a patch that is defined by a region
in time, you will need to specify time (the x axis) going forward and then
going backward.

Using handles to patch objects will allow you to change their qualities
such as transparency, edge color, and thickness. You will learn about han-
dles later in this chapter, and the exercises will help develop your patch-
making skills.

9.8 Images

Image data are shown very often in neuroscience. Not only pictures of
imaging (fMRI and optical imaging) but also many complex results in, for
example, electrophysiology are often best viewed as images. An image is a
matrix of numbers, and the value at each pixel can be mapped onto a color
and shown in a picture (figure 9.9).

There are several functions you can use to show images in MATLAB, one
of which is called imagesc.

pic = imread(’saturn.png');

imagesc(pic)

The function imread can be used to read data from many picture for-
mats (more on importing pictures in the next section). By typing whos pic
you can see that pic is a 1,500 × 1,200 × 3 matrix. This means the image is

Figure 9.9

Matrices containing data or images can be visualized by mapping the numerical val-

ues in the matrix onto color intensities in the image.

9 Plotting 129

1,500 pixels wide and 1,200 pixels high. The third dimension contains the
red, green, and blue channels (figure 9.10). The function imagesc can take
a three-dimensional matrix as input, but the third dimension must have
exactly three elements. Watch what happens when we try to make an image
from a matrix with an oversized third dimension.

pic2 = pic;

pic2(:,:,4) = pic(:,:,1);

imagesc(pic2)

The code above creates a new matrix in which the fourth element of the
third dimension is the same as the first element of the third dimension
(saying that out loud makes you feel like the narrator of a sci-fi story, but
you’ll get used it to). MATLAB gives an error because it understands how to
plot RGB images but does not know how to interpret a fourth element in
that matrix.

The function imagesc comes from the function image, but imagesc
automatically optimizes the range of the color scale in order to span the
range of the input matrix; image, in contrast, does not. You can try using
both, but in practice there is really never a situation in which image is
advantageous over imagesc.

Figure 9.10

A color picture is represented in MATLAB (and many other computer programs) as a

three-layer matrix in which the value at each pixel encodes the amount of that color

at that pixel.

blue

green

red

Image width

Im
ag

e
h

ei
g

h
t

130 I Introductions

The function imagesc also handles two-dimensional matrices; in this
case, the matrix element values signify pixel intensity, and the figure’s color
legend maps those intensity values onto color or grayscale values. Let’s look
at each of Saturn’s color channels, while simultaneously integrating and
applying concepts you learned in previous chapters.

colorchans = { ’red';'green';'blue' };

for chani=1:3

 subplot(2,2,chani)

 imagesc(pic(:,:,chani))

 axis off

 set(gca,'clim',[0 255])

 title([colorchans{chani} ' channel'])

end

The code axis off turns off the axis in each plot. You can try running
this code again with axis on (or deleting that line) to see the difference.
You’ll learn more about the function set below; briefly, this changes the
color limit to be between 0 and 255.

You can also use the function imshow to display image data:
imshow(pic). This function does some additional axis and image process-
ing to show the picture. Single-layer images are shown in grayscale, for
example. Replace imagesc with imshow in the code above to see the
difference.

Another function for showing data is contourf. This function works
by creating a number of patches corresponding to various ranges of
color values. The function contourf does not handle three-dimensional
inputs.

contourf(pic(:,:,1))

As you can see from figure 9.11, top-left panel, contourf using the
default settings does not produce a very detailed picture (although it does
look neat … the color version could have been an album cover of a 1970s
rock band [for the record, I’m not old enough to know firsthand]). The two
most commonly used optional inputs are the number of contours to draw
and the color of the contour lines. More contours produce smoother pic-
tures but take more time to render. In most cases, somewhere between
20 and 50 contours is sufficient. The color of the contour lines, which is
black in the top-left panel of figure 9.11, can be set to 'none' for smooth-
looking plots.

9 Plotting 131

contourf(pic(:,:,1),40) % 10 is the default number

contourf(pic(:,:,1),40,'linecolor','m')

contourf(pic(:,:,1),40,'linecolor','none')

contourf is an extension of the function contour. The function con-
tour only draws contour lines without filling any colors between them. We
will use it later in the book to outline regions of statistical significance on
top of plots created by contourf. For now, try a few different options to get
a feel for how contour works.

contour(pic(:,:,1))

contour(pic(:,:,1),'linecolor','m'), axis off

contour(pic(:,:,1),1,'linecolor','k'), axis off

A related function is called surf (readers from the west coast of the
United States or France may be disappointed to learn that this function
stands for surface, not for surfing). The surf function produces something
like a contourf plot, except that it’s in three dimensions.

surf(pic(:,:,1))

Figure 9.11

The image of Saturn using contourf with different inputs, imagesc, and surf.

Don’t try to clean the page—those white dots are moons, not printing errors or dust

specks.

contourf contourf

imagescsurf

132 I Introductions

When you run this code on your computer, your figure will look all
black and will be difficult to interpret. Try changing the shading option,
which is done in figure 9.11, bottom-left panel.

shading interp

Maybe you can sort-of make out the image. The prominent features are
the ring and the moons off to the left. Type the command rotate3d and
then left-click-and-drag the figure until the three-dimensional surface
makes more sense. You will see that in a surface plot, the color and height
(z axis) provide the same information. For comparison, run one of the con-
tourf lines above and keep the rotate3d command on—you’ll see that
contourf and surf produce identical images when looking “directly
down” onto the image, and rotating reveals that contourf is a colored flat
surface.

There are several noticeable differences between contourf/surf and
imagesc (figure 9.11). These are extremely important to keep in mind,
because getting confused about the differences may lead to misinterpreta-
tions of your results. You can see one of the key differences in figure 9.11,
but running the code below will create a separate figure that highlights the
distinction.

subplot(121)

contourf(pic(:,:,1),40,'linecolor','none')

title('contourf')

subplot(122)

imagesc(pic(:,:,1))

title('imagesc')

Notice that the x axis is the same for both plotting functions, but the y
axis is upside-down! By default, imagesc draws in so-called matrix form
(also sometimes called ij-mode), which means the first row of the matrix
is plotted at the top of the figure; contourf draws in xy-mode, which
means the first row is plotted at the bottom of the figure. Both formats
are “correct,” although you will find the row-1-at-the-bottom format to be
more intuitive in most visualizations. There are a few more differences
between imagesc and contourf that will come up later in the book.

9.9 Get, Set, and Handle

get and set is a pair of functions that allow you to access and modify
many properties of figures and parts of figures. You will probably use get

9 Plotting 133

and set functions nearly every time you produce a plot or image in
MATLAB, so it’s good to be comfortable with using these functions.

Each axis, figure, and plot object has a variety of associated properties.
These properties can be accessed with the get command, and they can be
changed with the set command. Let’s start with the get command. This
function takes two inputs: the object to query and the property value to
return.

plot(rand(3))

get(gca,'xlim')

yTik = get(gca,'ytick');

The first input in both get commands is gca, which stands for “get cur-
rent axis.” The “current” axis is the active one—the one most recently used,
or most recently mouse-clicked. The first get command in the code above
returns the x-axis limits. This is a two-element vector that indicates the
starting and ending points of the x axis. Try replacing the xlim with ylim,
zlim, or clim (color limit). The second get command returns the values
of the ticks (the small horizontal black lines) on the y axis and stores those
values in a variable called yTik. You can type get(gca) to see all of the
properties of the current axis.

Remember the concept of using the output of one function as the input
to another function? Let’s try that here by plotting a horizontal line at
y = 0. We want this line to go completely from the left to the right side of
the plot, but we want to accomplish this without knowing a priori what
the x-axis limits are.

hold on

plot(get(gca,'xlim'), [0 0],'k')

The get command is useful to access properties, but you need the set
command to change them. The set command works using “property-value”
pairs. This means you first specify the property that you want to change,
and then you specify the new value of that property.

set(gca,'xlim',[0 2])

set(gca,'ytick',[0 .5 .8 .91])

Multiple property-value pairs can be specified in the same set com-
mand, as long as those properties refer to the same object (in this case, gca).

set(gca,'xlim',[0 2],'ytick',[.5 1],'xtick',0:.2:2)

More generally, gca and gcf are called “handles.” Axes have handles,
figures have handles, and—this is where the fun begins—plot objects have

134 I Introductions

handles. Handles look like normal numeric variables, but MATLAB recog-
nizes them as pointers to objects in a figure. They are similar to file pointers
that you learned about in the previous chapter. It is good programming
style to put an “h” at the end of handle variable names, so they are easily
recognizable.

line_h = plot(1:10,(1:10).^2);

get(line_h)

get(gca)

Notice that the properties of the line plot and of the axis are different.
That will become very useful, because in real analyses, you will have mul-
tiple plot objects (images, lines, patches, etc.) in the same axis, and you will
want to change the properties of each item independently. The code below
will change a few properties of the lines.

set(line_h,'linewidth',4,'marker','o’,...

 'markeredgecolor','k')

Take a few minutes to try finding and changing other properties. Then
close the figure and try re-running the set(line_h…) commands. Why
does MATLAB give an error?

A nice feature of set is that it can take a vector of handles and change
all of their properties simultaneously (assuming they have the same proper-
ties). For example:

plot_hs = zeros(1,100);

for i=1:100

 plot_hs(i)=plot(randn(max(1,round(rand*10)),1));

end

set(plot_hs(1:50),'color','k')

set(plot_hs(25:75),'marker','o’)

set(plot_hs([1:10 20:5:100]),'linewi',4)

You can change properties of figures by referencing gcf (get current
figure) rather than gca.

set(gcf,'color','m','name','Data, experiment 2b')

You can also create handles to specific axes or figures.

axes_h=axes;

figure_h=figure;

9 Plotting 135

If you use the set function with a property but without specifying a
value, MATLAB will return the possible values that can be specified for that
property.

set(plot_hs(1),'marker')

9.10 Text in Plots

clf

text(.6,.4,'Yo!')

Already you get the idea of the text command. It plots the string in
the third input at the x and y coordinates specified by the first two
inputs. Unlike most other plotting functions (but similar to the patch
function), repeated text commands will remain on the same plot even
without typing hold on. Try running the text function a few more
times, changing the three inputs (for now, keep the x and y coordinates
between 0 and 1). If you are too lazy to think up numbers between 0 and
1, try this code:

for i=1:1000, text(rand,rand,'Yo!'), end

Now run text(1.05,.7,'outside'). Typically when you plot new
data into a plot, MATLAB will automatically adjust the axis limits to show
the new data. That doesn’t happen with the text command (figure 9.12).
Indeed, the word “outside” is partially cut off in the plot. Try running
text(1.5,.7,'outside'). When text is plotted outside the current
range of the axes, you would need to adjust the axes manually using the
set function.

There are many properties of the text object that can be modified (includ-
ing the text itself). As you might have guessed, changes to text objects
require associating the text object with a handle and using set.

clf

txt_h = text(.5,.5,'Hello’)

set(txt_h,'Position',[.2 .7])

set(txt_h,'color','m','String','Zoidberg')

set(txt_h,'HorizontalAlignment','Center')

As mentioned earlier, all of the above lines could have been put into one
long line. That’s possible because they all access the same plot object (the
same handle). Type get(txt_h) to see a list of additional changeable
options.

136 I Introductions

In the text function and in other ways of displaying text in figures
(titles, axis labels, etc.), some characters are reserved for modifying other
characters. Two of them are underscore (_) and caret (^), which, respec-
tively, make the subsequent character subscripted or superscripted. To
show Greek characters, use the backslash and then the Latin word that
corresponds to the Greek letter. Most of them are obvious (\mu for μ, \
alpha for α, etc.); the rest you can look up online. If you want to display
one of the reserved characters, use a backslash in front of it. For example,
to display an underscore, use _. Observe the effects of the following
command:

set(txt_h,'String','Z_oidbe^r^g is an \alpha_crab')

ylabel('Power (\muV^2)')

Figure 9.12

This figure shows that multiple calls to the text function do not replace existing

plot items and that the plot axes are not automatically adjusted to new plot items.

9 Plotting 137

You can remove text objects (and, more generally, other plotting or axis
objects for which you have handles) by passing their handles into the
delete function.

delete(txt_h)

9.11 Interacting with MATLAB Plots

MATLAB allows you to interact with plots by zooming, panning, and
extracting data. These features can be activated or deactivated by clicking
on the appropriate button in the Figure Menu tab. Note that when the fig-
ures are docked, the Figure Menu tab is on the main MATLAB Menu bar;
when the figures are undocked, the menu options appear on the figure
window. Many of these menu options can also be activated in the com-
mand line or in a script by typing zoom, rotate3d, and datacursormode
(this is called “Data Cursor” in the Figure Menu tab). Below is a description
of these three interactive methods.

Zoom. Once the zoom is activated in a figure, there are three ways to zoom.
One is to left-click somewhere on the plot, which will zoom to the area
in the plot where the cursor is positioned by a zoom-factor that MAT-
LAB guesses. Another is to click-and-drag a box in the figure, and then
MATLAB will zoom into that section. Finally, you can use the mouse’s
scroll wheel or touchpad gesture to zoom in (scroll up) and zoom out
(scroll down). Holding down the Shift key while zooming zooms out.
You can also right-click and select to zoom out. In fact, you never really
need to use the dedicated zoom-out button, because all the zooming
out can be done while the zoom-in button is toggled.

Data Cursor is a useful utility. Run the following code to see how it works.

plot(randn(100,1)), datacursormode on

Now that the Data Cursor is activated, move the mouse close to a data point
and left-click on the plot. The data point closest to the mouse will be
selected, and a small window will open that displays the exact x and y
coordinates of that point (figure 9.13). This is useful for picking peaks
or troughs in the data and comes in handy during sanity checking.

Pan lets you click-and-drag the area of the plot (figure 9.13). This is useful if
you zoom in to part of a plot and want to pan to another part while
keeping the zoom factor the same.

Edit Plot lets you click on parts of the figure; for example, to delete them.

138 I Introductions

Rotate 3D is used in combination with a three-dimensional plot created by,
for example, surf or plot3, to rotate the axes using click-and-drag
mouse operations. While rotating an axis, you can see some text on the
bottom left of the figure, which says something like “Az: -1 El: 72.” This
indicates the azimuth and elevation to which you manually set the
plot. You can manually set the three-dimensional view using the MAT-
LAB view function. You’ll see in chapter 33 how changing the view
inside a loop can be used to create movies.

There are other ways to adjust the figure properties manually, which you
can learn about on your own by randomly clicking different menu options.
However, I recommend against adjusting figure properties manually. It
might seem easier to do in the moment, but manual adjustments, though
easy to do, are also easy to forget and difficult to reproduce. It takes a few
extra seconds or minutes to set your plotting preferences using the set
function, but once you have the figure set up how you like it, you or any-
one else will be able to reproduce the exact same figure.

9.12 Creating a Color Axis

MATLAB has many built-in color schemes, with “jet” being the most popu-
lar in neuroscience and many other fields. It’s easy to create your own color

Figure 9.13

The Data Cursor tool (left panel) shows the xy values of a mouse-clicked plot coordi-

nate. The Pan tool (right panel) is used to move the data sheet around in the axis.

9 Plotting 139

scheme, but before rushing off to invent new color palettes, check out the
existing schemes to see if they suit your needs. Type help graph3d to see
a list of color maps (you might think the color maps would be listed under
help colormap, but that redirects you to help graph3d).

There are three categories of color maps. They are described below,
and the online MATLAB code will illustrate each of these map types on the
same data.

1. Bipolar. Bipolar maps start at some “cold” color (e.g., blue) that indi-
cates negative values, and end at some “hot” color (e.g., red) that indi-
cates positive values. Bipolar maps should be used when your data have
negative and positive values. Except in rare situations, you should
always use symmetric color maps, meaning that a color limit of –3 to
+3 is preferable to –2 to +3.

2. Monopolar. These are color maps that are designed to range from zero to
some non-zero positive or negative value. Avoid using bipolar color
schemes for monopolar data to minimize confusion. For example,
most people expect green to indicate zero and blue to indicate negative
numbers, but if you use the jet map for monopolar data, dark blue
indicates zero and green indicates a midrange positive number.

3. Circular. These are color maps in which the color “wraps around,” such
that the color on the negative end is the same as the color on the posi-
tive end. Circular color maps should be used only for circular or polar
data. To understand a circular map, try to visualize a three-dimensional
RGB space; most color maps are lines through this space, whereas a
circular color map is a ring.

A color map in MATLAB (and in many other programming languages) is
a look-up table (LUT) in which ranges of numerical values are mapped onto
specific color values. A color map is defined as an N × 3 matrix, where N
defines the color resolution and 3 specifies the ranges for red, green, and
blue colors. When creating an image, MATLAB will discretize the data into
N bins and color each bin according to the color-value mappings in the
look-up table. To get a feel for how these look-up tables work, consider fig-
ure 9.14. The three lines in each subplot correspond to red, blue, and green
color intensities as a function of the data value bin. Shown here are three
examples: jet (bipolar) and bone (monopolar) color maps (these maps come
with MATLAB) and a circular color map that I created.

140 I Introductions

9.13 Saving Figures as Picture Files

Figures are great to look at in the MATLAB program, but eventually you will
want to save the figures to use in posters, publications, and so forth. To
export a figure in a format that can be used by other programs, click on the
Figure menu button, File, and Save as. There are many formats to save in.
The default figure format is a .fig file. This is a MATLAB-formatted file and
therefore easily accessible only in MATLAB. The main advantage of saving
figures as .fig files is that, when reimported into MATLAB, they retain zoom-
ing, panning, and other specifications.

However, pixel-based or vector-based files are generally preferable for
sharing and for publications. In pixel-based graphics (e.g., file formats
.bmp, .png, and .tif), the image is stored as a matrix of pixels; zooming-in

Figure 9.14

These lines are visual representations of look-up tables that MATLAB uses to map

image intensities to color intensities.

Red
Green
Blue

Image value range

0 20 40 600

CIRCULAR

BONE

JET

C
o

lo
r

in
te

n
si

ty

9 Plotting 141

to the picture will reveal a block-like structure. In vector-based graphics
(e.g., file formats .eps, .svg, or .pdf), image parts are stored as objects, and
zooming in or stretching does not reduce the quality of the image. Pro-
grams for pixel-based images include Photoshop and Gimp; programs for
vector-based graphics include Illustrator, Inkscape, and CorelDRAW (Ink-
scape and Gimp are free programs). In general, you should try to work with
vector-based graphics because of the increased image quality. If you are
unsure which format will work best, try exporting the figure using several
different formats and import into your graphics software.

If you have a lot of rich graphics in your figures, they might get pixelated
during export even though you selected .eps or .svg. If this happens, you
need to force MATLAB to export as vector format. To do this, select Figure,
File, Export setup. In the Export setup window, select Rendering from the left-
hand side, and then choose Custom renderer to be “painters.” From there,
you can export directly, or select Apply to Figure and then follow the Save as
instructions in the previous paragraph.

Manually exporting figures is fine if you want to export only a few fig-
ures. If you want to save many figures or if you want figures to be saved
while a long analysis is running and you are off frolicking in dream land,
you’ll need to be able export figures automatically. This is done using the
print function. It’s easy to use: Input the handle to the figure you want to
save (this can be a specified handle or gcf), the file type (with a “-d” in
front of the type), and the file name. Below are a couple of examples.

print(gcf,'-dpng','test') % png format, test.png

print(gcf,'-dsvg','test') % svg

9.14 Exercises

1. Why does this code produce an empty plot? How would you fix it?

pic = imread(’saturn.png');

contour(pic(:,:,1),10,'linecolor','none')

2. Open a new figure and run the first two lines of code below. Then, use
the set function to set the x and y axes to go from –1 to +1. Next, open
a new figure, and run the second line before the first line. What have
you learned about the function line? Finally, change the code to make
the lines from both functions magenta. Setting line colors in the line
function is not the same as in the plot function.

plot([0 cos(pi/3)],[0 sin(pi/3)])

line([0 cos(pi/4)],[0 sin(pi/4)])

142 I Introductions

3. Patches can have handles as well. Modify the code that produced figure
9.8 to make the patch purple with a blue line around it. What other
visual features of the patch can you change?

4. What is wrong with this code, and how can you fix it?

randImg = round(255*rand(800,600,4));

imagesc(randImg)

5. Another image plotting function is called pcolor. Run the code below
and observe the differences between pcolor and imagesc. Then count
the number of rows and columns in the two images. Is there a differ-
ence? The answer is yes, and you should search the Internet to figure
out why.

ri = randn(10);

subplot(121), pcolor(ri)

subplot(122), imagesc(ri), axis xy

6. You can change the orientation of the result of imagesc by typing
axis xy (the default is axis ij). Or use the set command. Create an
image (e.g., Saturn, or whatever else) with a handle. Use the get func-
tion to see a list of properties of the image. Which corresponds to the
direction of the y axis, and how do you flip the image so the result is
consistent with the picture drawn by contourf?

7. Open a figure and plot some data. Then activate the zoom tool by typ-
ing zoom in the Command window. Confirm in the figure that the
Zoom tool works. Then type zoom again in the Command window,
and try to zoom again in the figure. Now type zoom on in the com-
mand line. Type zoom on again. What have you learned? The same
rule applies for rotate3d and pan.

8. Convert the equation below into MATLAB code, and evaluate it from
–8 to +8 in steps of 0.0132. The plot is probably difficult to view at
the default settings; try adjusting the y-axis limits. Use the Zoom and
Data Cursor tools to find the local minimum of the function at
around x = –1.78. Somewhat confusingly, sin–1 indicates the inverse
sine function (a.k.a. arcsine), unlike x–1, which means 1/x. What
happens if you replace the 1/sin component with the mathematical
function sin–1?

y = (x/5)3 + 1/sin(x2) – 1

9. The logarithm has many uses, including transforming long-tailed data
to a more manageable distribution. Search the help files to determine

9 Plotting 143

the differences among the functions log, log10, and log2. Try taking
the log of some functions. Plot x by log(x) (and log10(x) and
log2(x)) for different x’s. What happens when x is negative?

10. The Fibonacci series is simple to construct. Start with [0, 1] and then set
each new value to be the sum of the previous two values.

fibseq = [0 1];

for i=3:1000

 <insert your code here>

end

Plot the Fibonacci sequence. It grows to galactic numbers very
quickly. (I don’t know if there is a specific minimum for a number to be
“galactic,” but I think we can all agree that 10208 is galactic.) In a differ-
ent subplot in the same figure, plot the logarithm of the Fibonacci
series. Is it more interpretable now?

11. The pause command with no inputs waits for the user to press a key
before continuing to the next line of code. This can be useful when
looking through results in sequence (e.g., data from each of 20 chan-
nels). Write a for-loop that, for each of 10 iterations, creates a 10 × 20
matrix of random numbers, displays the matrix as an image, and
pauses between each image to allow you to inspect each result. It
would be useful for the image to have a title indicating the image
number and the number of remaining images to inspect. Where does
the title function need to be relative to the pause function in
the for-loop?

12. Adapt the code from the previous exercise so that on each iteration, the
new matrix is the average of all previous matrices plus noise. Set the
color limit to be the same for each image. What happens to each
successive image?

13. The following two lines appear in the online MATLAB code. What’s on
top, the green dots or the red patch? Can you change the layer order by
changing the order of the code?

plot(x,y,'o’,'markerfacecolor','g','markersize',15)

patch(x,y,'r')

14. What, if anything, is the difference between the following two lines of
code?

scatter(x,y,'o’)

plot(x,y,'o’)

144 I Introductions

15. How would you use the set function to specify that the y-axis limits
should be the same as the x-axis limits?

16. How’s your trigonometry knowledge? You might remember that tan-
gent is defined as the ratio of sine to cosine of an angle. As cosine
approaches zero, the tangent blows up to infinity or down to negative
infinity. Don’t believe me? Try plotting it. Create a variable that goes
from –5 to +5 in steps of 0.1 (these values are interpreted as radians)
and plot the tangent of this vector. Does it blow up toward infinity?
Not really. What happens if you go in steps of 0.01 or 0.0001?

II Foundations

MATLAB was designed for working with matrices (MATrix LABoratory). The
vast majority of neuroscience data are stored as matrices, which is one of
the reasons why MATLAB is so useful for neuroscience analyses. You don’t
need to be an expert in matrix algebra or linear algebra to use MATLAB and
successfully analyze data. But it is important to know the basics of matrix
algebra in order to understand how to think about and use vectors and
matrices, and as a prerequisite for understanding matrix-based computa-
tions such as principal components analysis (PCA) and linear least-squares
modeling.

Matrix algebra is a big and fascinating topic that permeates many areas
of science and engineering. This chapter provides a basic introduction to
the concepts in matrix algebra that are most pertinent for neuroscience
data analysis. The terms matrix algebra and linear algebra are often used
interchangeably. Generally, linear algebra indicates an emphasis on the
math and underlying proofs, while matrix algebra connotes the application
of linear algebra to solving specific problems in engineering and science.
Linear transformations and systems of linear equations can be easily repre-
sented and manipulated using matrices, which is why there is a large over-
lap between linear algebra and matrix algebra.

10.1 Vectors

Vectors are like simple matrices, so it’s useful to start a foray into matrix
algebra by learning about vectors. There are two ways to think about vec-
tors: the algebraic interpretation and the geometric interpretation (figure
10.1). These two interpretations provide complementary insights into vec-
tor and matrix computations. The geometric interpretation is most often
useful for gaining intuitive insights into problems in two dimensions or

10 Matrix Algebra

148 II Foundations

Figure 10.1

A vector can be conceptualized as an ordered list of numbers (algebraic) or as a posi-

tion in space (geometric). Illustrated here are vectors in two dimensions (top) and in

three dimensions (bottom).

Algebraic Geometric

[3 –2]

[4 –3 2]

0 2 4

0 4
4

–4
–4

–2

–2

0

2

4

–4

–2

0

2

4

–4

0

4

X
2

d
im

en
si

o
n

X1 dimension

X2 dimension

X
3

d
im

en
si

o
n

X 1
 d

im
en

si
on

10 Matrix Algebra 149

three dimensions, while the algebraic interpretation becomes useful for
high-dimensional data.

The algebraic interpretation. A vector is an ordered list of numbers, such as [4
12] and [3 4 π 0.62]. The number of numbers is referred to as the dimen-
sionality of the vector or the number of elements in the vector. For
example, [4 12] is a two-dimensional (2D) or two-element vector,
and the second element (the number in the second dimension) is the
number 12.

The geometric interpretation. A vector is a line in an N-dimensional space
(where N is defined by the number of elements in the vector) that starts
at the origin of that space and goes to the coordinate specified by the
numbers in the vector. For example, the vector [4 12] is a line that starts
at the origin [0 0] and ends 4 units to the right and 12 units up. Techni-
cally, vectors do not need to start at the origin (the vector [4 12] could
validly start at position [3,–6] and end at position [7,6]), but it is often
more intuitive to think about vectors starting from the origin.

Vectors can be positioned either standing up or lying down (figure 10.2).
In technical terms, a lying-down vector is called a row vector (because it has
one row and many columns), and a standing-up vector is called a column
vector (because it has one column and many rows). If you get a bit confused,
think about a column vector like a tall but narrow Greek column and a row
vector like a row of seats in a movie theater (or a live theater, depending on
how cultured you are).

The sizes and dimensions of vectors and matrices are written as M by
N (or M × N), where M and N refer, respectively, to the number of rows
and columns. Rows are always listed first, then columns. That’s really

Figure 10.2

Illustration of vectors and matrices. A mnemonic to remember the order of describ-

ing the size of a matrix is to think of “MR. NiCe guy.”

M
R

.

NiCe guy

MxN = 3x1 MxN = 3x4

"Row vector" "Column vector" "Matrix"

MrowsxNcols = 1x4

150 II Foundations

important. To remember the order, I think of “MR. NiCe guy” (M Rows by
N Columns).

You will see later that vectors can also be thought of as matrices where
one dimension has only one element: A row vector is a 1-by-N matrix, and
a column vector is an M-by-1 matrix. You’ve already seen this convention
in MATLAB when using the functions zeros, ones, and nan. To create a
1-by-5 row vector of zeros, for example, type: zeros(1,5);

A vector can be transformed from column to row or from row to column
using the “transpose” operation, which involves swapping rows and col-
umns. In mathematical formulation, the transpose is indicated by a capital T
in the superscript: “v transpose” is vT. The transpose function is a single apos-
trophe after the vector. There is also the function transpose, which does
almost the same thing (you’ll learn about this in exercise 13, chapter 11).

v = rand(10,1); % 10D column vector

v

size(v)

v' % now it’s a row vector

size(v')

transpose(v)

The transpose of a transpose is the original vector. It may seem a bit
strange to take the transpose of a transpose, but the equivalence of v and
vTT (in MATLAB: v==v'') turns out to be important for some proofs in lin-
ear algebra. You’ll see an example of this in the discussion of symmetric
matrices (section 10.10).

10.2 Vector Addition and Multiplication

There are three types of mathematical operations that can be applied to
vectors: vector addition, scalar multiplication, and vector multiplication.
Each of these operations has an algebraic and a geometric interpretation.

Vector addition is accomplished by summing two vectors element by
element (subtraction is defined as the addition of –1 times a vector). Vector
addition is defined only between two vectors of equal dimensionality—it
doesn’t make sense to add a three-dimensional (3D) vector and an eight-
dimensional (8D) vector. The algebraic interpretation of vector addition is
to create a third vector by summing each corresponding element of the two
vectors, so if v = [3 2] and w = [8 –4], then v + w = [3+8 2–4] = [11 –2]. The
geometric interpretation of vector addition is to put the second vector at
the head of the first vector, and then the sum is the new vector that goes
from the origin to the head of the second vector (figure 10.3).

10 Matrix Algebra 151

A scalar is the linear algebra term for a single number. The algebraic
interpretation of scalar multiplication is to multiply each element in the
vector by a single number. If v = [2 5] and c = 1.5 then cv = [1.5*2 1.5*5] =
[3 7.5]. The geometric interpretation of scalar multiplication is to stretch
the vector v by a factor of c (figure 10.3). The scalar c doesn’t change the
direction of the vector; it just makes v longer, shorter, or, if c is negative,
point in the opposite direction.

Vector multiplication has two forms: the inner product and the outer
product (figure 10.4). The outer product is a rank 1 matrix. It is not used in
any analyses in this book, but it’s good to know of its existence—if you are
trying to compute the inner product and get a matrix instead, you know
there is an error somewhere.

The inner product is also called the dot product and is very important
in data analysis. It is the “brick” from which many signal processing tech-
niques and data analyses are built, including the Fourier transform, convo-
lution, and correlation. The dot product is powerful because it is a single
number that tells you something about the relationship between two
vectors.

Figure 10.3

Geometric representations of vector addition and scalar multiplication. In vector ad-

dition, one vector is placed at the head of the other vector, and their sum is the new

vector from the origin to the head of the added vector. In scalar multiplication, the

vector is scaled by a factor defined by the number (that’s why they call it a scalar).

v

cv

v1

v2

–4 –2 0 2 4 6–6

–4

–2

0

2

4

6

–4

–2

0

2

4

6

–6

v1+v2

Vector addition Scalar multiplication
X

2
d

im
en

si
o

n

X1 dimension

–4 –2 0 2 4 6–6
–6

X
2

d
im

en
si

o
n

X1 dimension

152 II Foundations

The algebraic interpretation of the dot product is a single number that
is obtained by multiplying corresponding elements in two vectors and
then summing the element-wise multiplications. The dot product is indi-
cated with a dot between the vectors. If v = [3 2 6] and w = [–1 3 2], then
v·w is [3*–1 + 2*3 + 6*2] = [–3 + 6 + 12] = 15. Two important things to
notice about the dot product are that it is defined only between vectors of
the same length and that it produces a single number regardless of the
lengths of the vectors. The formula for the algebraic interpretation of the
dot product is

Σviwi

Before learning about the geometric interpretation of the dot product,
you need to know about vector lengths. It is intuitive from the geometric
interpretation of vectors that each vector has a length—it is a line, and the
length of the line is simply its distance away from the origin (or wherever
the vector starts). How is this length computed? If you think about a vector
as being the hypotenuse of a right triangle, with the origin and a point on

Figure 10.4

Illustration of the inner product (also called dot product) and outer product. It is easy

to accidentally compute the outer product by swapping the order of the row and

column vectors, so be careful with this during analyses.

MxN = 3x1 MxN = 1x1MxN = 1x3

Row vector Column vector Dot product

* =

MxN = 3x1 MxN = 3x3MxN = 1x3

Row vectorColumn vector Outer product

* =

10 Matrix Algebra 153

the x axis being the other points of the triangle, then the Pythagorean theo-
rem tells us that the length of the hypotenuse is the square root of the
summed lengths of the two sides squared. For vectors, this simplifies to the
square root of the dot product of the vector with itself.

Now for the geometric interpretation of the dot product: The dot prod-
uct is the multiplication of the lengths of the two vectors scaled by the
cosine of the angle between them. The angle between the two vectors is
critical in determining this mapping: The closer those vectors are to each
other, the larger the dot product. The formula for the geometric interpreta-
tion of the dot product is:

|v||w|cos θ

where θ is the angle between the vectors. This formula and the previous one
give identical results; they are just two different ways of looking at the same
procedure. Note that when the angle between two vectors is 90° (π/2 radi-
ans) the cosine of that angle is 0, making the dot product 0 regardless of the
lengths of the vectors. In this case, these two vectors are said to be orthogo-
nal to each other.

In MATLAB, there are several ways to compute the dot product.

sum(v.*w)

dot(v,w)

v'*w

The last expression with the apostrophe is the matrix multiplication
implementation, which will make more sense after reading the next
section. Its accuracy requires you to know that both vectors are column
vectors; otherwise you get the outer product rather than the inner product,
or you might get a MATLAB error. In practice, it’s best to avoid this
construction.

10.3 Matrices

Of course you are familiar with 2D and 3D matrices already from images
and data sets you may have worked with. Now that you are primed to
think about vectors, you can think of a matrix as a collection of column
vectors stacked next to each other (or as a collection of row vectors stacked
on top of each other). This is a natural way to think about matrices in
neuroscience, because data are often stored as channels by time. Matrices
can have any number of dimensions, but in this chapter we will work only
with 2D matrices. The sizes of matrices are given as M-by-N, where M is

154 II Foundations

the number of rows and N is the number of columns (remember MR. NiCe
guy!). There are many special matrices, three of which will be highlighted
here (figure 10.5).

Square matrices. These matrices are shaped like a square, which means they
have the same number of rows and columns, or N = M, or N by N (or M
by M if you prefer). Nonsquare matrices are called rectangular matrices
(or vectors, if N or M is one). The diagonal of a square matrix is the set
of elements going from the top-left to the lower-right corners, where
the row index is the same as the column index. Above and to the right
of the diagonal is called the upper triangle of the matrix, and below
and to the left of the diagonal is called the lower triangle.

Symmetric matrices. A symmetric matrix is a square matrix where the upper
triangle is the same as the lower triangle. In other words, the matrix is
a mirror image of itself across the diagonal. More formally, a symmetric
matrix is one in which the matrix equals its transpose: A = AT. Sym-
metric matrices have a lot of great properties, particularly regarding
matrix factorizations such as eigendecomposition (more about this in
chapter 17).

Identity matrix. This is a square matrix that contains all zeros on the off-
diagonals and ones on the main diagonal. It has this name because the
identity matrix times any matrix or vector is that same matrix or vec-
tor. This is the matrix equivalent of the scalar value 1 (1 times any
number is that number). In text, the identity matrix is written as I or
sometimes IN, where N is the size of the matrix. The MATLAB function

Figure 10.5

Three important types of matrices. The numbers and grayscale intensities indicate

the value of each matrix element (color scaling is different for each matrix). The di-

agonal elements of each matrix are highlighted. Exercise 8 at the end of this chapter

will ask you about this figure.

5 2 3 9

2 2 9 10

8 2 4 4

2 4 2 1

10 4 7 10

4 3 4

7 4 11 14

10 5 14 20

6

1

1

1

1

0 0 0

0 00

0 00

0 0 0

Square Symmetric Identity

10 Matrix Algebra 155

to create an identity matrix is called, cleverly enough, eye(N), where
N is the number of elements in both dimensions.

Two matrices can be added together only if they are exactly the same
size (both M by N). In this case, you just add the corresponding elements
from the two matrices. Scalar multiplication is also straightforward: To
multiply a matrix A by a scalar c (written cA), just multiply each element
in A by c. Matrix-matrix multiplication is slightly trickier; we’ll deal with
this soon.

The transpose function is also defined for matrices. In the matrix trans-
pose, the rows turn into columns, and vice versa. Thus, an N-by-M matrix
is transposed to an M-by-N matrix.

10.4 Finding Your Way around a Matrix

When dealing with very small matrices, it’s enough to point and say “that
number there.” But matrices can be very large, and you need to be able to
access specific parts of a matrix using a more precise method.

Matrix locations are always encoded as row, column (MR. NiCe guy) (I
know, I wrote this twice already, but it’s really important and a bit of repeti-
tion never hurts). If you want to access the element in the third row and
fifth column of matrix A, type A(3,5). You can use the colon operator to
access multiple elements: A(2:4,3:6). And you can use square brackets to
access noncontiguous elements of a matrix: A([1 3 2],[9 2]).

By convention, row 1 column 1 is at the top left of a matrix. Columns
then go to the right and rows go down (figure 10.6). MATLAB also allows
linear indexing, which means you can use a single number to access an
element in a multidimensional matrix (also illustrated in figure 10.6). Lin-
ear indexing can be confusing and is a common source of errors even for
seasoned MATLAB programmers. I recommend avoiding linear indexing
whenever possible.

Here is the rule of thumb for proper indexing of matrices: If you have an
N-dimensional matrix, make sure there are N – 1 commas when accessing
elements of the matrix. For example, indexing a 2D matrix should be done
like A(idx1,idx2) not A(idx). I have seen many students make many
errors leading to incorrect matrix indexing. This is the worst kind of MAT-
LAB error, because MATLAB might not give an error message, but the result
will be incorrect. Please always remember the “N – 1 commas” rule when
matrix indexing. And just in case you are sleeping while reading this, I’ll
mention it a few more times throughout the book.

156 II Foundations

Having row 1 at the top of a matrix may seem intuitive, but images
typically are drawn the other way, with row 1 at the bottom of the plot.
MATLAB refers to this distinction as xy-format (row 1 at the bottom) versus
ij-format (row 1 at the top). The xy-format is more often used for images,
while the ij-format is more often used for matrices. This distinction was
introduced in the previous chapter (imagesc vs. contourf) and will be
discussed again in chapter 19 when plotting time-frequency results.

10.5 Matrix Multiplication

Matrix multiplication is not as straightforward as scalar multiplication. For
one thing, not all matrices can be multiplied. Two matrices can be multi-
plied only when the sides “facing each other” (inner dimensions) have the
same sizes. The size of the product matrix is the sizes of the sides “facing
away” (outer dimensions) (figure 10.7).

Matrix multiplication is noncommutative. That is, AB is not BA (occa-
sionally this equality holds, but these are the exceptions). You can already
see this just by looking at the sizes of matrices. If A is N by M and B is M by
N, then AB is N by N while BA is M by M. And if A is N by M and B is M
by K, then AB is N by K and BA is not defined because the inner dimensions
do not match (unless N = K). Two matrices are said to be conformable if
matrix multiplication between them is valid. Now that you know the rules
for matrix multiplication sizes, look back at figure 10.4 to understand why
the order of multiplying vectors determines whether the result is the inner
or outer product.

Figure 10.6

This figure illustrates two ways of identifying elements in a 3 × 4 matrix. Matrix in-

dexing reduces the possibility of errors and should be preferred over linear indexing.

1,2

3,4

2,1 2,3

4

12

2 8

1,4

3,1 3

10

Matrix indexing Linear indexing

1,1 1,3

2,2 2,4

3,33,2

1

5

6 9

7

11

10 Matrix Algebra 157

Figure 10.7

Illustration of procedures for matrix-matrix multiplication. Panel A illustrates the

rules for when multiplication is valid (inner dimensions N must be equal) and the

size of the resulting matrix (the outer dimensions M and K). Panel B illustrates

the mechanics of matrix-vector multiplication. The resulting matrix is a weighted

sum of the input columns, and the weights are defined by x and y. Panel C illustrates

matrix-matrix multiplication.

=*M N

N K

M

K

* = x y+ =

3x2 3x12x1

a

b
c

e

f
g

a

b
c

e

f
g

a

b
c

e

f
g

x

y

x

y

*

3x2 2x2

w

z

3x2

=

A)

B)

C)

xa + ye
xb + yf
xc + yg

xa + ye
xb + yf
xc + yg

wa + ze
wb + zf
wc + zg

158 II Foundations

Matrix multiplication involves computing the dot product between each
row of the left matrix and each column of the right matrix (always row-
column; should I remind you again about MR. NiCe guy?). It’s easier to
understand in picture form (figure 10.7). It’s good to have some familiarity
of the mechanics of matrix multiplication, but the most important concept
to understand for this book is the issue of matrix sizes of the original matri-
ces and the sizes of their resulting product matrix.

One interesting property of transposes that will be relevant later is that
the transpose of a matrix multiplication is the multiplication of the indi-
vidual matrices transposed and in reverse order. That is, (AB)T = BTAT. How
would you translate this equation into MATLAB code?

10.6 When to Use .* and ./ versus * and / ?

The asterisk (*) and forward slash (/) in MATLAB are the multiplication and
division operators. But multiplication works differently for scalars versus
vectors and matrices. This can cause confusion because MATLAB needs to
know whether you are trying to perform a scalar multiplication or a matrix
multiplication.

To resolve this confusion, MATLAB has slightly different operators
for these two procedures. The asterisk by itself means matrix multiplica-
tion. If you type A*B in MATLAB, you will get the result of matrix multipli-
cation. For scalars, you can use * or .*. For example, if c is a scalar, v is
a vector, and A is a matrix, then c*v and c*A are the same things as c.*v
and c.*A.

The MATLAB operator for scalar multiplication is .* (“dot star”). For
matrices, .* indicates element-wise multiplication. If A and B are both 3 × 4
matrices, then A*B is not defined and MATLAB will give an error, while
A.*B produces a 3 × 4 matrix in which each element is the product of row
i and column j in matrices A and B. And if v is a 1 × 5 vector, then v*v' is
the dot product (a single number), v.*v is a 1 × 5 vector of each element
squared, and v.*v' is undefined and will produce an error.

For many neuroscience data analyses, the scalar or element-wise multi-
plication (.*) is used more often than the matrix multiplication (*). This can
be particularly confusing with square matrices, because if A is a 4 × 4 matrix,
A*A and A.*A are both valid operations and both produce 4 × 4 matrices,
although those matrices will be very different from each other. For this
reason, it is good practice always to use .* and then change it to * only when
you are certain that you want to perform matrix multiplication.

10 Matrix Algebra 159

10.7 Linear Independence and Rank

Linear independence is a property of a set of vectors (individual vectors or
as columns or rows of a matrix) and has an algebraic and a geometric inter-
pretation. The algebraic interpretation is that if one vector can be produced
from a linear combination (“linear combination” means scaling and add-
ing) of other vectors, then that set of vectors is called linearly dependent. For
example, if you have the vectors d = [4 5], e = [2 8], and f = [–11 –11], then
vector f is linearly dependent on vectors d and e, because –3d + 0.5e = f. In
other words, vector f provides no unique information: if you know d and e,
you can produce f.

The geometric interpretation is that a set of vectors is linearly indepen-
dent if each vector points in a different geometric dimension. For example,
the vectors [1 2] and [2 4] are dependent because they are both on the same
line; the second vector does not point off in a different geometric direction.
The vectors [1 2] and [2 5], however, do point in different directions, so
they are independent. Adding a third vector to that group would necessarily
be dependent, because the first two vectors already cover the two dimen-
sions of a 2D space. That is, any third vector in two dimensions can always
be created by adding and subtracting scaled versions of the other two inde-
pendent vectors.

The extreme case of linear independence is called orthogonality, which
you learned about previously. Algebraically, two vectors are orthogonal
if the dot product between them is zero. Geometrically, two vectors are
orthogonal if they meet at a 90° angle.

The term rank refers to the number of linearly independent columns in
a matrix (or independent rows in a matrix; rank is a property of a matrix
regardless of whether you think about columns or rows). If all of the col-
umns in a square matrix form a linearly independent set of vectors, that
matrix is said to be “full rank.” If the rank is less than the number of col-
umns, the matrix is “reduced rank.” Full-rank matrices are great to work
with, particularly if they are square matrices. The MATLAB function to
compute the rank of matrix A is, unsurprisingly enough, rank(A).

Let’s think about matrix rank in neuroscience. Electrophysiology data
are typically stored as an electrodes-by-time matrix. If each electrode mea-
sures activity from different neural populations, then the rank of matrix
is the number of electrodes. It doesn’t matter if neighboring electrodes
record overlapping activity (e.g., due to volume conduction of the electri-
cal potentials) as long as at least part of the activity is different (remember:
linear independence does not require orthogonality). Now imagine that

160 II Foundations

the electrode wiring was damaged such that one electrode became electri-
cally bridged with another electrode. Now those two rows in the matrix
are identical, and the rank of the matrix is the number of electrodes minus
one. In practice, data matrices often become reduced-rank during process-
ing, for example when removing sources of activity that are likely to
be noise.

Reduced-rank matrices can sometimes cause headaches for some types
of analyses. In part this is because the matrix inverse is defined only for
full-rank square matrices.

10.8 The Matrix Inverse

If you want to “neutralize” a scalar, you multiply it by its inverse to produce
the innocuous number 1. For example, 5 times 1/5 is 1 (1/5 can also be
written as 5–1).

The analogous procedure in matrices is called the matrix inverse and is
written A–1. However, the matrix inverse is a bit more complicated than
the scalar inverse, in part because the “neutral” matrix is not a matrix that
contains all ones. The neutral matrix was already introduced: It is the
identity matrix with all zeros on off-diagonals and ones on the diagonal
(see figure 10.5).

The inverse of a matrix A is the matrix A–1 that multiplies matrix A to
produce the identity matrix. That is, AA–1 = I = A–1A. However, you cannot
simply invert each element of A to get A–1 (actually, this would work for
“diagonal” matrices that have non-zero elements only on the diagonal, but
the vast majority of matrices we work with in practice are not diagonal).
Computing the matrix inverse is simple for small matrices that contain
only integers, but quickly gets complicated for larger matrices. It is beyond
the scope of this book to explain how matrix inverses are computed, but
that’s okay—we’ll let MATLAB do the hard work for us.

The matrix inverse exists only for square matrices. Even among square
matrices, not all matrices have an inverse. In fact, the vast majority of
matrices are not invertible. The only matrices that have an inverse are those
that are square and have full rank. Noninvertible matrices are also known
as “singular.” If MATLAB produces an error about “Matrix is singular or
poorly scaled,” it means that MATLAB was trying to invert a matrix that
didn’t want to be inverted. If the values of the matrix are very small (e.g., of
the order 10–13 or smaller), MATLAB may still fail to invert a theoretically
invertible matrix, due to a loss of numerical accuracy when dealing with
very small numbers. If this happens, you can try scaling up the matrix by

10 Matrix Algebra 161

many orders of magnitude, although this is not guaranteed to produce a
perfectly accurate solution.

In MATLAB, you can use the function inv(A) to compute the inverse of
matrix A. The exercises will show several examples of matrices that are and
are not invertible.

If the matrix is a bit “poorly behaved” but is not terribly problematic,
you can substitute the pseudo-inverse (sometimes called the Moore-Penrose
pseudo-inverse) in place of the full inverse (MATLAB function pinv). The
pseudo-inverse is the closest approximation to a true inverse for that matrix,
and equals the true inverse when the matrix is square and invertible.

10.9 Solving Ax = b

The matrix inverse is important for many reasons. One of the most impor-
tant reasons is to move matrices from one side of an equation to the other.
This is the case when solving systems of linear equations and, in particular,
computing least-squares solutions. Consider the easy case of scalars. In the
equation below, solve for x.

ax = b

Of course, the solution is simple: x = b/a. To solve this equation for x, you
had to move the a from the left side to the right side, and this you did by
multiplying both sides of the equation by a–1 (perhaps you would have
explained it as dividing by a, but it’s the same operation). Now we get to
matrices, and the idea is the same: Multiply both sides of an equation by
the inverse of the matrix.

This leads us to the least-squares equations for solving systems of linear
equations. The least-squares approach is perhaps the most important
algorithm in many branches of statistics and applied mathematics. You’ll
learn more about implementing the least-squares algorithm in MATLAB in
chapter 28, but the basic idea is simple: Solve Ax = b. A is a matrix of predic-
tors or independent variables (columns are variables, rows are trials), x is a
vector containing the coefficients, also called regression weights, and b is
a vector of observed data points. In other words, Ax = b is asking the ques-
tion: What linear combination of independent variables can explain the
observed data?

The goal of this analysis is to find the vector of unknowns, which is the
vector x. The way to solve it is straightforward: Move A to the other side of
the equation. Now you see where the matrix inverse is needed. We can left-
multiply both sides of the equation by A–1.

162 II Foundations

Ax = b

(A–1A)x = A–1b

Ix = A–1b

Because the identity matrix does nothing to x, we reach our final desti-
nation of x = A–1b. Standard matrix multiplication can be used to reduce
A–1b to a single vector, because A is N × N and b is N × 1.

10.10 Making Symmetric Squares from Rectangles

Typically, however, A is not invertible, simply because it is not square. In
statistics, the matrix A is a design matrix comprising trials by independent
variables. If you have three independent variables and 100 trials, then you
have a rectangular matrix that cannot be inverted. How can you make this
a square matrix so it can be inverted? It makes little sense to add 97 inde-
pendent variables, and it makes even less sense to throw out 97 trials.

The solution is to use the transpose. It turns out that a matrix times its
transpose is always a square matrix, because an N-by-M matrix times an
M-by-N matrix produces an N-by-N matrix. And it gets even better than
that—a matrix times its transpose is guaranteed to be a symmetric matrix.
I’m not supposed to burden you with proofs, but the proof that a rectangu-
lar matrix times its transpose is square symmetric is elegant and short (recall
from earlier in this chapter that (AB)T = BTAT, and that ATT = A).

ATA = (ATA)T = ATATT = ATA

Square symmetric matrices have many great properties, for example hav-
ing orthogonal eigenvectors (you’ll learn about this in chapter 17). Most
relevant for least squares is that square symmetric matrices are invertible as
long as the columns of A are linearly independent (that is, if the rank of the
matrix is equal to the number of columns).

So, computing a least-squares solution when the matrix A is rectangular
involves first multiplying both sides of the equation by AT, and then pro-
ceeding with the formulation from the previous section. The mathematics
are shown below.

Ax = b

ATAx = ATb

(ATA)–1(ATA)x = (ATA)–1(AT)b

x = (ATA)–1(AT)b

10 Matrix Algebra 163

Linear least squares is so important and is implemented so often that
MATLAB has a dedicated operator for this purpose: the backslash (“\”).
That final line of math above is implemented in MATLAB using the follow-
ing code:

x = (A'*A)\A'*b;

If you find this really exciting, then you can look forward to working
your way through chapter 28.

10.11 Full and Sparse Matrices

A full matrix is the normal matrix that you are used to working with. A
64-by-10,000 matrix, for example, has 640,000 elements in the matrix.
That’s an awful lot of elements. What if most of those elements were zeros?
Image an extreme case with 639,999 zeros and a single non-zero element. It
would be much more efficient simply to store the value and location of that
non-zero element. That gets us from 640,000 pieces of information down to
3 (matrix coordinates, and value at that coordinate). A matrix with a lot of
zeros is called a sparse matrix (figure 10.8). MATLAB has a special way of
storing sparse matrices.

Figure 10.8

A matrix in its full (left) and sparse (right) representations.

2 4 6 8 10 12 14

2

4

6

8

10

12

14

(8,8)
(9,9)
(2,10)

(10,10)
(11,11)
(3,12)
(12,12)
(13,13)
(14,14)
(4,15)

3
3
8
25
14
-3
6
11
-2
-11

Full matrix Sparse matrix

164 II Foundations

A = sparse(64,10000,1);

B = full(A);

The function full will turn the sparse matrix into its full representa-
tion. Check out how much less memory the sparse matrix takes, although
it contains the same information as the full matrix.

>> whos A B

 Name Size Bytes Class Attributes

 A 64x10000 80024 double sparse

 B 64x10000 5120000 double

Otherwise, sparse matrices can be used in code in the same way as full
matrices (e.g., addition, scalar multiplication, and matrix multiplication).
In neuroscience, data sets that include images, local field potentials, and
EEG are typically stored as full matrices, whereas action potentials are typi-
cally stored as sparse matrices. It’s good to know about sparse matrix repre-
sentations even if you won’t use them.

10.12 Exercises

1. Given the following three matrices and their sizes, figure out (1) which
matrix multiplications are valid and (2) the sizes of the resulting prod-
uct matrices. After figuring out the answers, confirm in MATLAB by
creating matrices of random numbers and testing whether MATLAB
produces errors.

A: 4-by-4; B: 4-by-7; C: 5-by-7

a. A*A

b. B*A

c. C*A

d. B*C'

e. C*B*A

f. B*B'

g. C*B'*A

h. C*C

2. Compute the dot product (by hand and then confirm in MATLAB)
between [1 –3] and [3 1]. Then plot those vectors. Change the –3 to any
other number and recompute and replot. Is it possible to get orthogo-
nal vectors by changing the –3 without changing the other numbers?

10 Matrix Algebra 165

3. Here’s a trick to round a number to a specified number of decimal
points:

aNumber = randn;

round(10*aNumber)/10

Work through that second line of code so you understand what it’s
doing. How can you modify it to round to the nearest thousand?

4. After completing the previous exercise, type format bank in the
Command window. Is there a difference between this formatting
option and using the code in the previous exercise? Read the help
file for format to learn about different numerical formatting options
and to learn how to reset the numerical formatting to the default
setting.

5. Each of the following lines of code will produce an error. Find and fix
the errors without MATLAB. Then confirm your answer in MATLAB.

plot3([0 v3(1)],[0 v3(2)])

a=rand(2,3,4); a'

inv(rand(2,3))

6. A reduced-rank matrix is a matrix that has at least one column, or at
least one row, that is linearly dependent on other columns or other
rows. Create a 2-by-2 reduced-rank matrix by making the second col-
umn be a multiple of the first column. Then try to compute its inverse
using the inv function. What is the result, and what is the warning
message? Then compute its pseudo-inverse using the pinv function.
For an invertible matrix A, AA–1 = I = A–1A. Does this hold for the
pseudo-inverse? (In linear algebra terminology, you would say that this
is the closest projection to the identity matrix.) Try this exercise again
using a full-rank matrix.

7. Create a rectangular matrix of 2 × 3 random numbers. Compute AAT
and ATA. Before doing the computation, figure out what the sizes of
AAT and ATA will be. Confirm by visual inspection and by plotting
images of those matrices that they are symmetric. In time series analy-
sis, if A is a time-by-channels matrix, then ATA is called the channel
covariance matrix.

8. One number in figure 10.5 is incorrect. Which one is it, and how can
you tell it’s wrong?

9. Write code that generates random 3D vectors and then computes the
dot product of the vector with itself. Compute the dot product using
your own custom-written code, and confirm that the function dot

166 II Foundations

gives the same output. Is the dot product ever negative? What if you
force all elements of the vector to be negative? Why is this?

10. Below is a 3-by-3 matrix. Enter this matrix into MATLAB and compute
its rank. Are you surprised by the answer? Can you change one number
in that matrix to change its rank?

A = [1 3 3;

 0 –1 -2;

 7 2 –17];

11. Design an algorithm for obtaining linear indices from matrix indices
(consult figure 10.6). Your code should work for any arbitrarily sized 2D
matrix. Next, learn how to use the sub2ind function in order to sanity
check your code.

12. You know it’s illegal to multiply a 3-by-4 matrix by a 1-by-4 vector (the
linear algebra police will come after you). But what if you want to
point-wise multiply each row in the matrix by the same vector? You
can write a for-loop, but this is not a good idea. Better would be to use
MATLAB’s repmat function, which can repeat a matrix. Use the help
file for repmat to figure out how to expand a 1-by-4 vector to a 3-by-4
matrix with three identical rows (what is the rank of that matrix?).
Then point-wise multiply that by the original 3-by-4 matrix.

13. An even better solution to the previous problem is to use the function
bsxfun. This function is easier and faster than repmat, but the input
is a bit different from what you have seen so far. Use the bsxfun help
file to figure out how to do the same row-wise multiplication in the
previous exercise.

14. The function diag creates a diagonal matrix, which is a matrix with
zeros everywhere except on the diagonal. Try, for example, diag([2
1 5 6]). Create the 10-by-10 identity matrix using the functions
diag and repmat (don’t use the function eye). What happens
when you input that I10 matrix into the function diag? Also try
diag(rand(4)).

15. Compute the dot product between the vectors [1 3 2] and [5 2 3]. First
do it by hand and then in MATLAB using matrix-product notation
(xTy). Make sure you get the vector orientations correct in MATLAB!

The Fourier transform is one of the most important signal processing tools
in engineering and information technology, not to mention neuroscience
data analysis. In neuroscience, the Fourier transform is used to perform
frequency and time-frequency analyses and is the basis of filtering time
series and many forms of image processing.

The Fourier transform implements the Fourier theorem, which states
that any signal can be represented as a sum of sine waves, each having its
own frequency, amplitude, and phase. In math textbooks, the Fourier trans-
form is defined using integrals and continuous sine waves. However, in the
digital world, we have only discrete time points to work with. This chapter
does not discuss the continuous Fourier transform, but instead shows how
the discrete Fourier transform can be implemented in MATLAB.

To understand how the Fourier transform works, you need to under-
stand three mathematical concepts: sine waves, complex numbers, and the
dot product. I know it’s a bit frustrating to wait one-half of a chapter before
learning about the Fourier transform, but trust me, it’s worth the wait.

11.1 Sine Waves

I’m sure you already know what a sine wave is, and probably you also know
that the formula to create a sine wave looks something like this:

a sin(2πft + θ)

where a is the amplitude (height) of the sine wave, π is 3.14…, f is the fre-
quency, t is time (if time is specified in seconds, then f can be specified in
hertz), and θ is the angle offset. In MATLAB, a sine wave is generated as
follows, and an example is shown in figure 11.1.

11 The Fourier Transform

168 II Foundations

srate = 1000; % sampling rate in Hz

time = 0:1/srate:5; % units of seconds

f = 4; % units of Hz

a = 2; % arbitrary units

th = pi/2; % in radians

sinewave = a*sin(2*pi*f*time+th);

plot(time,sinewave)

The importance of sine waves as the fundamental basis for the Fourier
transform cannot be understated. Before moving on, take some time to play
around with the code above—change each of the parameters to see the
effects on the sine wave. Try to develop an intuitive feel for what happens
to the sine wave when you change the frequency and the amplitude.

The code above produces a real-valued sine wave because it contains no
imaginary part. To perform the Fourier transform, we need complex sine
waves that contain both a real part and an imaginary part. To create a com-
plex sine wave, you need to know about complex numbers.

11.2 The Imaginary Operator and Complex Numbers

The imaginary number is the result of taking the square root of –1. “But
that doesn’t make sense,” you are probably thinking, “no number multi-
plied by itself can produce a negative number; you can only take the square
root of positive numbers, and preferably nice positive numbers like 4, 16,
and 49.” The square root of –1 does not exist, and that’s why mathemati-
cians came up with a special term for this quantity—the imaginary operator,
which is commonly abbreviated as i (in electrical engineering they use j
because i indicates current).

Figure 11.1

Example sine wave at 4 Hz. Count the number of cycles between any two of the

seconds intervals on the x axis.

Time (sec.)
0 1 2 3 4 5

0

2

–2

A
m

p
lit

u
d

e

11 The Fourier Transform 169

Don’t lose sleep over worrying about what it means for a number to
multiply itself and produce a negative number; arguably it is not a quan-
tity that actually exists. Mathematicians have discovered that by using the
imaginary operator, they can solve problems more easily and more effi-
ciently than if they used only real-valued numbers. The Fourier transform
is one example of this, and so you only need to worry about learning
how to use complex numbers to extract frequency and time-frequency
information.

A complex number is a number that contains both a real part and an
imaginary part. The real part is the set of all the numbers you have been
comfortable with your entire life (1, 2, –50, π, and so on). The imaginary
part is any of these numbers, but multiplied by i.

Complex numbers look like this: 5 2i, –18 0.4i, 4 –10.2i. You might ini-
tially think that I wrote six numbers grouped into three sets such that the
first set is the two numbers “5” and “2.” But in fact I wrote only three num-
bers, because each complex number comprises two components. All of the
real numbers that you’ve been using your whole life are really just a subset
of complex numbers for which the imaginary part is zero. That is, the num-
ber 7 is shorthand for the complex number 7 0i. So when someone asks
how many children you have, you can reply that it’s complex, and then
explain that you have non-zero real children and/or non-zero imaginary
children.

Real-valued numbers can be represented on the number line. The num-
ber 7 is to the right of 5 and to the left of 7.3. Is the number 7 4i to the left
or to the right of 7 6i? You guessed it—it’s neither. Part of the power of
complex numbers comes from having two components. They cannot be
represented on a line; instead, they are represented on a plane (figure 11.2).

Figure 11.2

A one-dimensional (1D) number line and a two-dimensional (2D) number plane.

0 1–1

Number line

1–1

Number plane

1

–1

Real

Im
ag

170 II Foundations

It is a 2D plane where the left-right axis corresponds to the real part and the
up-down axis corresponds to the imaginary part. Each complex number
corresponds to a coordinate in the plane.

“But Mike,” you are probably thinking, “if a complex number has two
parts, can we think of it as a two-element vector?” A very astute observa-
tion, reader! Indeed, it is very useful to conceptualize a complex number as
a vector that starts at the origin of the complex plane and ends at the coor-
dinate defined by the real and imaginary components of the complex num-
ber. Therefore, mathematical operations using complex numbers, such as
addition and multiplication, are accomplished using the same rules that
you learned about in the previous chapter (although there are additional
rules such as Hermitians and complex conjugates; you’ll learn some of the
relevant rules later). Thinking about complex numbers as vectors is impor-
tant, because we will use concepts from vector geometry to extract length
and angle from complex numbers, and those quantities are the power
(length) and phase (angle) in the Fourier transform.

In MATLAB, complex numbers are created in one of two ways:

x = 4+2i;

x = complex(4,2);

Warning! Although you can technically use i or j to indicate the imagi-
nary operator in MATLAB, this is dangerous and should be avoided. Many
people use i and j as counting variables in small loops. Instead, you should
use 1i or 1j, which cannot be used as variables. Evaluate the following
code in MATLAB:

i=1

x2 = 4+i

x3 = 4+1i

1i=1

The conclusion here is that i will sometimes and sometimes not be the
square root of –1, while 1i will always be the square root of –1.

Now you know about sine waves and you know about complex num-
bers. Let’s combine these concepts to create a complex sine wave. Because a
complex number has two parts, a complex sine wave has two parts. In fact,
these two parts correspond to a cosine wave (real part) and a sine wave
(imaginary part). Remember that one of the advantages of complex num-
bers is that they allow us to perform operations using compact notations. A
complex sine wave contains both a cosine and a sine in one signal.

11 The Fourier Transform 171

Creating a complex sine wave is slightly different from a normal real-
valued sine wave, because the sine wave formula is embedded inside Euler’s
formula. In math, the formula for a complex sine wave is ei2πft. In MATLAB,
this translates to:

csw = exp(1i*2*pi*f*time);

Because a complex sine wave (csw) is a 3D function (time, real part,
imaginary part), it is best represented in three dimensions, as you can see in
figure 11.3.

plot3(time,real(csw),imag(csw))

Figure 11.3

The complex sine wave in three dimensions (no special glasses required).

Real part

0
–5

5

0

2

4

Time (s)

Im
ag

in
ar

y
p

ar
t

0

–6

6

A sine wave at 4 Hz

11.3 The Complex Dot Product

The dot product, as you know from the previous chapter, is a single number
that reflects a relationship between two vectors. It is computed as the sum
of point-wise multiplications between corresponding elements of the two
vectors. The sign of the dot product tells you about the angle between the
two vectors: a positive dot product means the angle between the vectors is
acute (less than 90°), a negative dot product means the angle between the
vectors is obtuse (greater than 90°), and a zero dot product means the vec-
tors are orthogonal to each other (exactly 90° angle).

172 II Foundations

All of the dot products in the previous chapter were real-valued. Now
that you know about complex numbers, it’s time to upgrade your knowl-
edge to incorporate complex dot products. A complex dot product is the
dot product when one or both vectors contain complex numbers. Because
complex numbers have two components, a complex dot product also has
two components.

You can already see where this is going—the complex dot product is
conceptualized as a coordinate point in a 2D space, where the two dimen-
sions are the real axis and the imaginary axis. And just like with complex
numbers, we can think about this coordinate as the endpoint of a vector
that goes from the origin to that point.

The complex dot product is superior to the real-valued dot product. The
cute but ineffectual real-valued dot product gives us one piece of informa-
tion. The tall, dark, and handsome complex dot product gives us three
pieces of information that are central to frequency-based and time-
frequency–based analyses. They are the length of the vector (also called the
magnitude of the complex number), the angle with respect to the positive
real axis (also called the argument of the complex number, perhaps because
ancient mathematicians argued about coming up with a better term for it),
and the projection onto the real axis. These three properties are visually
depicted in figure 11.4 and described in more detail below.

Magnitude of the Complex Number (Power in the Fourier Transform)
In the previous chapter you learned how to compute the length of a line as
the square root of a vector dot product with itself. With complex numbers
it’s a similar concept: square the real and the imaginary parts, sum them,
and take the square root. It’s slightly more involved because dot products
involving complex numbers are computed using complex conjugates. This
is because i2 = –1, and the length of a line needs to be positive. More on this
in a few paragraphs. In the mean time, you can compute dot products by
squaring the projections onto the axes, rather than squaring the imaginary
numbers.

In MATLAB, the real and imaginary components of a complex number
can be extracted using the functions real and imag, leaving us with the
following implementations to compute the length of the vector defined by
a complex dot product (the variable cdp is the complex dot product).

linemag = sqrt(real(cdp).^2 + imag(cdp).^2);

linemag = abs(cdp);

11 The Fourier Transform 173

The function abs is the same function that returns the absolute value of
a real-valued number (abs(-4) is 4). It may initially seem strange that the
same function gets the absolute value and the length of a line in the com-
plex plane, but it makes sense if you think about abs more generally as
computing the distance of a point away from the origin, regardless of
whether that point is on a number line (real-valued numbers) or a number
plane (complex-valued numbers).

In frequency-based and time-frequency–based analyses, the magnitude
of this line is also called the amplitude. However, in frequency analyses,
people most often plot and analyze power. Power is amplitude squared;
thus, the power at each frequency is the squared magnitude of the line.

One final point about computing power. It can also be implemented as
the multiplication of the Fourier coefficient with its complex conjugate.
The conjugate of a complex number is a number with the same real compo-
nent and an imaginary component of opposite sign. For example, the com-
plex conjugate of the number 3 8i is 3 –8i. It is often indicated using an
asterisk in the superscript (the complex conjugate of c is c*). The reason why

Figure 11.4

A complex number (e.g., the result of a complex dot product) provides three pieces

of information that are used in frequency and time-frequency analyses: the distance

from the origin (m), the projection onto the real axis (p), and the angle with respect

to the positive real axis (θ).

Real axis

0 2 4–4 –2

Im
ag

in
ar

y
ax

is

0

2

4

–4

–2

(4,2i)

p
m

174 II Foundations

this can be used to compute power is simple algebra (below, c is a complex
variable comprising a real part a and an imaginary part b):

cc* = (a bi)(a –bi) = a2 + abi – abi – (bi)2 = a2 – (bi)2 = a2 – (b2)(i2) = a2 + b2

I point this out for three reasons. First, in terms of MATLAB implementa-
tion, multiplication by complex conjugate (c*conj(c)) is faster than
squaring the magnitude (abs(c)^2). Second, some data analysis methods
such as spectral coherence involve conjugate-multiplication of different
Fourier coefficients (c*conj(d)), where the two coefficients might come
from different electrodes or from different frequencies. Finally, some publi-
cations use the conjugate formulation instead of the magnitude formula-
tion, so it’s good to know the equivalences.

Angle with Respect to the Positive Real Axis (Phase in the Fourier
Transform)
Basic trigonometry tells us how to compute the angle between the vector
and the positive real axis: The tangent of that angle equals the ratio of the
lengths of the opposite to the adjacent sides, which is the ratio of the imagi-
nary (sine) part to the real (cosine) part. Then, the angle in radians can be
computed as the arctangent of that ratio.

lineangle = atan(imag(cdp) / real(cdp));

The astute reader may spot a potential problem with this implementa-
tion (if not, consult the exercises at the end of chapter 9). If the real com-
ponent is zero, we are dividing by a zero. MATLAB has a function atan2
that has an exception for this situation. In fact, MATLAB has a function to
extract the angle directly from a complex number.

lineangle = atan2(imag(cdp),real(cdp));

lineangle = angle(cdp);

These phase angles have several uses in neuroscience. In time-frequency
analyses, they are used to quantify the consistency of the timing of rhyth-
mic activity over repeated trials. In synchronization analyses, they are com-
pared across different electrodes to determine whether two brain regions
are coupled (functionally interacting). In spike-field coherence, they are
used to determine whether the timing of action potentials is locked to the
population-level field potentials.

11 The Fourier Transform 175

Projection onto the Real Axis (Band-Pass Filtered Signal in Time-Fre-
quency Analysis)
This quantity is easy to extract using the function real. The projection
onto the real axis is not used in the Fourier transform, but it will be used in
chapters 19 and 20.

realpart = real(cdp);

11.4 Time Domain and Frequency Domain

Before learning about the mechanics of the Fourier transform, it’s good to
have an idea of the purpose of the Fourier transform and what the results
will look like. Time series signals can be represented in the time domain or
in the frequency domain. Figure 11.5 shows a signal represented in both
domains. The time-domain representation of this signal is something you
are used to seeing: The y axis shows the fluctuations in signal values over
time, which is indicated by the x axis. The frequency-domain representa-
tion of the same signal shows the number of cycles in the signal that take

Figure 11.5

A signal viewed in the time domain (top panels) and in the frequency domain (bot-

tom panels). When signals contain rhythmic components, the signal is often more

easily interpreted in the frequency domain (bottom panels) than in the time domain

(top panels).

Frequency (Hz)
1 3 5 7 9

0

1

2

A
m

p
l.

(a
.u

.)

Frequency (Hz)
2 6 10 14 18

Time (s)
1 3 52 4

Time (s)
1 3 52 4

0

10

20

–2

0

2

A
m

p
l.

(a
.u

.)

A
m

p
l.

(a
.u

.)
A

m
p

l.
(a

.u
.)

–50

0

50
Time domain

Frequency domain

Time domain

Frequency domain

176 II Foundations

place within a period of 1 second. If the time-domain signal has three cycles
per second, the frequency-domain plot shows a bar at 3 Hz.

You should try to see the time domain and the frequency domain as
being different ways of looking at the same thing. That is, imagine there is
some Platonic (“Platonic” in the sense of Plato’s Cave, not in the sense of
“we’re just friends”) sine wave, and the time and frequency domains are
simply different ways of looking at the same “pure” object. Jules Verne
poetically explained the idea of interpreting the same object in different
ways in 20,000 Leagues Under the Sea. In response to the question “What is
a pearl?” Professor Aronnax replied, “To the poet, a pearl is a tear of the sea;
to the Orientals, it is a drop of dew solidified; to the ladies, it is a jewel of an
oblong shape, of a brilliancy of mother-of-pearl substance, which they wear
on their fingers, their necks, or their ears; for the chemist, it is a mixture of
phosphate and carbonate of lime, with a little gelatine; and lastly, for natu-
ralists, it is simply a morbid secretion of the organ that produces the
mother-of-pearl among certain bivalves.”

There are two major advantages of viewing and conceptualizing signals
in the frequency domain. One is that many signals are easier to interpret in
the frequency domain than in the time domain. This point is also illus-
trated in figure 11.5: Even for a relatively simple signal comprising four sine
waves, it is difficult to visually disentangle the components in the time
domain, while it is trivial to disentangle the components in the frequency
domain. The second advantage is that many signal processing goals can be
accomplished faster and better in the frequency domain than in the time
domain.

There is one major advantage of the time domain, which is that it is best
for interpreting the temporal dynamics of the signal. Temporal information
is not lost per se in the frequency domain, but it is “hidden” in a way that
precludes an easy interpretation.

11.5 The Slow Fourier Transform

Now you know all the foundational bricks from which the Fourier trans-
form is built. It’s time to put them together.

The Fourier theorem states that any signal can be represented as a sum
of sine waves, each having its own frequency, amplitude, and phase. Here
is how the discrete Fourier transform works: Construct a complex sine wave
and compute the complex dot product between that sine wave and the
signal. The resulting dot product is called a Fourier coefficient. Next, con-
struct another complex sine wave at a different frequency and compute the

11 The Fourier Transform 177

complex dot product again. This process repeats for as many frequencies as
there are time points in the data. The number of frequencies in the discrete
Fourier transform is defined by the number of time points.

N = length(signal);

fTime = (0:N-1)/N;

for fi=1:N

 fSine = exp(-1i*2*pi*(fi-1).*fTime);

 signalX(fi) = sum(fSine.*signal);

end

signalX = signalX / N;

Notice that we divide by N after the loop ends. This is a scaling factor
that puts the Fourier coefficients in the same scale as the original data. It is
necessary because the loop involves summing over N points for each
frequency. You can try running the Fourier transform code without that
scaling factor—all of the relative magnitudes will be the same, but the mag-
nitudes won’t match those of the time-domain data.

How does the Fourier transform “know” which sine waves correspond to
which frequencies in hertz? The vector defining the sine wave frequencies
range from zero to just below one, and the data sampling rate does not
appear anywhere in the formula for the Fourier transform. In fact, the Fou-
rier transform is the same regardless of whether the data are sampled once
each millisecond or once each 1,000 years. The “time” vector that defines
the sine wave doesn’t even need to be time; it could be distance in microm-
eters or inches or light-years.

Converting the frequencies of the sine waves from arbitrary units to
hertz is critical for interpreting and analyzing data. Would you like to learn
how this conversion is done? Keep reading …

11.6 Frequencies from the Fourier Transform

After computing the Fourier transform, you will want to interpret the
resulting Fourier coefficients in terms of frequencies in hertz. A hertz is the
inverse of time (1/time), meaning that 1 cycle each second is 1 Hz, 4 cycles
each second is 4 Hz, and 1 cycle every 4 seconds is 0.25 Hz.

The frequencies in the Fourier transform are in normalized units, where
“1” is the data sampling rate. To convert the Fourier coefficients to frequen-
cies in hertz, we need to think about the lowest and highest frequencies
that can possibly be extracted out of a signal. Let’s start with the lowest
frequency. As frequencies decrease, the sine wave gets slower and slower.

178 II Foundations

When the sine wave is infinitely slow, one cycle takes an infinite length of
time. At any finite time scale, this is a straight line and corresponds to a
frequency of 0 Hz. In electrical engineering this is usually called DC for
direct current. The DC or 0 Hz component of a signal is the part of the sig-
nal that is captured by a flat line, which is simply the mean offset (you’ll see
an example of this below). So the frequencies from a Fourier transform will
always start at 0 Hz, regardless of the data sampling rate or the number of
time points.

Now let’s think about the highest-frequency sine wave that can be mea-
sured in a signal. Because a sine wave is defined by fluctuations, we need a
minimum of two measurements per cycle. At two points per cycle, the
highest frequency that can be measured is one half of the data sampling
rate. This is called the Nyquist frequency, a term you may have heard
before. Note that measuring frequencies up to the Nyquist is a theoretical
limit; in practice, it is a bad idea to interpret frequencies above around 20%
of the sampling rate because subsampling can still produce some strange or
artifactual results, some of which are shown in figure 11.6.

Computing the Nyquist frequency in MATLAB is really trivially easy. I
probably shouldn’t even write it, but I will:

nyquist = srate/2;

Now we have figured out that the Fourier coefficients range from 0 Hz to
the Nyquist frequency. Next we need to know how many frequency steps
are in between 0 and Nyquist. This is called the frequency resolution, and
it is defined by the number of time points in the data. In particular, the
number of steps between 0 and Nyquist is N/2 + 1, where N is the number
of time points in the signal, N/2 is the number of sine waves up to the
Nyquist frequency, and +1 is for the DC component.

If you look in the Fourier transform for the code corresponding to N/2 +
1, your search will be unsuccessful. The Fourier transform defines frequen-
cies all the way up to N. This may seem to violate the law that frequencies
above the Nyquist are aliased into lower frequencies. Curiously enough,
this is intentional in the Fourier transform. The frequencies above the
Nyquist are indeed aliased, and they appear as sine waves traveling “back-
ward” (think of the wheel hub of a moving car that appears to spin back-
ward at high speeds). These are called the negative frequencies. For real-valued
signals, the negative frequencies mirror the positive frequencies and the
amplitude gets split between the positive and negative frequencies. For this
reason, it is common practice to ignore the negative frequencies and double
the amplitude of positive frequencies in between but not including the DC

11 The Fourier Transform 179

Figure 11.6

This figure illustrates some difficulties when interpreting results close to the Nyquist

frequency of digitized time series. Imagine that the gray sine wave is an analog wave

and that our recording equipment collects data at time points indicated by the

black dots. The black lines illustrate the signal that will be observed in the data.

When sampling is too sparse relative to the frequency of the sine wave, the signal

is aliased into a slower frequency (top left panel). Even when the sampling is techni-

cally sufficient (more than two times the Nyquist frequency; top right panel), arti-

facts can appear in the data. A rule of thumb is to make sure the sampling rate of

the data acquisition is more than five times the fastest frequency you hope to re-

cover in the data.

Sampled 1.5x Sampled 2.2x

Sampled 5x Sampled 20x

180 II Foundations

and the Nyquist frequencies (you’ll see why later in section 11.9 on DC
offsets).

Here is the final conclusion: To convert frequencies from normalized
units to hertz, create N/2 + 1 linearly spaced numbers between 0 and the
Nyquist. It’s good to do a sanity check to make sure this works. The online
MATLAB code goes through an example, and there are several exercises at
the end of this chapter on this issue.

hz = linspace(0,nyquist,N/2+1);

hz = (0:1/srate:N/2+1)*nyquist;

Those two lines are equivalent. What happens if N is an odd number, like
101? Then N/2 is a fraction like 50.5, and how do you create 51.1 linearly
spaced numbers? Let’s see what MATLAB does.

linspace(0,40,51.5)

Depending on your version of MATLAB, you’ll either get an error or a
valid result with 51 elements. A better solution, therefore, is to round down
to N/2. Watch what happens when N is an even or an odd number.

N=9; floor(N/2)+1

N=8; floor(N/2)+1

There is a little MATLAB trick to programming the frequencies in hertz.
You can define frequencies to go up to the sampling rate using the total
number of points in the signal.

hz = linspace(0,srate,N);

This is dangerous code because the second half of the frequencies in this
vector are inaccurate; without understanding the Fourier transform, some-
one might get the impression that they can reconstruct frequencies above
the Nyquist. I would never admit to using such code myself.

11.7 The Fast Fourier Transform

It is important to understand how the discrete Fourier transform is imple-
mented, because that’s the best way to understand how the Fourier trans-
form works. In practice, however, you should use the fast Fourier transform
(FFT), which can save your analysis code hours or even days of computa-
tion time. If you were to decompose the Fourier transform to each individ-
ual multiplication and addition, you would find that many of the
elementary steps in the Fourier transform can be reordered to be computed
more efficiently; the fast Fourier transform eliminates these redundancies.

11 The Fourier Transform 181

There are several algorithms for computing the fast Fourier transform, but
in general they work by putting all of the sine waves into one matrix rather
than using a for-loop, using matrix factorizations to break up that large
matrix into many simpler matrices with many zeros (sparse matrices), and
then reconstituting the Fourier spectrum.

The MATLAB function for performing the fast Fourier transform is fft.
The FFT is not an approximation—it is a perfect implementation of the
Fourier transform. That means the result of the FFT is identical to the result
of the “slow” Fourier transform implemented in the previous section.

The function fft can take three inputs. The first input is the signal to
which the FFT is applied. The second input is the N parameter of the FFT,
which is discussed in section 11.10. The third input is the dimension of the
data (the first input) over which to apply the FFT. The fft function can
handle multidimensional matrices and will apply the FFT separately to each
column (by default; or whichever dimension is specified by the third input)
in the matrix. This is useful, for example, when computing the FFT of many
trials at the same time without writing a loop over trials.

11.8 Fourier Coefficients as Complex Numbers

I’d like to spend a bit more time discussing how to work with the Fourier
coefficients—and complex numbers more generally—in MATLAB. We’ll
start by simulating some data with known characteristics. Below are three
cosine waves at 6 Hz with known amplitudes and phase offsets. The goal
will be to measure these properties using the Fourier transform.

cos1 = 3 * cos(2*pi*6*time + 0);

cos2 = 2 * cos(2*pi*6*time + pi/6);

cos3 = 1 * cos(2*pi*6*time + pi/3);

Let’s see how to retrieve these properties from the Fourier coefficients
that are provided by the fft function. First we need to define the frequen-
cies in hertz and then figure out which coefficient corresponds to 6 Hz.

hz = linspace(0,srate/2,floor(length(time)/2)+1);

freq = 6;

hz6 = dsearchn(hz',freq);

The function dsearchn will be explained in more detail in chapter 18,
but briefly: It returns the index in vector hz that is closest to freq; in this
case, it will tell us which element in the Fourier coefficient series corre-
sponds to 6 Hz. The corresponding complex coefficients are as follows:

182 II Foundations

cos1: 1.5004 + 0.028257i

cos2: 0.85684 + 0.51595i

cos3: 0.24192 + 0.4374i

Can we make sense of these complex numbers in terms of the ampli-
tude and phase of the original cosine waves? Not really. Perhaps things
will become clearer if we think about these coefficients as vectors in the
complex plane. This time the vectors are shown in a polar plot using the
polar function (figure 11.7). Now you can see the Fourier coefficients in
all their glory: The lengths of the lines reflect the amplitude of the cosine
wave, and their relationship to the positive real axis reflects their phase-
angle offset.

11.9 DC Offsets in the Fourier Transform

The zero-frequency component, or DC component, of a signal is simply
the mean offset. We can demonstrate this by taking the same signal, adding
mean offsets, and then examining the resulting power spectrum. We start
with a simple “signal” (just a few numbers that I made up), with a mean

Figure 11.7

Fourier coefficients are best conceptualized as vectors in a complex or polar plane.

The length of the line and the angle with respect to the positive real axis (“0” in this

polar plot) are taken as amplitude and phase of the Fourier coefficient. The radial axis

depicts amplitude, and the circular axis depicts angle.

0

30

60

90

180

270

1

3

2

cos1

cos2cos3

11 The Fourier Transform 183

value of 0.2143. Figure 11.8 shows the original signal, the signal with the
mean subtracted, and the signal with a value of one added to all points (a
mean offset). You can see from the time-domain plot that the temporal
characteristics of the signal are unchanged; the mean offset simply shifts
the signal on the y axis. Now inspect the frequency-domain plot. All of the
power values are identical for all frequencies (you can zoom-in on your own
MATLAB figure to verify) except for those at 0 Hz. Thus, the mean offset of
a signal affects only the DC component. This makes sense, because shifting
a signal on the y axis doesn’t change any of its rhythmic components.

But careful examination of this plot also reveals something more insidi-
ous: The DC power value doesn’t seem to match. I added a value of one to
the signal, but the plot shows a power of around 2.4. I have to admit, I
cheated a bit here. To recover amplitudes correctly, it is necessary to double
the amplitudes of the positive frequencies, but not the DC or Nyquist frequen-
cies. You can see in the online code that I doubled the amplitudes of all
frequencies, so the DC value was incorrect.

Figure 11.8

The mean offset of a time series is captured exclusively by the 0 Hz component of its

Fourier transform.

Original
De-meaned
Up-meaned

Frequencies (Hz)

0 10 20 30 40 50

Time (ms)
2 4 6 8 10 12

A
m

p
lit

u
d

e
(a

.u
.)

2

0

–2

–4

4

A
m

p
lit

u
d

e
(a

.u
.) 2

1

0

2.5

184 II Foundations

Sometimes in neuroscience data analysis, this little cheat doesn’t
matter, because the signals are mean-subtracted before applying the
FFT. When signals are mean-subtracted, the DC component is zero, and
0 × 2 = 0. Of course, you should strive always to have accurate code. Par-
ticularly if you plan on interpreting the DC component, you should be
careful to double the amplitudes of only the frequencies above zero and
below the Nyquist.

11.10 Zero-Padding the Fourier Transform

As mentioned above, the frequency resolution of a Fourier transform is
defined by the number of time points in the signal. If you want a higher
frequency resolution, you simply add more time points to the signal. But it
is not always possible to add more time points, because you might not have
any more data.

The solution is to add zeros. Zeros add no new information to the signal,
but they do make the signal longer, which means the frequency resolution
becomes higher. This is called “zero-padding.” The extra zeros are concate-
nated to the end of the signal. Zero-padding on the end can get confusing
because when you learn about convolution in the next chapter, you will
add zeros before and after the signal.

Fortunately, you do not need to do the zero-padding yourself; you can
specify this in the second input to the fft function. This parameter is com-
monly called “nfft” for the number of points in the FFT. Be careful: The
parameter you specify in the fft function is the total number of points,
not the number of zeros you want to pad. If your signal is 20 points long
and you want to perform a 24-point FFT, the nfft parameter should be 24,
not 4. If the nfft is less than the number of points in the signal, MATLAB
will crop the signal to the specified value, which means removing valid
signal.

Figure 11.9 shows a 14-point signal and its frequency spectrum after
zero-padding by 10 or 100 points. In the time domain, the extra zeros go
after the end of the signal; in the frequency domain, the effect of adding
extra zeros is to sinc-interpolate the power spectrum (also known as the
“zero-padding theorem”).

Now that you know how to zero-pad, let’s discuss why you should zero-
pad. There are four reasons why you would want to zero-pad the FFT. First,
zero-padding allows you to extract a specific frequency from the signal. If
you want to extract exactly 10.0000 Hz but the length of your data does not

11 The Fourier Transform 185

produce this exact frequency, you can zero-pad the right number of points
to get this frequency. You’ll learn more about this in chapter 18.

A second reason to zero-pad is to produce a smoother estimate of the
frequency spectrum; in other words, to interpolate. You already saw this in
figure 11.9, and you’ll learn in the next section how this concept can be
used to obtain an interpolated time series.

A third reason to zero-pad is to obtain an equal frequency resolution for
two signals, which is a necessary part of convolution. You will learn about
convolution in the next chapter, but briefly, one of the steps of convolution
is to compute the point-wise multiplication between the Fourier spectra of
two signals. Point-wise multiplication is defined only between two signals
of the same length; if the signals do not have the same length in the time
domain, they will not have the same length in the frequency domain.
Therefore, zero-padding is necessary.

Figure 11.9

Adding zeros after a time series produces a smoother (interpolated) Fourier

representation.

"Native" N
N+10
N+100

"Native" N

N+10 N+100

Time domain

Frequency domain

Time (a.u.)

Frequency (a.u.)

186 II Foundations

Finally, a fourth reason to zero-pad is to get the signal to have a length
corresponding to a power-of-two for the FFT. The FFT is maximally efficient
with signals that have length power-of-two (1,024, 2,048, etc.). This means
that the FFT of a 1,024-point signal is a bit faster than the FFT of a 1,023-
point signal.

With the speed of modern computers and the overall efficiency of the
FFT, power-of-two is not really a compelling motivation to zero-pad for
off-line data analyses. Zero-padding requires extra code, and extra code
increases the possibility of mistakes, and so it should be done only when
necessary. I have come to the opinion that as computers get faster, zero-
padding to obtain power-of-two signals provides decreasing advantage. But
that’s just my opinion—you should complete the exercises and form your
own opinion.

11.11 The Inverse Fourier Transform

The Fourier transform is a perfect representation of the time series data in
the frequency domain. No information is lost when computing the Fourier
transform. This was not proved in this chapter (you can look up the proof
if you are curious), but one way to think about it is by analogy to multiple
regression. In a multiple regression, the goal is to explain variance in the
dependent variable (the time series) using a set of independent variables
(the complex sine waves). The more independent variables you have, the
more variance will be explained. If you have as many independent variables
as you have data points, the model has zero degrees of freedom, and 100%
of the variance is accounted for.

For those with a linear algebra background, another way to interpret this
is the Fourier transform is simply a change-of-basis operation. The original
signal is in RN and the Fourier representation is in CN . Because the Fourier
transform is an invertible linear transformation, the Fourier basis is simply
a way of using a different coordinate system to look at the same space, and
the inverse Fourier transform can be applied to return us from the CN Fou-
rier basis back to the original RN basis.

Because no information is lost in the Fourier transform, it is possible to
reverse the Fourier transform and go from the frequency domain back to
the time domain. This is called the inverse Fourier transform. Recall that in
the (forward) Fourier transform, you start with template sine waves and use
dot products to compute the Fourier coefficients. In the inverse transform,
you use the Fourier coefficients to scale the template sine waves, and the
sum of the scaled sine waves is the original time series.

11 The Fourier Transform 187

Another difference is that the Fourier transform has a negative sign in
the complex sine wave whereas the inverse does not. This negative sign
cancels the imaginary part of the sine waves created in the forward Fourier
transform (because i – i = 0), thus allowing the original real-valued signal to
be reconstructed without a superfluous imaginary part.

In the exercises, you will have the opportunity to implement the “slow”
discrete inverse Fourier transform. As with the Fourier transform, in real
data analyses you should only use the function ifft.

You might be wondering why you should go through the trouble of tak-
ing the Fourier transform if you will apply the inverse Fourier transform to
get back to the time domain. It turns out that because the FFT is so fast,
many signal processing techniques can be accomplished faster and more
efficiently (using less code) by doing the important computations in the
frequency domain and then going back to the time domain. You will see
several examples of this, including in the next chapter.

11.12 The 2D Fourier Transform

Once you understand how the 1D Fourier transform works, moving up to
the 2D Fourier transform is straightforward: First, compute the Fourier
transform over all the rows in the 2D matrix, then compute the Fourier
transform over all the columns of that coefficients matrix. It’s straightfor-
ward enough that it takes only two lines of code; nonetheless, MATLAB
provides a 2D FFT function for you. Actually, the MATLAB fft2 function
calls fftn, which allows for computing the FFT over any number of
dimensions.

pic = imread(’saturn.png');

picX = fft2(pic);

picX1 = fft(pic);

picX1 = fft(picX1,[],2);

The variables picX and picX1 are the same, although MATLAB’s fftn
function is a bit faster than calling the fft twice. The resulting Fourier coef-
ficients come in a 2D matrix. It’s a bit confusing at first to interpret the
results, but keep in mind that the power spectrum shows the power along
each dimension separately. For this reason, it is useful to think about the 2D
power spectrum not as going from left to right, but as going from the cor-
ners of the matrix to the center of the matrix. And for this reason, it is com-
mon to shift the coefficients around so the four corners (corresponding
to low spatial frequencies) meet at the middle, and the original center

188 II Foundations

(corresponding to high spatial frequencies) is shifted to the corners. This
shifting is so common that MATLAB has a built-in function to accomplish
this, called fftshift.

You must be curious what the power spectrum of the image of Saturn is,
right?! It’s shown in figure 11.10. The power spectrum has a beautiful
appearance, reminiscent of artists’ renditions of light swirling around a
black hole. Unfortunately, however, there is no cosmic connection here.

11.13 Exercises

1. Generate 10 seconds of data at 1 kHz, comprising 4 sine waves with
different frequencies between 1 and 30 Hz, and different amplitudes.
Add (1) a little bit of noise and (2) a lot of noise to make two time series.
Compute the power spectrum of the simulated time series (use the
function fft) and plot the results separately for a little noise and a lot
of noise. Show frequencies 0 to 35 Hz. How well are the frequencies
reconstructed, and does this depend on how much noise there is? Is it
easier to distinguish the signal from the noise in the time domain or
frequency domain?

2. The following line of code is not incorrect but is bad programming.
What’s wrong with this line, and how would you fix it (assume variable

Figure 11.10

A 2D image has a 2D Fourier representation. The original power spectrum is shown

in the center plot, with low spatial frequencies at the corners and high spatial fre-

quencies in the center. It is common practice with Fourier representations of images

to shift the spectrum so that the low spatial frequencies are at the center while the

high spatial frequencies are at the corners (right plot).

Space domain 2D power spectrum Shifted power spectrum

11 The Fourier Transform 189

data is a time series vector and variable n is the number of points in
that vector)?

power = abs(fft(data)/n).^2;

3. Let’s say you want to create the complex number 8 4i. I wrote earlier
that you should use 1i instead of i in MATLAB. Is the following code
correct? If not, how do you fix it?

z = 8+41i;

4. The following lines of code contain zero, one, or a few errors (occasion-
ally, there are errors that produce no MATLAB errors). Find and fix the
errors, first without MATLAB, and then confirm your answers in
MATLAB.

x = complex(4,2*1i)

sw = sin(2*10.*(0:.001:1));

linemag = sqrt(real(cdp).^2 + real(cdp.^2))

hz = linspace(0,nyquist/2,floor(N/2)+1);

x=randn(100,1); xX=fft(x,10);%zero-padding by 10

pic=imread('2Dpicture.png'); picX=fft(pic);

5. Use the code that produces the right side of figure 11.5 to write a func-
tion that reproduces this image using sine waves defined by frequen-
cies and amplitudes that are specified as inputs into the function. Make
sure the code allows specifying any arbitrary number of sine waves
to sum.

6. Use the function pair tic/toc to compare the computation times
of the “slow” discrete-time Fourier transform and the function fft.
Create signals from random numbers, and have the signals increase in
length from 10 to 10,000 data points in 20 linearly spaced steps. Make
a plot of the clock times (y axis) as a function of signal lengths (x axis).
This exercise may take a while to run, so be patient.

7. Using the FFT (please don’t use the slow Fourier transform anymore!),
test the computation time for computing power of a 10,000-point ran-
dom signal via abs(fc).^2 versus fc*conj(fc) (where fc is the vec-
tor of Fourier coefficients). Because this is a scientific experiment, it’s
best to run the procedure many times on many different vectors, and
then average the results together. Show the resulting clock times in a
bar plot with error bars reflecting standard deviations.

8. Create a 3-second sine wave at 6 Hz. Compute its Fourier transform
and plot the resulting power spectrum. Next, recompute the Fourier

190 II Foundations

transform after zero-padding with three additional seconds (thus, the
total signal will be 6 seconds). Plot the power spectrum after dividing
the Fourier coefficients by the number of time points in the original
sine wave, then plot the spectrum after dividing the coefficients by the
number of time points including the padded zeros. Which normaliza-
tion returns the accurate amplitude? When you use 6.5 Hz instead of 6
Hz, some results are the same and some results are different. What
changed, and why did you get these results?

9. Here is a neat function: ln(x + yi). Translate this into MATLAB code and
evaluate it for x and y from –10 to +10 in steps of 0.1. The result is a 2D
matrix of complex numbers. Use the surf function to explore the
magnitude, real part, and angle of this function. Use some plotting
options you learned about in chapter 9 to make the images look better
than with the surf defaults. Now try making a surface of the sum of
the magnitude, real part, and imaginary part; does this image look
familiar? (For bonus points, create and use a circular color scale.)

10. One easy mistake to make with the 2D FFT is to use the function fft
instead of fft2. It is easy to get confused because when you input a 2D
matrix into the fft function, it will return a matrix output, but that
output will contain the 1D FFT on the columns of the input. The solu-
tion to this is—you guessed it—sanity check your code. This is easily
done by plotting an image of the inverse FFT of the Fourier spectrum.
Make two images of Saturn using imagesc(ifft2()), one after cor-
rectly applying the 2D FFT, and one after incorrectly applying the 1D
FFT. Now try these combinations using ifft instead of ifft2. I guess
even sanity checking is never foolproof.

11. In physics or engineering textbooks, you might see frequency-domain
plots with DC in the middle and the negative frequencies to the left.
(This comes from the integral expression of the Fourier transform,
which has integration bounds from minus infinity to plus infinity;
hence, zero is in the middle.) Use the MATLAB function fftshift to
make one of the power spectra in figure 11.8 have the DC frequency in
the center. You’ll also need to adjust the vector of frequencies. In prac-
tice, you will rarely (or never) see this convention in neuroscience for
time series data.

12. Write code for the “slow” discrete inverse Fourier transform. Start with
the code for the forward Fourier transform. Here are three hints: The
complex sine wave gets a positive i, the complex sine waves are multi-
plied by the corresponding Fourier coefficient that was obtained from
the fft function, and the signal is multiplied by N after summing all

11 The Fourier Transform 191

modulated sine waves. Check your result against the output of the
ifft function.

13. The apostrophe in MATLAB actually implements something called the
Hermitian transpose, which means the transpose of the conjugate.
Inspect the result in MATLAB of the complex number 7 9i and its
transpose. Redo figure 11.5 but show the power spectrum of coefs
and coefs’. In another figure, show the phase spectra from coefs and
coefs’. Then repeat this exercise using the function transpose
instead of using the apostrophe. The lesson here is that the transpose
should be applied with caution to a complex matrix. If you need Fou-
rier coefficients to be in a different orientation, it’s safer to transpose
the time series first. Or transpose the complex coefficients and then
take their conjugate.

14. Using paper and pen, draw a complex axis. Identify and mark the
following coordinates: [2 1i], [–2 3i], [0 i], [–2 0], [eiπ/3]. Second, draw
lines from the origin to each coordinate. Finally, reproduce this plot in
MATLAB.

15. If you perform a Fourier transform of a signal that contains 200 time
points sampled at 100 Hz, what is the highest frequency (in hertz) that
you can reconstruct? What would the highest frequency be if you had
400 time points?

16. What are the sizes of matrices data_fft1 and data_fft2? First come
up with your answer, then confirm in MATLAB.

data = randn(100,1) + 100;

data_fft1 = fft(data);

data_fft2 = fft(data,200);

17. The following lines of MATLAB code extract information from the vari-
able fcoefs (Fourier coefficients). Which of the following will extract
(1) power, (2) phase, or (3) neither?

angle(fcoefs);

fft(fcoefs);

abs(fcoefs).^2;

angle(fcoefs).^2;

real(fcoefs);

18. Modify the “slow” Fourier transform code to put the division-by-N
inside the loop instead of after the loop.

Convolution is a procedure in which two signals are combined to produce
a third signal that has shared characteristics of the two input signals. For
example, one use of convolution is to apply a narrow-band filter to time
series data; the third signal (the band-pass filtered signal) contains only
the frequency characteristics of the original time series that are shared with
the filter kernel.

In the parlance of convolution, the two input time series are called the
signal and the kernel. By convention, we call the “interesting” time series
(such as the EEG data, spike train, or brain image) the signal and we call the
filter (such as a Gaussian or wavelet) the kernel. But this just helps to clarify
the intention of convolution; the mechanics and results of convolution do
not depend on these terms. For the remainder of this chapter, the letter N
will indicate the length (number of points) of the signal, and the letter M
will indicate the length of the kernel.

Convolution can be conceptualized and implemented in the time
domain or in the frequency domain. It is important to understand both,
but in practice you will most likely use only the implementation of convo-
lution in the frequency domain. This chapter mainly focuses on 1D convo-
lution for time series; the extension to 2D convolution is straightforward
and will be introduced at the end of this chapter.

In mathematical texts, convolution between a signal S and a kernel K is
written with an asterisk: S*K. This can cause some confusion in MATLAB
because the asterisk is used for multiplication. When writing down your
analysis methods, be clear about whether you are writing a mathematical
formula (in which case * means convolution) or MATLAB code (in which
case * means multiplication).

12 Convolution

194 II Foundations

12.1 Time-Domain Convolution

You can think of convolution in the time domain as “smearing” the kernel
across the signal. Figure 12.1 shows an example of a boxcar signal before,
during, and after convolution with a Gaussian kernel.

The basic building block of convolution is the dot product, with which
you are already familiar. To run convolution, flip the kernel backwards and
position it such that the right-most point of the kernel is aligned with the
left-most point of the signal, and then compute the dot product between
the two. “But wait,” you are probably interjecting, “why do we flip the ker-
nel backwards?!” The answer is: That’s just how it’s done. If the kernel is not
flipped backwards, the result is called the cross-covariance. In frequency-
domain convolution, which you will learn about later in this chapter, the
kernel is not flipped.

In order to make the dot product a valid computation, the signal needs
to be zero-padded at the beginning by M – 1 points, and at the end by M – 1
points (minus 1 because the kernel and signal overlap by one point; figure
12.1). The extra zeros do not interfere with the result of convolution,

Figure 12.1

Time-domain convolution involves a signal (a) and a kernel (b). The right-most point

of the kernel is aligned with the left-most point in the signal, and the dot product

(point-wise multiplication and sum) is computed (c1). The signal must be zero-

padded (c2) for this operation to be valid. The kernel is moved over by one point and

the dot product is repeated. The result of the convolution when it is halfway through

is shown (d; the vertical line is where convolution was paused). Convolution ends

when the kernel reaches the end of the signal (e).

* * ** * * * (c2)

(c1)

(a)

(b) (d)

(e)

(f)

12 Convolution 195

because zeros times the kernel is still zero. This completes the first step in
time-domain convolution. The resulting dot product from this step of con-
volution is plotted in a location corresponding to the center of the kernel
relative to where it is lined up with the signal. For this reason, it is useful to
make sure the kernel has an odd number of points.

N = length(signal);

M = length(kernel);

halfKern = floor(M/2);

dat4conv = [zeros(1,M-1) signal zeros(1,M-1)];

The rest of convolution is simple. At each step of convolution, keep the
signal fixed and slide the kernel one time step to the right. Repeat the dot
product computation. Slide, dot product, repeat. Over and over again, until
the left-most point of the kernel is aligned with the right-most point of the
data.

for ti=M+1:N-M+1

 tempdata = dat4conv(ti:ti+M-1);

 conv_res(ti) = sum(tempdata.*kernel(end:-1:1));

end

The result of convolution starts before the signal begins and ends after
the signal ends, meaning that the result of convolution is longer than the
original signal. I call these the “wings” of convolution. How long is the
result of convolution? The result of convolution is half the length of
the kernel too long at the beginning and half the length of the kernel too
long at the end. You might initially think the result is length N + M, but it’s
actually N + M – 1. To understand why the “minus 1” is necessary, it’s easiest
to see it visually explained, which I hope is clear enough in figure 12.2.
N + M – 1 is an important quantity, and you should not forget it.

Technically, convolution is now finished. However, it is useful to cut off
the wings for simplicity.

conv_res = conv_res(halfKern+1:end-halfKern);

If the convolution is not done with N + M – 1 points, the convolution
wings wrap around such that the end of the time series sums into the begin-
ning of the time series, and vice versa. This is called circular convolution
(using N + M – 1 is called linear convolution). If the time series is long rela-
tive to the length of the kernel, this awkward wraparound effect has mini-
mal impact except at the edges. You’ll see an example of circular convolution
in chapter 20.

196 II Foundations

12.2 The Convolution Theorem

Time-domain convolution is okay, but (1) it’s slow, and (2) it’s not very
intuitive why it is so powerful as a signal processing technique (at least, not
to me). Convolution can also be implemented in the frequency domain,
and this solves both problems. Before learning how to implement convolu-
tion in the frequency domain, you need to know about the convolution
theorem.

The convolution theorem states that convolution in the time domain
is equivalent to multiplication in the frequency domain. This means that
we can implement convolution in two distinct ways and arrive at the
same result (figure 12.3). The full proof of the convolution theorem is
not presented here, but briefly, it involves demonstrating that the
Fourier transform of a convolution between signals X and Y can be
reduced to the multiplication of the Fourier transform of X by the Fourier
transform of Y.

In short, the following two procedures produce identical results:

Figure 12.2

Illustration of why the result of convolution between a signal of length N and a ker-

nel of length M is N + M – 1 points. In this example, the kernel is three points long,

and the signal is four points long. Each kernel “row” illustrates each successive step

of convolution. When the result of convolution is positioned at the center of the

kernel, the result must be N + M – 1.

Signal

Kernel

Result

L=4

L=3

L=6

12 Convolution 197

Fi
g

ur
e

12
.3

Il
lu

st
ra

ti
on

 o
f

th
e

co
n

vo
lu

ti
on

 t
h

eo
re

m
 a

n
d

 t
h

e
in

te
rc

h
an

ge
ab

il
it

y
of

 t
im

e-
d

om
ai

n
 c

on
vo

lu
ti

on
 a

n
d

 f
re

q
u

en
cy

-d
om

ai
n

 m
u

lt
ip

li
ca

ti
on

. T
h

e

tw
o

ti
m

e
se

ri
es

 w
it

h
 a

st
er

is
ks

 a
re

 id
en

ti
ca

l,
as

 a
re

 t
h

e
tw

o
fr

eq
u

en
cy

 s
p

ec
tr

a
w

it
h

 a
m

p
er

sa
n

d
s.

 T
h

is
 fi

gu
re

 is
 t

ak
en

 fr
om

 fi
gu

re
 1

1.
10

 o
f C

oh
en

(2
01

4)
.

S
ig

n
al

K
er

n
el

T
im
e

T
im

e
d

o
m

ai
n

Fr
eq

u
en

cy
 d

o
m

ai
n

C
o

nv
o

lu
ti

o
n

FF
T

M
u

lt
ip

ly

FF
T

T
im
e

Fr
eq
u
en
cy*

*

& &

Fr
eq
u
en
cy

T
im
e

IF
FT

*
an

d
 &

in

d
ic

at
e

id
en

ti
ca

l d
at

a

S
ig

n
al

K
er

n
el

198 II Foundations

1. Time domain: Compute repeated dot products between the kernel and
temporally corresponding points in the signal. At each repeat, shift the
kernel over one time step relative to the signal.

2. Frequency domain: Compute the FFT of the signal, the FFT of the
kernel, point-wise (i.e., frequency by frequency) multiply the Fourier
coefficients together, and compute the inverse FFT.

Important! No matter which way you perform convolution, the result of
convolution must have length N + M – 1. If you perform convolution in the
frequency domain, you need to set the length of the FFT to be N + M – 1,
but you do not need to zero-pad the start and end of the signal the way you
would in the time domain.

Sometimes people say “convolution in the frequency domain” when
they actually mean “convolution in the time domain as implemented via
multiplication in the frequency domain.” It’s a forgivable mistake. Convo-
lution in the frequency domain means repeated sliding dot products
between two Fourier spectra, which is equivalent to multiplication in the
time domain (this is the other half of the convolution theorem) and is gen-
erally not used in neuroscience data analysis.

12.3 Convolution Implemented in the Frequency Domain

Here is the complete five-step plan to performing convolution via
frequency-domain multiplication.

1. Define the three convolution lengths: length of the signal (N), length
of the kernel (M) (and now you get the length of the result of convolu-
tion for free: N + M – 1), and half of the length of the kernel.

nData = length(signal);

nKern = length(kernel);

nConv = nData+nKern-1;

nHfkn = floor(nKern/2);

2. Take the FFT of the signal and the FFT of the kernel. The length of the
FFTs need to be N + M – 1, so you will need to zero-pad. Now you see
one of the important reasons for zero-padding FFTs.

signalX = fft(signal,nConv);

kernelX = fft(kernel,nConv);

3. Depending on the kernel, it may require normalization in the fre-
quency domain to ensure that the result of convolution will be in the

12 Convolution 199

same units as the original signal. For wavelets (see chapter 19), this can
be implemented by dividing the Fourier spectrum by its maximum.

kernelX = kernelX./max(kernelX);

4. Point-wise multiply the two Fourier spectra and take the inverse FFT.
This point-wise multiplication will fail unless both FFTs are the same
length, which is a good check that you did step 2 correctly.

convres = ifft(signalX.*kernelX);

5. Cut the wings off of the result of convolution: Remove one half of the
length of the wavelet from the beginning and one half of the length of
the wavelet from the end. The result now has length N and is directly
comparable to the original signal.

convres = convres(nHfkn:end-nHfkn);

Steps 3 and 5 are not technically necessary. Step 3 is useful if you want
to keep the postconvolution results in the same scale as the original data
(e.g., μV for EEG data). Concerning step 5, it is difficult to imagine a
situation where you would want to keep the convolution wings, and leav-
ing them attached can only increase the possibility of confusion and
mistakes.

Thinking about convolution as point-wise multiplication between the
frequency spectra of the signal and that of the kernel offers an enlighten-
ing perspective on what convolution does and why it works. Let’s start
with a simple example of random noise (the signal) and a Gaussian (the
kernel).

Figure 12.4 shows the two time series and the result of their convolution.
The Gaussian acts as a low-pass filter. This happens because the shape of the
Gaussian in the frequency domain is a negative exponential, and when the
two spectra are point-wise multiplied, only the frequencies in the signal
that match those with non-zero power in the Gaussian are preserved in the
inverse FFT. More specifically, the higher frequencies are attenuated because
the power spectrum of the Gaussian is nearly zero. You’ll see additional
examples of convolution in chapter 20.

Now you can see the importance of understanding how convolution
works in the time domain and its implementation in the frequency domain.
The reason why convolution is used as a filter is simple and sensible when
considering how convolution is implemented in the frequency domain.
And the reason why convolution produces a result of length N + M – 1 is
sensible from the time-domain perspective.

200 II Foundations

Figure 12.4

Convolution of random noise and a Gaussian. The top row shows the time domain,

and the bottom row shows the frequency domain. The left-most panels show the

time series signal; the middle panels show the kernel; and the right-most panels

show the result of convolution. Notice that the result of convolution is a mixture of

the characteristics of the signal and the kernel.

Frequency (a.u.)

0 500 1000 0 20 40 60 0 20 40 60

1

2

20

60

100

50

100

150

Time (a.u.)
0 1000

0

2

–2
.2

.6

1

0 1000 0 1000

–.2

0

.2
Signal

Signal Kernel

Kernel Result

Result

12.4 Convolution in Two Dimensions

Convolution in two dimensions is used in image processing. The principle
is the same as convolution in one dimension, except that it is done over
two dimensions. As with 1D convolution, 2D convolution can be done the
slow way (e.g., the space domain) using two nested for-loops, or it can be
done the fast and efficient way using frequency-domain multiplication
(make sure to use fft2, not fft!). I’ll just focus on the frequency-domain
implementation here.

12 Convolution 201

Let’s go back to the picture of Saturn. It’s very highly detailed, isn’t
it? How about we make it look more like a watercolor painting by smooth-
ing it (i.e., applying a low-pass filter). Our low-pass filter will be a 2D
Gaussian.

Although we have an extra dimension to deal with, the basic five-step
plan of convolution is the same. There are a few minor departures from the
1D process, and selected lines of code are printed here to highlight those
differences.

nConv = N+M-1;

picX = fft2(pic,nConv(1),nConv(2));

cr=cr(halfK(1)+1:end-halfK(1),halfK(2)+1:end-halfK(2));

N and M are now two-element vectors (height and width of the image)
instead of one-element scalars. In the fft2 function, there are two inputs
to specify the nfft parameter—one for height and one for width. And
be careful that the wings must be trimmed on both dimensions. The
variable cr is a 2D matrix, so how many commas should we use when
indexing it?

The images in the space and the frequency domains are shown in figure
12.5. The moons disappeared in the convolution result (apologies to fans of
Titan and Rhea and all the rest). Moons are small and have sharp edges, and
thus they comprise spatial frequencies that are higher than the spectral
characteristics of the Gaussian filter. You’ll learn more about how 2D con-
volution is used in image processing in chapter 27.

12.5 Exercises

1. The MATLAB function for convolution is conv. Read the help file for
this function, and then convolve a signal in the time domain, imple-
ment it as frequency-domain multiplication, and use the MATLAB
conv function. All three results should match (you might need to skip
step 3 to get the amplitudes the same).

2. Is the frequency domain really faster than the time domain for convo-
lution? Test this yourself by convolving random signals of lengths
varying from 10 to 100,000 with a Gaussian that has a length corre-
sponding to half the length of the signal. Repeat the convolution using
time-domain convolution and the frequency-domain implementation,
and use tic/toc to measure computation time. Make a plot of compu-
tation times as a function of signal length.

202 II Foundations

Fi
g

ur
e

12
.5

T
h

is
 f

ig
u

re
 h

as
 a

 la
yo

u
t

co
m

p
ar

ab
le

 t
o

th
at

 o
f

fi
gu

re
 1

2.
4

bu
t

is
 2

D
 in

st
ea

d
 o

f
1D

.

Space domain

S
at

u
rn

Frequency domain

G
au

ss
ia

n
C

o
n

vo
lu

ti
o

n
 r

es
u

lt

C
o

n
vo

lu
ti

o
n

 r
es

u
lt

S
at

u
rn

G
au

ss
ia

n

12 Convolution 203

3. For the image of Saturn, apply a “poor-man’s high-pass filter” by sub-
tracting the low-pass filtered image from the original image. Does this
residual image reveal the high-frequency features?

4. Can you find and fix the MATLAB error here (try to do it without
looking back at the chapter)?

for ti=M:N-M

 tempdata = dat4conv(ti:ti+M-1);

 conv_res(ti) = sum(tempdata.*kernel(end:-1:1));

end

5. Do these lines of code produce the same or different results? Does it
depend on whether n is even or odd? First think of your answer, then
test it in MATLAB (e.g., using n = 1:10).

floor(n/2)

ceil(n/2)-1

round((n-1)./2)

6. Your friend Fred is trying to normalize kernels in the frequency domain.
Would the following code work if gausX is the Fourier spectrum
of a 1D Gaussian? What if gausX were the Fourier spectrum of a 2D
Gaussian?

gausX = gausX ./ max(gausX);

7. Code is not provided for figure 12.5. That’s your job!
8. In the code for figure 12.4, change the signal from normally distributed

to uniformly distributed random numbers. What is the most notable
difference in the result of convolution? Thinking back to what you
learned in chapter 11, what could you change in how the signal is
created to minimize this difference?

9. Write code for the “slow” 2D convolution to replicate the smoothed
picture of Saturn using the same convolution kernel. You’ll need to
manually zero-pad and use two nested loops (if you are feeling adven-
turous, you could use linear indexing to write it in one loop, but you
know my opinion of linear indexing). If you are having trouble getting
started, try drawing a picture of what each step in 2D convolution
would look like.

10. There are two errors in the line of code below (variable cr is the result
of 2D convolution). Find and fix them.

cr = cr(halfK(1)+1:end-halfK(2),halfK(1)+1:end-halfK(2));

Sometimes you get data-greedy and want more data than you actually have.
Or you want to guess what the data might look like if you could have mea-
sured from a broader range. Perhaps you want to synchronize camera-
recorded data at 120 Hz with electrophysiologic data recorded at 2,048 Hz.
In these cases, the solution is to interpolate or to extrapolate.

The distinction between interpolation and extrapolation is fairly simple
(figure 13.1). Interpolation is when you measured points A and C and want
to estimate what a point between them (B) might look like. Extrapolation is
when you measured points A and C and want to estimate what point E
might look like. More formally, interpolation is when the estimated data
point lies inside the boundaries of the actual measurements, whereas
extrapolation is when the estimated data point lies outside the boundaries.

13 Interpolation and Extrapolation

Figure 13.1

Interpolation versus extrapolation. Imagine that A, C, and D are empirically mea-

sured data points. Interpolation involves estimating the value of B. Extrapolation is

the art of guessing what E (outside the measurement boundaries) might be. A linear

extrapolation method might produce the lower value, while a nonlinear (e.g., spline)

extrapolation method might produce the upper value.

A B C D

?

?

?

E

206 II Foundations

In general, interpolated data are more trustworthy and can be estimated
with fewer assumptions than extrapolated data.

13.1 The MATLAB Functions griddedInterpolant and
scatteredInterpolant

Since MATLAB version 2011b, interpolation is done via the functions
griddedInterpolant or scatteredInterpolant. Since version 2013,
extrapolation is also done using these functions. The functions interp1,
interp2, and interpN call griddedInterpolant. For users of older ver-
sions of MATLAB or Octave, griddedInterpolant may not be available.
It is a compiled built-in function, so if you don’t have these functions,
simply copying the function file onto a different computer is not a viable
solution. Instead, you can use the interp* functions, which will be
explained later in this chapter.

Whether you should use griddedInterpolant or scatteredInter-
polant depends on how the data were sampled. If your data were recorded
on a regular lattice, that’s a grid. If you recorded data from randomly scat-
tered points, that’s a scatter (figure 13.2). The inputs to these two functions
are a bit different. You’ll learn how to use both of these functions in this
chapter.

Interpolating or extrapolating involves two steps. In the first step, you
use the function griddedInterpolant to input the observed data and
locations (e.g., time stamps or spatial locations) at which those data were
measured. This produces an object variable that can be queried at any other
location. The next step is to call the object variable with any number of
desired new (nonmeasured) locations.

Figure 13.2

Distinction between a grid and a scatter. Imagine each dot is the physical location of

an empirical measurement from which interpolation or extrapolation is estimated.

Grid Scatter

13 Interpolation and Extrapolation 207

data = [1 4 3 6 2 19];

datatimes = 1:6;

newtimes = 1:.001:6;

F = griddedInterpolant(datatimes,data);

newdata = F(newtimes);

Let’s piece apart this code. We start by defining six “measured” data
points (variable data), sampled at regular intervals (variable datatimes).
The measurements were taken on a regular lattice (i.e., the spacing between
each successive measurement was the same), so we use griddedInterpo-
lant. We want to up-sample this vector by 1,000 times, as if we were up-
sampling from 1 Hz to 1 kHz. The variable newtimes specifies the time
points at which we want to interpolate. The variable newtimes is regu-
larly spaced between the first and last points of datatimes, but that
was done for convenience; you could request from variable F any time
point(s) you want. Note that all of the new time points are inside the
boundaries of the measured time points. This means we are interpolating,
not extrapolating.

A simple example like this is perfect for understanding the behavior of
different algorithms for performing the interpolation. The choice of algo-
rithm is an optional third input into the function. There are several options,
including linear, three nearest-neighbor variants, and spline. Figure 13.3

Figure 13.3

Illustration of four different algorithms for interpolation. The gray dots reflect em-

pirical measurements, and the black lines are interpolated points.

'linear' 'spline'

'next' 'nearest'

1 2 3 4 5 6 1 2 3 4 5 6

208 II Foundations

shows results of interpolating the same data using different interpolation
methods.

In practice, you will probably use linear or spline interpolation most
often. The main difference between these is that the spline method is non-
linear whereas the linear method is—you guessed it—linear. When interpo-
lating over a fairly densely measured grid, the difference between linear and
nonlinear interpolated results will be minor.

The more salient differences between linear and spline interpolation
happen during extrapolation, particularly as the extrapolated points get
further away from the measured points. Spline extrapolation can run
off to extreme values and is therefore more sensitive to noise near the
boundaries.

Consider figure 13.4, in which linear and spline extrapolation produced
wildly different results although they were based on the same data. If you
were to make important and theoretically relevant interpretations of data
based on this extrapolation, you might come to completely different con-
clusions depending on the extrapolation method you used. (This is part of
the reason why economists with different political affiliations can disagree
so vehemently about how policies might affect the economy.)

Which extrapolation method is more accurate? Unfortunately, the
answer is “neither and both.” The accuracy of extrapolation depends on
your assumptions about what the data might look like outside the boundar-
ies of measurements. Although in general you should avoid extrapolating
too far away from the boundary points, the further away you extrapolate,
the more you should prefer conservative (linear) methods.

13.2 Interpolation in Two Dimensions Using scatteredInterpolant

There are two situations in multichannel neuroscience recordings in which
2D interpolation is used. The first is topographic plotting, in which visual-
ization of the spatial distribution of activity is greatly facilitated by interpo-
lating values over space between measured electrodes. The second is when
an electrode provided no valid data during the recording; interpolation is
used to reconstruct the activity it might have recorded, which facilitates
cross-subject data pooling. Actually, topographies from human M/EEG
data are 3D (because most human heads are 3D objects), but the height (z)
dimension is often ignored in topographic plots for simplicity. We will
ignore it here as well.

Two-dimensional interpolation requires one extra step of complexity,
which is to specify a 2D grid instead of a 1D array of points. To specify a 2D

13 Interpolation and Extrapolation 209

Fi
g

ur
e

13
.4

Sp
li

n
e

an
d

 li
n

ea
r

al
go

ri
th

m
s

of
te

n
 p

ro
d

u
ce

 s
im

il
ar

 r
es

u
lt

s
d

u
ri

n
g

in
te

rp
ol

at
io

n
, b

u
t

ca
n

 p
ro

d
u

ce
 v

er
y

d
if

fe
re

n
t

re
su

lt
s

d
u

ri
n

g
ex

tr
ap

ol
at

io
n

.

In
 t

h
is

 e
xa

m
p

le
, d

at
a

fr
om

 r
ow

 7
 (i

n
te

rp
ol

at
io

n
) o

r
fr

om
 r

ow
 1

7
(e

xt
ra

p
ol

at
io

n
) w

er
e

es
ti

m
at

ed
, a

n
d

 t
h

e
re

su
lt

 w
as

 p
la

ce
d

 in
 r

ow
 7

 a
n

d
 d

ra
w

n

in
 t

h
e

li
n

e
p

lo
ts

.

O
ri

g
in

al
Li

n
ea

r

S
p

lin
e

2
4

6
8

10

2 4 6 8 10

024

0

4
0080

0

12
00

O
ri

g
in

al
Li

n
ea

r

S
p

lin
e

S
p

lin
e

O
ri

g
in

al
Li

n
ea

r

In
te

rp
o

la
ti

o
n

E
xt

ra
p

o
la

ti
o

n

210 II Foundations

grid of points, you can use the functions meshgrid or ndgrid. The func-
tion meshgrid supports only 2D and 3D grids and swaps the columns and
rows in the output (this is sometimes useful for image processing, although
it can cause some confusion). The function ndgrid will be used here
because it is applicable in more general situations.

[eX,eY] = pol2cart(pi/180*[chanlocs.theta],...

 [chanlocs.radius]);

intFact = 100;

interpX = linspace(min(eX),max(eX),intFact);

interpY = linspace(min(eY),max(eY),intFact);

[gridX,gridY] = ndgrid(interpX,interpY);

The variable chanlocs is a structure that contains the channel labels
and locations for each of (in this example) 64 EEG electrodes. It is a format
that was developed for and implemented in the eeglab data analysis tool-
box (Delorme and Makeig 2004). The purpose of the first line of code is to
convert the polar-format electrode locations (radius and angle) to Carte-
sian-format locations (x and y coordinates). The next three lines are the
points at which we want to specify our grid, which are 100 linearly spaced
points between the minimum and maximum xy positions.

Finally, the function ndgrid. Given 1D inputs, it provides 2D outputs
that combine to form the points of a regular grid. Figure 13.5 provides a
graphical overview of how this function works.

Now that we have our grid points, we can interpolate a topographic
map. The variable eeg in the code below is a 64 × 640 channels-by-time
matrix of data, from which we will interpolate a high-resolution spatial
map at one time point. Let’s use scatteredInterpolant instead of grid-
dedInterpolant. You will see in the code that rather than inputting two
2D grids, we input two 1D vectors that specify the x and y coordinates of
the measurement locations. The regular grids created with ndgrid will be
used to interpolate the data into that grid. In other words, the measured
locations are scattered, and the requested outputs are a grid.

F = scatteredInterpolant(eX',eY',eeg(:,300));

interpDat = F(gridX,gridY);

The resulting interpolated data (interpDat) will be a 100 × 100
matrix, as specified by the interpolation factor (intFact) above. By default,
extrapolation will be applied when the requested points fall outside the
measurement boundaries. Optionally providing a 'none' input to scat-
teredInterpolant will set any outside points to NaN (“not a number”).
Figure 13.6 shows the results.

13 Interpolation and Extrapolation 211

Fi
g

ur
e

13
.5

G
ra

p
h

ic
al

 il
lu

st
ra

ti
on

 o
f

th
e

ou
tp

u
ts

 o
f

th
e

fu
n

ct
io

n
 n
d
g
r
i
d

.

Input Output

x=
ng
ri
d(
1:
3)

x=
ng
ri
d(
1:
3,
2)

x=
ng
ri
d(
1:
3,
[1
 2
])

x=
ng
ri
d(
1:
3,
[1
 3
])

[x
,y
]=
ng
ri
d(
1:
3)

x
=

1 2 3

1 2 3

1 2 3

y
=

1
2

3
1

2
3

1
2

3

[x
,y
]=
ng
ri
d(
1:
3,
[1
 2
])

x
=

y
=

1
2

1
2

1
2

[x
,y
]=
ng
ri
d(
1:
3,
[1
 3
])

x
=

y
=

1
3

1
3

1
3

x
=

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1
o

u
tp

u
t

2
o

u
tp

u
ts

[x
,y
]
=
nd
gr
id
(1
:3
0,
[1
:1
0
21
:3
0]
);

x
=

1 2 3 10 20 300

10 20 300

10
20

10 20 300

10
20

10 20 300

x
=

y
=

212 II Foundations

At the beginning of this section, I wrote that interpolation is used in
multichannel recordings for two situations. Here we focused on the first
use; the second use (estimating the activity at a broken or missing elec-
trode) is implemented in nearly the same way, with the difference being
that “grid” would just be a single point corresponding to the location of the
to-be-interpolated electrode.

13.3 Using interp* Functions

If you are using Octave or an older version of MATLAB, griddedInter-
polant may be unavailable. In this case, you can use the functions
interp1, interp2, and interpn. These functions work similarly to
griddedInterpolant, but without the “middle-man” step. You input
the observed measurements and their spatial or temporal locations and
the specified points at which you want to estimate new data, all in the
same function.

data = [1 4 3 6 2 19];

datatimes = 1:6;

newtimes = 1:.001:6;

newdat = interp1(datatimes,data,newtimes,’spline');

Figure 13.6

This figure illustrates the advantage of interpolation of discretely measures points

(electrode positions) for interpreting the spatial distribution of activity. These data

show one time point of voltage activity measured from EEG electrodes in a human.

The front of the head is the right side of the map, and the left ear is the top center of

the map.

Interpolation No interpolation

13 Interpolation and Extrapolation 213

Again, we are performing interpolation to up-sample the data from 1 Hz
to 1 kHz. The first three inputs to the function interp1 are necessary;
the fourth input optionally specifies the type of interpolation to perform,
similar to the griddedInterpolant function.

Modifying the code so it performs extrapolation in addition to interpola-
tion is as simple as specifying that the newtimes vector starts before 1 and/
or ends after 6. For example, re-run the code specifying newtimes from
0 to 8. Next, change the fourth input from ’spline' to 'linear', and
inspect the plot again. What happened? The plot shows data only from
values 1 to 6, which corresponds to the boundary conditions. The interp*
functions with linear methods do not perform extrapolation, instead set-
ting data outside the boundaries to NaN. But fear not—you can still do
linear extrapolation by adding a fifth input 'extrapolate'.

13.4 Zero-Padding Theorem and Zero-Padding

The zero-padding theorem was mentioned in chapter 11 (Fourier trans-
form). Briefly, adding zeros to the end of a time series produces a sinc-
interpolated power spectrum, and adding zeros to the end of a Fourier
spectrum produces (after taking the inverse Fourier transform) a sinc-
interpolated time series.

Because frequency resolution is defined by the number of time points,
the number of time points is also defined by the frequency resolution. I
realize that sounds like circular logic, but it isn’t, because we can manipu-
late the frequency resolution by zero-padding, independent of the time
domain. For example, to double the sampling rate of a time-domain signal
that is N points long, add N zeros to the end of its Fourier spectrum before
taking the inverse Fourier transform. Fortunately, you don’t need to add
the zeros explicitly; you can specify the N of the inverse Fourier transform
as an optional second input when calling the MATLAB function ifft.
A simple example of applying the zero-padding theorem to perform sinc-
interpolation is shown below and in figure 13.7.

origN=10; padN=100;

data = randn(origN,1);

datapad = ifft(fft(data)/origN, padN)*padN;

The key parameter for the up-sampling is padN. Try changing that
parameter to see the effects on the resulting signal. It’s a good idea to sanity
check the procedure by changing padN to origN, which should have no
effect.

214 II Foundations

13.5 Down-sampling

Down-sampling data is mostly straightforward (figure 13.8). There is
one additional consideration for down-sampling, which is that higher-
frequency activity can be aliased into lower frequencies. Let’s take some
time to unpack that statement.

Aliasing is a by-product of the fact that the highest frequency that can be
measured in a Fourier transform is the Nyquist frequency (half the sam-
pling rate). Any sinusoidal processes that have a frequency higher than the
Nyquist cannot be exactly represented in the Fourier transform. But that

Figure 13.7

Zero-padding in the frequency domain can be used to sinc-interpolate a time series.

Original
Zero-padded

Figure 13.8

A time series in its full (black dots) and down-sampled (gray dots) forms.

Original
Downsampled

13 Interpolation and Extrapolation 215

Box 13.1

Name: Robert Oostenveld

Position: Senior Researcher and Visiting Professor

Affiliation: Donders Institute for Brain, Cognition and Behavior, Radboud

University, Nijmegen, Netherlands; NatMEG, Karolinska Institute, Stockholm,

Sweden

Photo credit: Robert Oostenveld

When did you start programming in MATLAB, and how long did it take

you to become a “good” programmer (whatever you think “good” means)?

I started doing simulations and data analysis in MATLAB around 1998 at the

start of my PhD project. About 5 years later, I realized that my code was of

sufficient quality that other researchers would benefit from me sharing it. My

MATLAB code is now being used by thousands of neuroscience researchers

across the world. That does not make me a good programmer per se, but it

shows that my programming style is well appreciated and is efficient in con-

tributing to science moving forward.

What do you think are the main advantages and disadvantages of

MATLAB?

The advantages are that it is easy to get started with MATLAB, as the syntax is

very close to the notation of linear algebra. Variables don’t have to be declared,

and m-files that start as scripts can easily be converted to functions. All data

216 II Foundations

in MATLAB memory can simply be saved, regardless of whether it is an array

or a structure, and reused at any later point. Another advantage is that 20-year-

old code still works and that transitions to newer computer hardware and

operating systems have been smooth.

I consider the functional programming style of MATLAB an advantage for

the often exploratory development of scientific software. The resulting collec-

tion of functions and scripts may be less well-structured compared to an

object-oriented (OO) programing style, but often the design of the scientific

software cannot be specified up front. MATLAB allows one to prototype the

software while at the same time make scientific progress. At the end of

the scientific project, there is often no need to reuse, refactor, and rewrite the

prototype. However, it also one of the weaknesses that the code is often

discarded at the end of the project.

Clearly the biggest disadvantage of MATLAB is that it is a commercial prod-

uct. Not everyone can afford it, making the sharing and reproduction of scien-

tific results (in the form of simulations and analyses) problematic. For those

researchers who do have MATLAB, it is often problematic due to financial

reasons to keep their installed version up to date. With the code that I develop

and share, I consequently need to support a wide range of MATLAB versions. I

cannot use the latest features of MATLAB, since these do not get back-ported

to older versions.

Another disadvantage in the MATLAB language is that there is no

namespace; all functions are added to the global path for the session as a

whole, easily resulting in function and variable name clashes. The lack of

namespaces also complicates versioning and toolbox/package management.

The sharing of code is not so widespread as in Python or in Node JS. Math-

Works file exchange is a valuable effort in sharing but cannot compare (yet)

to “pip install somepackage” or—even better—the Node package manager

(npm).

Do you think MATLAB will be the main program/language in your field

in the future?

I don’t think it is the “main” programming language now. It is one of the lan-

guages, besides C/C++, Java, Python, Julia, and many more, and is used in a

similar way as other mathematical software (not languages per se), such as

Mathematica, R, and Octave. I do expect MATLAB to become less dominant in

my area of scientific computing due to the increased interest in open-source

languages such as Python and Julia. Also, the development of ready-to-run

open-source software applications rather than toolboxes reduces the need for

the MATLAB programming environment. This is visible for example in fMRI,

where FSL (C/C++ based command line tools) have taken over the dominance

of SPM (MATLAB based toolbox) for standard off-the-mill functional MRI

analyses.

13 Interpolation and Extrapolation 217

How important are programming skills for scientists?

General programming skills reflect the skills of analytical reasoning. There-

fore, they are of utmost importance. Having actual hands-on skills in pro-

gramming in a specific language or environment is required to be capable of

doing new analyses. In pushing science forward, we need researchers that

don’t repeat what has been done in the past, but who come up with new

research questions that also necessitate new scientific tools. Being able to

make your own software tools and to use the tools provided by others requires

researchers to understand how to use the command line, how to use scripts,

and how to program.

Any advice for people who are starting to learn MATLAB?

Write code for something that you care about. Start simple, trying to focus on

the results that the code provides. Think about reuse of the software by others,

but also by a future version of yourself. Document not only how to use it, but

also why it was implemented this way. Writing a few lines of documentation

on how a still-to-be-implemented function should behave often saves many

hours in struggling with the design of the functionality. Don’t over-design

your architecture or framework if the functionality is not yet in place. Learn

from others, not only in small details regarding syntax, but also in code archi-

tecture and in the tools that they use (organization of code and data, software

version control, documentation, sharing). Get inspired by http://software-

carpentry.org, even if it does not describe the programming language that you

want to use. Discuss the code that you write with others, like you discuss your

scientific posters, presentations, and papers. Join a http://brainhack.org hack-

athon event and learn from others.

doesn’t mean they won’t be measured. Instead, they will be captured by
lower-frequency sine waves, as was illustrated in figure 11.6.

To prevent aliasing from occurring during down-sampling, a low-pass
filter should be applied before removing data points. The cutoff of the filter
should be the Nyquist frequency of the new down-sampled rate (not the
original Nyquist frequency). This is often called an anti-aliasing filter. The
cutoff could also be lower than the new Nyquist frequency, but it should
not be higher.

In many cases, you do not need to apply the low-pass filter yourself.
Many MATLAB functions that perform down-sampling should apply an
anti-aliasing filter prior to removing data. It’s a good idea to check that a
down-sample function you want to use first applies a low-pass filter. If not,
you can apply the low-pass filter yourself before down-sampling.

218 II Foundations

If you have the MATLAB signal processing toolbox, you can use the
function resample. If not, you can download the (free) Octave package
called “signal.” Many other third-party data analysis toolboxes will include
functions to down-sample time series data while applying an anti-aliasing
filter.

Most resampling functions do not ask for the sampling rate in hertz or
any other unit. Instead, they take as inputs two integers whose ratio pro-
duces the fraction of the original sampling rate to which you want to down-
sample. For example, if the original sampling rate is 1,000 Hz and you want
to down-sample to 250 Hz, you would input the numbers 1 and 4.

Fortunately, you don’t need to figure out these integers yourself; there is
a MATLAB function called rat (I'm sure you immediately guessed that r.a.t.
is an acronym for rational fraction approximation). Whenever possible,
down-sample only to a sampling rate that is easily captured by integer frac-
tions. That is, if the original sampling rate is 1,000 Hz, it’s better to down-
sample to 250 Hz than to 257.31 Hz. Down-sampling to a sampling rate
that is not an easy integer fraction of the original sampling rate requires
finer interpolation, which increases the risk of inaccuracies.

13.6 Exercises

1. Generate a time series of random numbers, and up-sample the time
series using two methods of interpolation: the zero-padding theorem
and griddedInterpolant. Make sure the number of time points is
the same. How comparable are the results, and is it possible to find
parameters to make the results more similar?

2. Simulate 3 seconds of random data (use randn) at 1 kHz. Down-sample
the data to 200 Hz. Then up-sample the data back to 1 kHz using linear
and spline interpolation. Plot all of the time courses in the time domain
and their power spectra. What is the effect of down-sampling then up-
sampling on the resulting time series and the power spectrum, and
does linear or spline interpolation more closely match the original time
series?

3. Reproduce the left panel of figure 13.6 using different values for the
intFact parameter, ranging from 5 to 200 in 16 linearly spaced steps.
Show the results in a figure with 4-by-4 subplots. Higher intFact
values will take longer to compute but will produce smoother plots.
What do you think is a good range for this parameter? Is 1,000 better
than 200?

13 Interpolation and Extrapolation 219

4. Rewrite the EEG interpolation code using griddedinterpolant.
(Warning: This is a difficult problem!)

5. Do these two lines of code give identical output? Test it in MATLAB. If
they differ, adjust the code so the two sets of outputs are the same.

[gridX,gridY] = ndgrid(interpX,interpY);

[gridX,gridY] = meshgrid(interpX,interpY);

6. Can you interpolate with NaNs in the data? To find out, go back to the
code for figure 13.3. Replace one of the nonborder data values with
NaN and re-run the code. What are the results, and do they depend on
the function and/or interpolation method? Next, reproduce the figure
using interp1 instead of griddedInterpolant, and try again using
one NaN value.

7. In the MATLAB code, down-sampling is done by an integer factor.
What if you want to down-sample by a non-integer factor; for example,
from 1,000 to 300 Hz? One solution is to up-sample first and then
down-sample. Write code to figure out how much to up-sample in
order to be able to down-sample by an integer. The code should be
flexible enough to work for any two sampling rates.

8. Run interpolation using griddedInterpolant, scatteredInter-
polant, and interp1. Before running the functions, convert the
to-be-interpolated time series to various formats, such as single, int32,
and so on. Which functions work with which data formats? If there are
errors, what are the error messages, and do these help you debug code
in the future?

9. In the code for down-sampling, I was a bit lazy and smoothed the ran-
dom time series by using the MATLAB conv function and a kernel
defined by the gausswin function (in the signal processing toolbox).
Rewrite the code to create a Gaussian kernel and convolve it with the
time series, without using the conv or gausswin functions.

Signal detection theory is a set of formal methods to describe the corre-
spondence between pairs of binary responses (yes/no, true/false, present/
absent). The “pair” can be, for example, subjective reports versus objective
stimulus presentations, model predictions versus experiment conditions, or
medical diagnoses versus presence of disease.

In cognitive neuroscience, signal detection theory is often applied in the
context of perceptual reports in psychophysics experiments, but the con-
cepts of signal detection theory might also be useful in other areas of
neuroscience, in particular in data analysis and modeling, when trying to
predict whether data were drawn from condition A versus condition B. If
you are interested in a more thorough discussion of techniques in signal
detection theory (though without MATLAB), see Macmillan and Creelman
(2004).

14.1 The Four Categories of Correspondence

The heart of signal detection theory is that there are two perspectives of the
world and that these two perspectives can match or mismatch. Imagine
a human volunteer participating in a psychophysics experiment. In the
experiment, a dim flash of light either appears or does not appear on the
screen. This is the experiment’s perspective of the world. On each trial,
the human volunteer reports whether he perceived the light. This is the
participant’s perspective.

The participant and the experiment can agree in two different ways:
They can agree that the dim light was flashed (a “hit”), and they can agree
that the dim light was not flashed (a “correct rejection”). They can also
disagree in two ways: The light flashed but the participant did not see it
(a “miss”) or the light did not flash but the participant reported seeing it (a
“false alarm”). Figure 14.1 illustrates these categories.

14 Signal Detection Theory

222 II Foundations

The signal detection theory framework starts from these four categories
and develops methods to quantify various measures of performance, such
as discrimination, bias, and sensitivity.

14.2 Discrimination

In social-political discourse, most people go out of their way to avoid the
act or accusation of discrimination. In signal detection theory, however,
discrimination is a good thing, and you are allowed to have as much of it as
possible. The signal detection theory definition of discrimination is simply
your ability to distinguish between categories. Using the example situation
presented earlier, discrimination is the ability to distinguish when the light
was flashed versus when it was not flashed.

The standard measure of discrimination in signal detection theory is
called d′ (pronounced: dee-prime). The idea of d′ is that accurate discrimi-
nation involves two components: saying “yes” when a stimulus was present
(hit), and not saying “yes” when no stimulus was present (false alarm). To
understand why false alarms must be included, consider what would hap-
pen if our light-flash participant simply responded “yes” on every single
trial without even opening his eyes: His hit rate would be 100%.

D′ accounts for this problem by considering that always responding
“yes” also produces a false alarm rate of 100%. Subtracting false alarms from
hits therefore produces a more sensitive measure of performance. A simple

Figure 14.1

The left panel shows the four categories of responses in a binary choice situation. The

right panel shows an example of a table used to compute signal detection theory

variables.

Present Absent
Objective

S
u

b
je

ct
iv

e Ye
s

N
o S

u
b

je
ct

iv
e Ye

s
N

o

Hit
False
alarm

Miss
Correct

rejection

Present Absent
Objective

22 3

8 27

Labels Data

14 Signal Detection Theory 223

subtraction would be 100 – 100 (hits minus false alarms) = 0. However, a
more accurate way to compute discrimination, which is the definition of d′,
is the following: step 1, convert hits and false alarms from counts to propor-
tions; step 2, convert those proportions to standard z-values; and step 3,
take the difference of those z-values. The example below will be based on
the counts provided in the table in figure 14.1.

% step 1

hitP = 22/30;

faP = 3/30;

% step 2hitZ = norminv(hitP);

faZ = norminv(faP);

% step 3

dPrime = hitZ-faZ;

Knowing which marginal sum to use in the denominator in step 1 can
get confusing. You can say out loud (but not too loud) what the analysis
should be: “How many times did the person say 'yes' given that the experi-
ment actually flashed the light?” When you say it like this, it doesn’t make
sense to divide by the total number of times the person said “yes.”

Let’s talk about step 2 for a bit. We input the proportion to the function
norminv. This function is in the statistics toolbox in MATLAB. You can also
use the statistics package in Octave if you don’t have access to that MATLAB
toolbox. There is also a non-package-dependent solution presented in the
online MATLAB code. To see what norminv is doing, consider the output of
norminv as the input ranges from zero to one (figure 14.2): It transforms a

Figure 14.2

Using the function norminv to convert proportion (y axis) to z-value (x axis).

Z–value
0 2 4–2–4

P
ro

po
rti

on

.2

.4

.6

.8

224 II Foundations

probability to a normal distribution with a peak at 0.5. You might recognize
this as the same transformation that is used to convert standard deviation
units to p-values when computing statistical significance.

Before moving forward, take a few minutes to play around with the code
and see what happens to d′ when the hit and false alarm rates change.
What happens if you set the proportion of hits to 1 or the proportion of
false alarms to 0? Uh-oh. Although proportions of 0 and 1 do not often
occur in real data, it’s good to protect against the possibility. This potential
error can be avoided by adding a constant (e.g., 0.5) to the numerator, by
adding 1 to both the numerator and the denominator, or by programming
an if-then exception in case of zero.

14.3 Isosensitivity Curves (a.k.a. ROC Curves)

Did you take my suggestion and spend a few minutes exploring how vari-
ous hit and false alarm rates affect the d′? If so, you may have noticed some-
thing interesting: the same d′ value can be obtained for a range of different
hit and false alarm rates. Imagine that person A and person B have the same
d′. It is possible that person A doesn’t like responding “yes” and so will have
few hits but even fewer false alarms, while person B likes responding “yes”
and so will have many false alarms but even more hits. This is a feature, not
a bug—d′ is designed to measure pure discriminability, uncoupled from the
overall rate of responding and thus robust to response biases.

But this also means that we can define ranges of hits and false alarms that
produce the same sensitivity. These are called receiver operating character-
istic (ROC) curves. There are historical reasons for the term ROC, but I pre-
fer the term isosensitivity curve (as suggested by Luce 1963) because you
actually understand what it means. Let’s make a plot of all d′ scores using
hit and false alarm rates from 0.01 to 0.99 (we’ll exclude 0 and 1 for reasons
mentioned in the previous section), and then draw isosensitivity curves on
top of the line. How can we find the isosensitivity functions? There are
analytic solutions that you can derive by applying some algebra to the d′
formula. But this is a MATLAB programming book, not an algebra book, so
let’s figure out how to find these curves empirically.

The first step is to create a 2D matrix of d′ values, with hit rate on the y
axis and false alarm rate on the x axis. A trick to create this matrix is to have
bsxfun expand a row vector and a column vector into a matrix, and then
point-wise subtract those matrices. In other words, we’ll have bsxfun
perform steps 2 and 3 in the code given earlier, for many many values
simultaneously. You were introduced to the bsxfun function in chapter 10,

14 Signal Detection Theory 225

and you’ll see bsxfun several more times in this book (it’s one of my favor-
ite MATLAB functions). In the exercises of this chapter, you’ll be able to
compare bsxfun to a double-loop.

x = .01:.01:.99;

dp = bsxfun(@minus,norminv(x)',norminv(x));

The matrix dp can be seen in figure 14.3 (it will look prettier on
your color monitor). Now we want to find all of the d′ values in the
matrix that are equal to one. What happens when you run the code
find(dp==1)?

What happens is nothing. You get no results. The problem is that there
are no d′ values of exactly 1.0000… There are, however, values that are very
close to one, and these are the values we want. How close to exactly one are
we willing to go? This is a parameter called tolerance. Let’s try a tolerance
value of 0.01; I encourage you to change this tolerance value to see the
effect on the isosensitivity curves.

Figure 14.3

A 2D space of d′ defined by myriad combinations of hits and false alarms. The

lines show so-called isosensitivity curves, or regions in which the d′ is the same for

different hit and false alarm rates.

False alarm rate
.2 .4 .6 .8

H
it

 r
at

e

.2

.4

.6

.8

d'=1
d'=1.5

d'=2

d'=2.5

226 II Foundations

dp2plot = 1; % soft-coding

tol = .01;

idx = find(dp>dp2plot-tol & dp<dp2plot+tol);

The third line of code is the important line. It finds all of the indices in
dp that are both above 0.99 and below 1.01; in other words, equal to 1
within the tolerance of 0.01. What are the values of idx? They are large and
range up to 8,000. But how can indices be in the thousands when the
matrix is size 99 by 99? You guessed it—these are linear indices. I know, I
said you should avoid linear indexing when possible, but the devil always
collects his due. Now that we have linear indices, let’s figure out how to
work with them. One way to work with linear indices is to convert them
to matrix indices (see figure 10.6). MATLAB provides a function called
ind2sub, which, given the size of a matrix and linear indices, returns
matrix coordinates. For example, referring to figure 10.6, the result of
[x,y]=ind2sub([3 4],8) is x=2, y=3.

Applying ind2sub to our dp matrix provides x and y coordinates with
which to generate line plots.

[yi,xi] = ind2sub(size(dp),idx);

plot(x(xi),x(yi))

And that’s how to make empirical isosensitivity curves. Figure 14.3
shows four curves corresponding to d′ values of 1, 1.5, 2, and 2.5.

14.4 Response Bias

D′ is insensitive to response bias, but what if you are interested in comput-
ing response bias? Clearly, there is a difference in the behavior of person
A (the non-committer) and person B (the sycophant), even though they
have the same d′. Fortunately, response bias is easy to compute and is just
a minor change from computing d′. Response bias is also called criterion,
and criterion is defined as the average of hit and false alarm rates (d′ is their
difference). This simply involves changing step 3 of computing d′ from the
difference to the average. It is customary to take the negative of the average
to facilitate interpretation.

respBias = -(hitZ+faZ)/2;

The interesting feature of response bias is that it is orthogonal to d′.
That is, two people can have the same response bias but different d′. This
is best seen by creating a similar plot as figure 14.3 but for bias (shown in
figure 14.4). Thus, to localize someone in d′ space, you need to compute

14 Signal Detection Theory 227

their d′ and their response bias. In a statistical sense, we might say that d′
and response bias are two basis functions for the signal detection “yes”
space.

14.5 Conditional Accuracy Functions

Conditional accuracy functions, also sometimes called CAFs, are a way to
examine accuracy as a function of some continuous variable such as reac-
tion time (the time it takes to indicate the response). CAFs are not tradition-
ally included in the corpus of signal detection theory analyses, but they fit
nicely within the signal detection framework. In the light-flash experiment,
for example, we might ask whether subjects made more errors when they
responded quickly (perhaps impulsively) compared to when they responded
slowly (perhaps cautiously).

At a coarse level, we could split the trials in the experiment into two
groups according to whether they had a below-the-median reaction time or
an above-the-median reaction time, and then compute accuracies for those
two trial groupings. Or perhaps we could split the trials into three groups to

Figure 14.4

Isoresponse lines on the same signal detection “yes” space that was shown in

figure 14.3.

False alarm rate

.2 .4 .6 .8

H
it

ra
te

.2

.4

.6

.8
 r=.3

r=.5

r=.9

r=1.5

228 II Foundations

get better precision. Ten groups? Let’s first try it with seven groups just to
become familiar with the MATLAB code, and then I’ll provide a guideline
for picking the number of discretizations.

The first thing we need to do is discretize data into N roughly equally
sized groups. It’s a “rough” discretization because we don’t want to throw
out data, and we don’t want to be constrained to have perfectly equal-sized
groups. For example, two groups out of N = 11 would be 6 and 5 (I’d call
that “roughly equally sized”).

To discretize a vector based on values in the data, we have two options:
the easy way and the better way. The easy way is to sort the data in ascend-
ing order and then use the function linspace to define discretization bin
edges. In this example, data from 100 trials and two columns will be dis-
cretized. You can imagine that column 1 is the response time on each
trial and column 2 is accuracy (0 for error, 1 for correct); in other words, a
trials-by-variable (reaction time/accuracy) matrix. We start by inventing
our data.

ntrials = 100; nbins = 7;

d = [500+100*randn(ntrials,1) rand(ntrials,1)>.3];

d = sortrows(d,1);

The second line of code simulates reaction times in milliseconds with a
mean of 500 and a variance of 100, and then it simulates accuracy on each
trial with 1 indicating a correct answer and 0 indicating an incorrect answer
(what is the average accuracy over all trials?).

The third line of code sorts the rows of the matrix. There is a meaningful
relationship between the columns, so we don’t want to sort just the first
column; instead, we want to sort both columns according to the values in
the first column. We do this with MATLAB’s sortrows function, which
sorts according to the column number specified by the second input. Now
that the matrix is sorted, we can define indices for which rows should be in
which bins.
binidx = ceil(linspace(0,nbins-1,length(d)));

discdata = zeros(2,nbins);

for i=1:nbins

 discdata(1,i) = mean(d(binidx==i,1));

 discdata(2,i) = mean(d(binidx==i,2));

end

Notice how we use binidx to create a logical vector, which we then
use to compute the mean of only the columns in d that correspond to
binidx==i being true. The “,1” and “,2” refer to the second dimension of

14 Signal Detection Theory 229

d, and it is very important to get this right—typing mean(d(binidx==i))
won’t produce a MATLAB error but will give the wrong answer. To under-
stand why, recall the distinction between matrix indexing and linear
indexing. And then remember the guideline of using N – 1 commas when
indexing an N-dimensional matrix.

So now we did something in MATLAB. How do we know it’s correct? In
other words, how can we sanity check this procedure? Accuracy on each
trial was randomly generated, so we wouldn’t expect it to show any sys-
tematic relationship with reaction times. However, the sorting was based
on the reaction times, so we certainly expect reaction times to increase
monotonically (and also linearly) with the discretization. A quick inspec-
tion of figure 14.5 reveals this to be the case, so I’d call that a positive
sanity-check result.

Okay, that was the easy way to discretize data into N roughly equally
sized groups. Now it’s time to learn the better way. The better way allows us
to leave the matrix in its original order—perhaps trial order is important for
other analyses and you want to preserve it—while also increasing the preci-
sion of the discretization. But first, you need to learn about the function
tiedrank.

>> tiedrank([pi 1 4 5 4 100000])

 ans = 2 1 3.5 5 3.5 6

Figure 14.5

This figure shows the CAF—averaged accuracy as a function of average reaction time.

The data are random, so we don’t expect any relationship. But the linear increase

in average reaction time provides a sanity check that the code produced a sensible

result.

“Reaction time” (ms)

350 450 550

“A
cc

u
ra

cy
”

.6

.7

.8

230 II Foundations

The function tiedrank returns the rank (order) of the numbers in a vec-
tor. In this example, the number 4 appears twice, and therefore its rank is
repeated (we can say that the fours are tied for third place). Now let’s see
what to do with this function.

temp = tiedrank(d(:,1))/ntrials;

temp = temp*nbins;

drank = ceil(temp);

The first line of code computes indices of the rank-order of the reaction
times, and then scales those indices to go from 0 to 1. This normalization
occurred because the output of tiedrank is integers from 1 to ntrials,
and then we divided by ntrials. Next, this 0-to-1 normalized vector is
scaled up to the requested number of bins, so the values are scaled between
0 and nbins. Finally, we round those numbers up to the nearest integer
(what would happen if I used round or floor instead of ceil?).

Now let’s try it with real data. The online MATLAB code includes behav-
ioral data from a published study (Cohen and van Gaal 2013) in which
human volunteers had to report whether a diamond or a square was pre-
sented on a computer screen. I know it sounds like a super-easy task, but the
stimuli were small, the presentation time was short, a visual mask made the
stimulus difficult to see, and the human research volunteers were asked to
respond as quickly as possible.

for i=1:12

 caf(i,1) = mean(beh(drank==i,1));

 caf(i,2) = mean(beh(drank==i,2));

end

plot(caf(:,2),caf(:,1),'o-')

Applying the tiedrank-based discretization procedure and plotting aver-
age accuracy as a function of bin (figure 14.6) reveals that task performance
was optimal for a middle range of reaction times. That is, this person per-
formed worse when he responded very fast (perhaps because of impulsive
responding) and also when he responded very slow (perhaps because his
attention lapsed).

Let’s discuss the number of discretizations. Why did I pick seven and 12
bins in these examples? They were arbitrary choices. There is no standard
algorithm for determining the appropriate number of bins for discretiza-
tion. However, we can take a hint from histograms. One of the algorithms
used to determine the appropriate number of bins when creating a histo-
gram is called Sturges’s rule (it’s a bit of a misnomer because it’s more of a

14 Signal Detection Theory 231

suggestion than a rule). In math, Sturges’s rule is 1 + log2 n, where n is the
number of data points. This can be translated into MATLAB as follows.

nbins = ceil(1+log2(n));

The main reason why Sturges’s rule should be treated as a suggestion
is that it is based entirely on the number of data points. For simple data,
that’s fine. But multivariate data sets often have additional considerations.
For example, d′ requires a sufficient number of hits and false alarms; to
compute d′ for each bin, you might want to use fewer bins than suggested
by Sturges.

Regardless of how you select the number of bins, it is important to keep
the number of bins constant across all experiment conditions, subjects,
groups, and so on. This will facilitate comparison and interpretation, and it
will reduce the possibility of systematic biases affecting the results.

14.6 Exercises

1. Combine figures 14.3 and 14.4 to plot d′ and response bias on the same
hits and false alarms space. Do the lines look like they are orthogonal?
Looking at figure 14.2, it could be that the hit and false alarm rates are
better conceptualized in log space rather than linear space. Adjust the
plots so the axes are logarithmically scaled (hint: set). How does it
look? Perhaps try having only one of the axes in logarithmic scale.

Figure 14.6

A CAF from real data. Both very fast and very slow reaction times were associated

with relatively poor accuracy in this visual discrimination task. The Goldilocks zone

of optimal performance was around 325 milliseconds.

Reaction time (ms)

A
cc

u
ra

cy

350 450 550
.6

.7

.8

250

.9

650

232 II Foundations

2. Repeat the 2D d′ plots, but use imagesc instead of contourf. How do
the results change, and do you need to make any adjustments to make
the results accurate?

3. Now reproduce exercises 1 and 2, but initialize the x-values to be z-units
instead of proportion units. If you make the adjustment correctly, you
should get straight diagonal lines instead of parabolas. (For bonus
points, do this by deleting two norminv’s and adding one).

4. Create CAFs like in figure 14.6, but for bins ranging from 4 to 40. Over-
lay all CAFs on the same plot. What is your judgment about the impor-
tance of selecting a single bin? Keep in mind that this is based on a
single subject from a single experiment; your judgment should not be
taken as a generalization.

5. I used bsxfun in section 14.3 because I don’t like loops. Reproduce the
same result using two for-loops. Then use the tic/toc function pair to
check the timing. How much extra time do you need to use for-loops
instead of bsxfun? Now obtain the same result using repmat (no
loops, but no bsxfun). How does the timing of repmat compare to
that of for-loops and of bsxfun?

The goal of most data analyses is to draw conclusions about the hypotheses
or describe the patterns of results in data explorations. To reach this goal, it
is necessary to determine and apply some threshold that helps you decide
which results should be interpreted and which should not. There are soft-
ware programs that are specifically designed for the kinds of statistics often
used in psychological, clinical, and epidemiologic studies (analyses of vari-
ance, multiple regression, factor analysis, hierarchical modeling, etc.) such
as SPSS, R, and SAS. MATLAB currently has no competitive toolboxes for
these methods. But many statistical procedures that are often used with
neuroscience data can be implemented in MATLAB. This is advantageous
because it reduces the need to worry about exporting and importing data to
other programs.

15.1 The Idea of Permutation-Based Statistics

Let’s start more generally with the idea of statistics. Data contain signal, but
they also contain noise and variability. Furthermore, it is generally not
possible to measure every individual of the population of interest (people,
mice, neurons, whatever), which means you need to make population
inferences based on small samples. You want to know whether your find-
ings are real effects or whether the findings could have been observed by
chance even if there were no effects (no effect is also called the null
hypothesis).

Generally, we assume that an effect is real if the size of the effect is big
enough that it’s unlikely to have occurred by chance. But how do you know
what effect sizes could be obtained by chance; that is, if the null hypothesis
were true? There are two ways to answer this question. Traditional statisti-
cal approaches in psychology, medicine, and related fields take the approach
of making assumptions about what data would look like if the null

15 Nonparametric Statistics

234 II Foundations

hypothesis were true, and then evaluating the observed result relative to
the assumed distributions. If the observed result is far enough away from
the assumed null hypothesis distribution (“far enough” typically corre-
sponds to being more extreme than 95% of the null hypothesis distribu-
tion), it is considered statistically significant. Statistics programs like SPSS,
R, and SAS are specially designed to compute and evaluate various null
hypothesis distributions.

The second way to estimate the effect sizes that could be obtained under
the null hypothesis is to create an empirical null hypothesis distribution.
This approach is particularly useful when the data violate assumptions used
to create the null hypothesis distribution or when the distributions under
the null hypothesis are unknown. These situations often arise in neurosci-
ence data. Furthermore, because in neuroscience it is typical to collect a
very large amount of data (many neurons, many electrodes, many voxels),
it is somewhere between impractical and impossible to test whether all
of the data conform to the assumptions used to create null hypothesis
distributions.

Thus, the idea of permutation-based statistics is to avoid making assump-
tions that are likely to be violated. Instead of relying on what a theoretical
null hypothesis distribution would look like if certain assumptions are met,
the null hypothesis distribution is generated empirically, and the observed
results are then evaluated relative to the empirical null hypothesis distribu-
tion (figure 15.1). This chapter focuses on such methods. If you would like
to read more about the theory and justifications of permutation-based
statistics in neuroscience, consider Maris and Oostenveld (2007), Cohen
(2014), and Nichols and Holmes (2002).

To be clear, I am not questioning the validity or near-ubiquitous usage of
the standard corpus of assumption-based parametric statistics. But permu-
tation-based statistics are often used in neuroscience and provide a better
opportunity for sharpening your MATLAB programming skills.

15.2 Creating an Empirical Null Hypothesis Test

Imagine that you recorded spiking activity from a visually responsive neu-
ron while the research animal was shown pictures of male faces and female
faces. There were 200 trials, 100 of each gender. We will simulate the firing
rates as long-tailed Gaussian distributions. We’ll use a “poor man’s” skewed
distribution by taking the log of the positive values.

15 Nonparametric Statistics 235

% create Gaussian distribution

r = randn(1000,1);

% skew it

r(r>0) = log(1+r(r>0));

That last line of code is the crucial one, and it’s also a complicated one.
We want to manipulate only the positive numbers, which we access using
r>0. If you look at the output of size(r) and size(r(r>0)), you will see
that r is a 1,000-by-1 matrix (duh, that’s what we specified in the preceding
line), while r(r>0) is somewhere around 500-by-1. This happens because
r>0 is a logical array that is true for positive values and false for nonpositive
values; r(r>0) accesses only the true (positive) elements. Those positive
values are replaced by a modified version of themselves (figure 15.2).

Next we create distributions of firing rates for the two conditions.

N = 100;

% male pictures

r = randn(N,1);

r(r>0) = log(1+r(r>0));

fr_males = 26-r*10;

Figure 15.1

Theoretical (left) and empirical (right) null hypothesis distributions. The vertical dot-

ted gray line is the statistic value of the observed result. If this value is far enough

away (e.g., >95%) from the center of the distribution, it is considered statistically

significant. In this chapter, you will learn how to create an empirical null hypothesis

distribution.

Statistic values
0 2 4–2–4

0

P
ro

b
ab

ili
ty

.2

.4

.6

.8

1

Statistic values
0 2 4–2–4

C
o

u
n

t

0

20

40

60

236 II Foundations

% female pictures

r = randn(N,1);

r(r>0) = log(1+r(r>0));

fr_females = 30-r*10;

The third line of code stretches out the numbers by a factor of 10 and
then adds an offset value of 26. The random values are turned backward
because in fact the log transform skews the data negatively, and we want a
positively skewed distribution. All of these scaling factors are arbitrary, but
they give a more plausible range of firing rates in spikes per second (let’s
pretend the stimuli were on-screen for one second) (figure 15.2).

And just for fun, we’ll mix these trials together as if they were randomly
presented during the experiment (randomly presented trials is a good idea
to prevent unwanted trial sequence effects).

allfr = cat(1,fr_males,fr_females);

% same result: allfr = [fr_males fr_females];

allfr = allfr(randperm(N*2));

The function cat concatenates the two matrices along the first dimen-
sion. Replace the “1” with a “2” in the first input and check the size of
allfr. The function randperm randomly permutes integers between 1 and
the input. Try it on a simple case by running this code several times:
randperm(5).

Now the variable allfr has the trials from both conditions randomly
intermixed. Which trials had the male faces and which had the female

Figure 15.2

Two distributions of random numbers that will be the basis for the simulated neural

firing rates.

Values
0 2 4 6–2

0

100

200

300 Gaussian Positive skewed

C
o

u
n

ts

15 Nonparametric Statistics 237

faces? Uh-oh. We didn’t keep track. What a rookie mistake! Let’s try it
again.

allfr = cat(1,fr_males,fr_females);

[conds,neworder] = deal(randperm(N*2));

allfr = allfr(neworder);

conds(neworder<N+1) = 1;

conds(conds>1) = 0;

The function deal might be new to you. It’s a neat function that assigns
any input identically to however many output variables you want. Try a
simple example:

[a,b,c,d,e] = deal(rand)

Those five variables are identically random (like teenagers trying to be
nonconformists in the same way), because the output of the rand function
was passed into the deal function, which dealt out the same variable to
however many outputs were requested.

Next, the code assigned the first N trials in neworder to be one and the
rest to be zero. If you don’t understand why the “+1” is necessary, try to
identify the numbers 1 to 3 using the following code: 1:6<3.

Should we trust the code without sanity-checking it? Absolutely not!
One easy way to check the code is by comparing mean firing rates before
and after shuffling.

mean(fr_males)

mean(allfr(conds==1))

Okay, so the code seems to be working so far. Let’s get back to the main
task, which was to generate an effect size under the null hypothesis. The
“effect size” in this case is the average firing rate difference between the
two conditions. Because we simulated these data, we know that the firing
rates from these two conditions reflect sampling from two different distribu-
tions. But that’s not the null hypothesis—the null hypothesis is that there
is just one distribution that we’ve accidentally labeled as two conditions
(i.e., our neuron is very politically correct and thus perceived 200 faces as
equals, regardless of gender). If the null hypothesis were true, there is no
true difference in firing rates between male and female pictures; any non-
zero difference can be attributed to an artifact of variability and sampling
error.

What we want to do now is create a situation in our data that could have
arisen if the null hypothesis were true. Basically, that just means randomly

238 II Foundations

labeling 100 trials as “male” trials, and labeling the other 100 trials as
“female” trials. We can adapt some of the code from above.

fakeconds = randperm(N*2);

fakeconds(fakeconds<N+1) = 1;

fakeconds(fakeconds>1) = 0;

The key difference from the previous code is that here we are shuffling
the condition labels without changing the order of the data. So the condi-
tion labels (fakeconds) are misaligned with the actual data. That was the
goal, of course, and by computing the difference in average firing rates with
the shuffled conditions, we get a firing rate difference that could occur
under the null hypothesis (remember, the null hypothesis is that both con-
ditions were created from the same distribution).

[mean(allfr(conds==1)) mean(allfr(conds==0))]

[mean(allfr(fakeconds==1)) mean(allfr(fakeconds==0))]

The first line should give numbers around 30 and 26. The second line
should give numbers that are much closer together, perhaps around 28.
Taking this one small step further, we can compute the condition difference
in average firing rates for the real and null hypothesis situations. That dif-
ference for the fake condition labels should be close to zero.

mean(allfr(conds==1)) - mean(allfr(conds==0))

mean(allfr(fakeconds==1)) - mean(allfr(fakeconds==0))

15.3 Creating a Null Hypothesis Distribution

The difference in firing rates in the null hypothesis simulation was
not exactly zero. This is due to a combination of sampling variability and
noise. Although you expect the difference in firing rates under the null
hypothesis to be exactly zero, in reality it is unlikely ever to be exactly zero.
This creates difficulties for statistical evaluations, because if the observed
difference were 2 Hz and the simulated null hypothesis difference were 1.2
Hz, how would you know whether the observed difference was statistically
significant?

The short answer is that you cannot know, at least not from one null
hypothesis simulation. The solution to this problem is to examine the
null hypothesis effect size not once, but many times. Perhaps hundreds or
thousands of times. Each null hypothesis simulation will produce slightly
different results, and all of these values together will build a distribution of
null hypothesis effect sizes. This distribution is easy to create; simply put
the code above into a loop.

15 Nonparametric Statistics 239

nPerms = 1000;

permdiffs = zeros(nPerms,1);

for permi=1:nPerms

 fconds = randperm(N*2);

 fconds(fconds<N+1) = 1;

 fconds(fconds>1) = 0;

 permdiffs(permi) = …

 mean(allfr(fconds==0))-mean(allfr(fconds==1));

end

Notice again that although the condition labels change in each itera-
tion, the order of the data never changes. Now let’s see our null hypothesis
distribution and where the real condition difference value fits into this
distribution.

hist(permdiffs,50)

hold on

obsval=mean(allfr(conds==0))-mean(allfr(conds==1));

plot([obsval obsval],get(gca,'ylim'))

Remember from chapter 9 that plotting a line requires specifying two
points. In a vertical line, the x-axis value doesn’t change, and we set the
y-axis values to go from the bottom of the plot to the top of the plot.

You can see in figure 15.3 that our observed value is at the positive tail of
the null hypothesis distribution. When you reproduce this plot, you might

Figure 15.3

A distribution of null hypothesis statistic values from 1,000 randomization tests and

the “observed” empirical value indicated by the dashed line.

Firing rate differences

0 2 4–2–4
0

20

40

60

C
o

u
n

t

240 II Foundations

get a few random condition label-swappings that produced a larger condi-
tion difference than the real condition labeling (more on these differences
in section 15.7).

15.4 Evaluating Significance

The idea of statistical significance is to estimate the probability that we
would have obtained a statistic (in this example, the average firing rate
difference) at least as large as our observed value if the null hypothesis
were true. In parametric statistics, this probability is computed based on a
theoretical distribution; in permutation-based statistics, this probability is
directly computed from the empirical null hypothesis distribution obtained
above.

There are two options for evaluating the statistical significance of the
observed effect size. One is to compute the normalized distance of the
observed statistic from the distribution of the null hypothesis values. We
want this to be normalized in order to compare across any measurement
and any data scale. If we measured the firing rates in terms of spikes per
second, spikes per hour, or spikes per decade, the numbers would be differ-
ent but the relative condition differences would be the same. Needless to
say, statistical significance should reflect the relative condition differences,
not the scale in which the data happen to be. The normalization is done
by converting to standard deviation units, otherwise known as a Z-trans-
formation (note to readers from the United States: in Europe it’s pro-
nounced “zed transform”). It is obtained by subtracting the mean of the
null hypothesis distribution and then dividing by the standard deviation
of the distribution. The resulting values are called z-values or standard
deviation units.

z = (obsval-mean(permdiffs)) / std(permdiffs);

For the simulation that produced figure 15.3, I got z = 3.561. Standard
deviation units can easily be converted to a p-value using the MATLAB
function normcdf, which is the inverse of the norminv function you
learned about in the previous chapter.

p = 1-normcdf(abs(z));

The normcdf function evaluates the probability of obtaining a specific
value in a normal (Gaussian) distribution. The value of 3.561 is at the right
side of the distribution, and so the p-value would be 0.999 … Subtracting
this value from 1 gives a more statistically traditional p-value of p < 0.001.

15 Nonparametric Statistics 241

Finally, taking the absolute value of the z-score ensures that the “1-” part
will always work. Try this yourself by replacing z with 3 versus –3. Note also
that this p-value is one-tailed; to obtain a two-tailed p-value you would
need to multiply p by two.

The function normcdf is in the MATLAB statistics toolbox. If you do not
have access to this toolbox, you can use the Octave statistics package, which
has a comparable function of the same name.

The z-normalization approach is valid only if the null hypothesis distri-
bution is roughly normally distributed, which is the case in figure 15.3. If
the distribution strongly deviates from a normal distribution, you can use
the second approach to obtain the statistical significance, which is simply
to count the number of null hypothesis test values that were more extreme
than the observed value. “More extreme” could mean larger or smaller
depending on the direction of the effect. This count should be divided by
the number of permutations that were tested.

p = sum(permdiffs>obsval)/nPerms;

If you have a large effect, you can get a p-value of exactly zero. Statisti-
cian readers may not like a p-value of exactly zero, but it can happen when
every single permutation produced a result that was less extreme than the
observed value.

15.5 Example with Real Data

Let’s try this with some real data. The online code includes 200 trials of data
from an EEG study in which a human volunteer made button presses in
response to visual stimuli, and sometimes made errors (Cohen 2015). The
first 100 trials of the data set are correct responses, and the next 100 trials
are incorrect responses. Time-frequency decomposition was applied to
extract the time-varying spectral characteristics (you’ll learn about this in
chapter 19). Our goal will be to find regions in the time-frequency plane
that show statistically significant differences between correct and error
responses. The variable allpow is a 3D time-by-frequencies-by-trials matrix.
Let’s start by computing the average difference in time-frequency power to
see how it looks.

realdif = squeeze(mean(allpow(:,:,101:200),3) ...

 - mean(allpow(:,:,1:100),3));

contourf(timevec,frex,realdif,40,'linecolor','none')

242 II Foundations

The variable timevec is the vector of time points, and the variable frex
is the vector of frequencies. The result is shown in figure 15.4 (upper left
panel). There is a robust-looking condition difference around 400–700 mil-
liseconds and around 4–9 Hz (the “theta band”). Now for permutation test-
ing. Before reading the next paragraph, think about what exactly you want
to shuffle (randomize), and how you would do it.

The answer is to randomize the trial order. If the null hypothesis were
true and there were no real condition differences, we should be able to ran-
domly assign any trial to either condition, and it would make no difference.

Figure 15.4

Differences in time-frequency power in scalp EEG data between making a mistake

and making a correct response. Different panels show different ways of illustrating

the statistical z-map.

Time (ms)

0 400 800

Fr
eq

u
en

cy
 (

H
z)

5

10

15

20

Time (ms)

0 400 800

Fr
eq

u
en

cy
 (

H
z)

5

10

15

20

Thresholded Contoured regions

Power differences Statistical z-map

15 Nonparametric Statistics 243

How do we implement this in MATLAB? One possibility would be to ran-
domize the third dimension of the variable allpow.

allpow = allpow(:,:,randperm(200));

But I don’t like this solution, because now we’ve lost the original trial
order. A better solution is to define a randomized order in a separate vari-
able, like this:

fakeord = randperm(size(allpow,3));

fakedif = mean(allpow(:,:,fakeord(1:100)),3) - ...

 mean(allpow(:,:,fakeord(101:200)),3);

Now we have a shuffled condition difference without having to alter
the original data. The two lines above will produce one null hypothesis
time-frequency condition difference map; now we need to put those lines
in a loop over permutations, and save the difference map at each iteration.
For this, we populate a new 3D matrix that contains the shuffled condition
difference maps for all 1,000 permutations,

permdif(permi,:,:) = fakedif;

where permi is the looping variable. After 1,000 iterations, we compute the
mean and standard deviation maps over those permutations, and then
compute the z-map. This is similar to what we did earlier in this chapter
with the simulated firing rates, except here, instead of a single z-value, we
have a time-by-frequency map of z-values. Each pixel contains its own
statistic.

permmean = squeeze(mean(permdif,1));

permstd = squeeze(std(permdif,[],1));

zmap = (realdif-permmean) ./ permstd;

You can see the resulting z-map in figure 15.4. With a single z-value, we
can determine whether it is significant by comparing it to the threshold
defined by the p-value. But with a map of z-values, the picture becomes
nuanced: individual pixels might be supra- or sub-threshold, and we need
to visualize the entire map to interpret the results. Figure 15.4 shows this
thresholded image, as well as the original condition difference map with
significance regions outlined in contour lines, using the code below.

subplot(223)

zthresh = zmap;

zthresh(abs(zthresh)<norminv(1-pval)) = 0;

contourf(timevec,frex,zthresh,40,'linecolor','none')

244 II Foundations

subplot(224)

contourf(timevec,frex,realdif,40,'linecolor','none')

hold on

contour(timevec,frex,logical(zthresh),1,'k')

15.6 Extreme Value–Based Correction for Multiple Comparisons

Neuroscience data analyses often involve conducting the same statistical
test on many variables. In the previous section, for example, we computed
1,225 statistical tests (25 frequencies and 49 time points). And that was
only for a single electrode. In practice, you might test for condition differ-
ences over dozens of neurons or electrodes and several hundreds of time
points or time-frequency points. These situations lead to statistical con-
cerns of increased possibility of obtaining a supra-threshold result by
chance (a.k.a. the multiple comparisons problem).

There are several approaches for addressing multiple comparisons
concerns. Bonferroni correction may come to mind, which is a standard
method for multiple comparisons in statistics. Bonferroni correction
involves dividing the p-value threshold by the number of comparisons
(e.g., a p-value threshold of 0.01 would be used if there were five tests to
perform). However, there are situations in which Bonferroni correction is
inappropriate in neuroscience. For example, Bonferroni correction assumes
that the multiple tests are independent, whereas different neurons recorded
from the same animal or neighboring time-frequency pixels are not inde-
pendent measurements. More important, Bonferroni correction is really
easy to implement, so there is little advantage to discussing it in a MATLAB
book.

Instead, here we will learn about one multiple comparisons correction
technique that is based on generating extreme values under the null
hypothesis. The idea is that on each iteration during permutation testing,
we search through the entire shuffled data set (i.e., all time points, frequen-
cies, electrodes, image pixels, fMRI voxels, or whatever makes up the “mul-
tiple” in multiple comparisons) and find the two most extreme values—the
most extreme negative value and the most extreme positive value. Those
two values over all permutations create a distribution, and we then take the
2.5% value of the negative and positive tails (corresponding to a two-tailed
5% probability) as the threshold. Let’s see how this is implemented in the
code. The two lines below are placed inside a loop over permutations after
computing the fakedif matrix that was created earlier.

15 Nonparametric Statistics 245

exvals(permi,1) = min(fakedif(:));

exvals(permi,2) = max(fakedif(:));

Notice that we are not taking one value per pixel, but rather one value
per map. That’s how this method corrects for multiple comparisons at the
map level. After going through 1,000 permutations, we have our distribu-
tion (figure 15.5). Now we need to define the threshold.

pval = .95;

lowerThresh = prctile(exvals(:,1),100*pval);

upperThresh = prctile(exvals(:,2),100–100*pval);

% now threshold

threshmap = realdif;

threshmap(threshmap>lowerThresh & ...

 threshmap<upperThresh) = 0;

In this case, the threshold is very stringent, and no results remain statis-
tically significant. You can also see this from figure 15.5—the thresholds are
beyond the distribution of data values. This can happen when the single-
trial data are noisy, because noise often produces extreme values. After
going through chapter 26, you will be able to implement another method

Figure 15.5

The white bars show a histogram of extreme pixel values taken from permutation

testing. The black bars show the distribution of pixel values taken from the observed

data with no shuffling.

Value (x105)

0
0

20

40

60

80

1–1

C
o

u
n

t

246 II Foundations

for correcting for multiple comparisons based on cluster sizes (see
exercise 12 in chapter 26).

15.7 Meta-permutation Tests

If you are following along in MATLAB (I’m sure you are!), you will have got-
ten a different result than what is reported here. That’s normal—the permu-
tation testing relies on random numbers. Run the permutation test over
and over again, and even though the original data are not changing, you’ll
find different significance values each time you reevaluate the code. It is
possible that an effect might even become nonsignificant (p > 0.05). This is
a bit awkward. You want the significance of the test to reflect the effect size,
which does not change after the data are already collected.

Unfortunately, there is no perfect solution to this. You can increase the
number of permutations, but that doesn’t solve the problem. This is simply
a feature of permutation-based statistical testing.

There is, however, a way to ameliorate this issue, which is to perform
a meta-permutation test (Cohen 2014). This involves running the entire
permutation testing procedure many times (e.g., 20), obtaining many
z-values, and then averaging those z-values together to obtain the final
result. Averaging z-values is a second hierarchical level of averaging over
data and will be more stable than the individual z-values and therefore
is better than increasing the number of permutations within a single per-
mutation test.

Running a meta-permutation test simply involves putting the permuta-
tion testing code inside a loop. You’ll have the opportunity to do this in the
exercises.

15.8 Exercises

1. The p-value counting method implemented in the online code is a
one-tailed test, because we are counting only the number of permuted
statistical values that are larger than the observed value. Modify the
code to be a two-tailed test.

2. You could also use a standard parametric t-test for statistical evaluation
if the data are roughly normally distributed. Perform a two-sample
t-test on the simulated firing rate data from section 15.2. If you don’t
know what MATLAB function performs a two-sample t-test, you’ll need
to search for it.

15 Nonparametric Statistics 247

3. Perform a meta-permutation test according to the description in
section 15.7. Try it on the simulated firing rate data and on the EEG
time-frequency data. Do the thresholds vary much over 20 meta-
permutation runs?

4. Add two characters to the line of code below to plot a vertical line that
goes through 50% of the size of the y axis.

plot([5 5],get(gca,'ylim'))

5. The following lines of code will produce an error. Before running the
code in MATLAB, find and fix the error. Then test the original code and
your revised code in MATLAB. Pay attention to the text of the error
message and make sure your solution works.

r = randn(1000,1);

r(r>0) = log(1+r);

6. Although science needs humans to interpret results, computers can
determine whether a particular z-value is statistically significant. Write
code that reports whether a z-value is significant, given a user-specified
p-value threshold (e.g., 0.05). Use the fprintf function to display
useful information. Make sure the code works for both negative and
positive z-values.

7. The online code has the following three lines. What is the purpose of
the variable colorval and why did I scale it by 0.8?

contourf(timevec,frex,realdif,40,'linecolor','none')

colorval = max(abs(realdif(:)))*.8;

set(gca,'clim',[-colorval colorval])

8. The MATLAB function to compute a percentile score from a distribu-
tion is called prctile. This function is in the Statistics and Machine
Learning toolbox. If you have this toolbox, use the help file for that
function to figure out how to compute the 98% percentile of a distri-
bution of 10,000 random integers uniformly distributed between
14 and 2,345 (you will also need to generate this distribution).
Next, devise a solution to this problem that is not dependent on the
toolbox.

9. Your friend Sue thinks the thresholding is confusing when it’s done in
a single line, so she splits it into two lines. But now it doesn’t work.
What’s the problem with Sue’s code?

threshmap(threshmap>lowerThresh) = 0;

threshmap(threshmap<upperThresh) = 0;

248 II Foundations

10. Compare in the online code how I computed the variables realdif
and fakedif. Aside from the inclusion of the variable fakeord, there
is one difference between the code that produces these two variables.
What is it, and does it matter for the analysis? Why or why not?

11. The code for plotting the multiple-comparisons-thresholded contour
map produces a warning and then an error. What are these messages,
and what caused the error?

12. The following two lines differ by only one character. What is the effect
of this seemingly inconsequential difference, and what does this tell
you about how MATLAB concatenates inside square brackets?

[mean(allfr(conds==1)) –mean(allfr(conds==0))]

[mean(allfr(conds==1)) - mean(allfr(conds==0))]

Covariance, as you might have guessed from the name (“co” “variance”)
is a measure of the relationships of variances across multiple measures.
Covariance is the starting point for many multichannel analyses, including
principal and independent components analyses, source-space imaging of
M/EEG data, and least-squares fitting.

Covariance among N channels produces an N-by-N covariance matrix.
Covariance matrices preserve the original scale of the data, meaning that
if you multiply the data by 1,000, the values in the covariance matrix
will increase by 1,000. If the covariance matrices are normalized by the
variances of the individual variables, the scaled covariances range from –1
to +1, and are then called correlation coefficients. This chapter will show
you how to compute covariances and correlations and will introduce two
types of correlations (Pearson and Spearman).

16.1 Simulating and Measuring Bivariate Covariance

Before learning how to compute covariance, it is useful to know how to
simulate data with a known covariance structure. There are two ways to
create correlated variables. One is shown below, and another is introduced
in a later section and explored further in the exercises:

r = .6;

n = 100;

x = randn(n,2);

x(:,2) = x(:,1)*r + x(:,2)*sqrt(1-r^2);

where r is the desired correlation. How do you know that this procedure
worked? Figure 16.1 shows that the two variables are clearly related to each
other, although that doesn’t prove the correlation is what r specifies. You

16 Covariance and Correlation

250 II Foundations

can sanity-check it using the corr or corrcoef functions. But let’s move
on first; we’re building up to a sanity check.

Before learning about correlations, we will learn about the “unrefined”
version of a correlation: covariance. The definition of covariance is the
sum of the point-wise multiplications between two vectors, divided by the
number of time points minus one. Of course you recognize this as the dot
product divided by N – 1. This is another example of how the dot product
is a simple but fundamental computation for many signal processing appli-
cations. In MATLAB, this can be implemented as follows:

cov = x'*y/(n-1);

This code will produce the correct result if the variables are column vec-
tors, because x gets transposed to a row matrix, and x'*y is the dot product
xTy. It’s a good idea to check that the output of this expression produces a
single number, not a matrix. If it produces a matrix, that would be the outer
product, which is not what you want here (see figure 10.4).

Did you notice a problem with that line of code? There is no error per se,
but I did something I shouldn’t have done. I used cov as a variable, but cov
is also the name of a function (which, as it turns out, computes the covari-
ance of the input variables). Better to use a variable name like cov1. If you
ever suspect that a variable name you want to use might be a function
name, type which cov.

Figure 16.1

Two random variables with an enforced correlation between them.

r = .59849

X1

X
2

16 Covariance and Correlation 251

Let’s check to make sure that our manual covariance matches MATLAB’s
function to compute covariance.

cov(x,y)

If you’ve been following along in MATLAB, then you received an error
message when typing the code above. What was the error, and why is MAT-
LAB upset? Type clear cov and then re-run the preceding line. You should
get identical results between the manual covariance computation and the
output of the cov function.

Does the covariance match the value of r that you specified for
the correlation? There will be some difference between the measured
covariance and the specified r, because r is the true correlation in a theo-
retical distribution with an infinite number of data points, and you are
sampling only a subset from this distribution. But the covariance should be
reasonably close. Does this mean that covariance is the same thing as
correlation?

In this specific example, the answer is yes. When all of the variables are
normalized to have a mean of zero and unit variance (which is the case
with outputs of the function randn), then covariance is indeed the same
thing as correlation. Let’s see what happens to the covariance when the
data do not have unit variance. Try recomputing the covariance, but first
multiply x and y by 100 (don’t recompute the variables, just scale the exist-
ing values by 100). The relationship between the variables hasn’t changed,
but the covariance has changed (by how much?). The lesson here is that a
covariance value on its own can be difficult to interpret, because it depends
both on the relationship between the variables and on the scale of the data.
Test this in the code by scaling the data to other numbers and confirming
that the covariance value follows the scaling factor.

Multiplying x and y by 100 increased the variance, but the mean values
were still zero (or very close to it). Now try adding 100 to x and y, such
that their means are 100 instead of zero. Then recompute the covariance,
manually using the dot-product-and-divide code above, and again using
the MATLAB cov function. Are the two results still the same? The answer is
no. The reason why is explained in the next paragraph, but try to figure it
out first, perhaps by careful thinking or perhaps by looking into the cov.m
file to see what it does.

The reason why the two procedures provided different values is that a
covariance is valid only when it is computed between zero-mean variables.
You must always subtract the mean of each variable before computing the
covariance. The MATLAB cov function does this on line 154 (in my R2015a

252 II Foundations

version; the precise line number may differ by version). This is particularly
important for matrix decomposition techniques like principal components
analysis, because otherwise the first component will be driven by the mean,
not by the covariances. You’ll see this in the next chapter and again in
chapter 33.

So the best practice for computing covariance is to subtract the mean of
each variable first. If the data already have zero mean, then re-subtracting
zero won’t do any damage. In other words, get in the habit of thinking
about mean-subtracting whenever you think about computing covariance.
In the code below, new variables are created to avoid overwriting x and y.
This is useful in case the mean offsets are relevant for subsequent non-
covariance-related analyses. The resulting cov1 should now match the
output of MATLAB’s cov function. And just for fun, let’s use the bsxfun
function here. You can see by comparing the code for mean-subtracting xx
and yy that bsxfun is not necessary, but I wanted to use this opportunity
to remind you about its power and utility.

xx = bsxfun(@minus,x,mean(x));

yy = y—mean(y);

cov1 = xx'*yy/(n-1);

16.2 Multivariate Covariance

Bivariate covariances are nice and whatever, but the beauty of covariances
comes from multivariate data sets. As proof of this, run imagesc(cov1)
and think about whether any self-respecting museum would hang this pic-
ture up on their walls. In this section, we will compute covariance matrices
of multivariate data sets that will produce pictures you might see in a
museum (well, maybe, if they were repeated, colored differently, and signed
by Andy Warhol).

Let’s start with a real data set. We’ll compute the covariances among all
pairs of channels in EEG data. There are 64 channels, so we’ll get a 64-by-64
matrix (4,096 total covariances, although they are not all unique, as you’ll
see later). You might think that to compute an all-to-all covariance matrix,
you need to have two loops over channels and then apply the dot product
computation to each pair of electrodes. But this definitely violates the rule
of avoiding loops whenever possible. Instead, we can use matrix multiplica-
tion. Recall from chapter 10 that matrix multiplication can be interpreted
as a series of dot products between each row in the left matrix and each
column in the right matrix. This is exactly what we need to compute a
covariance matrix.

16 Covariance and Correlation 253

data = squeeze(EEG.data(:,:,1));

cov2 = data*data'/(EEG.pnts-1);

Why did I transpose the second matrix here but the first vector (x) in the
code earlier? No deep mathematical reason, just that the matrix data hap-
pened to be organized as channels by time. I could have transposed data in
the preceding line and then used data'*data. This is an important detail
to check. Remember the rule about matrix multiplications: inner sizes must
match, and the outer sizes define the size of the product matrix. The vari-
able data is channels-by-time, and its transpose is time-by-channels. We
want to end up with a channels-by-channels matrix; hence, the right matrix
must be transposed.

It is also valid to turn the matrices around and end up with a time-by-
time matrix. This would reflect the spatial covariance at each pair of time
points, rather than the temporal covariance at each electrode pair. Such
a covariance matrix is also interpretable, but we are focusing here on
the channel-by-channel covariance matrix. The important lesson here is
to sanity check this covariance matrix by making sure the dimensions
correspond to channels.

Before having a look at this covariance matrix and thinking about how
to interpret it, there is one important piece missing from the code above.
Any guesses?

These data include mean offsets. So the covariance matrix also includes
a mean offset. We can use bsxfun to remove the mean before computing
the covariance. Because these are 2D matrices, we need to think carefully
about how the mean is removed. We are computing the covariance over
time, so we want to remove the mean over time. In the organization of these
data, time is the second dimension.

data = bsxfun(@minus,data,mean(data,2));

cov2 = data*data'/(EEG.pnts-1);

Now we have a valid and interpretable covariance matrix. Let’s see
how it looks: imagesc(cov2) (figure 16.2). It’s a lot nicer-looking than the
bivariate covariance, but still not quite museum-ready. Maybe you can
spend a few minutes applying your knowledge of color scales and the con-
tourf and set functions to help with the final touches.

The first thing you might notice about this covariance matrix is that the
upper right part looks similar to the lower left part. In fact, they are more
than just similar; they are identical. All covariance matrices are symmetric
(the proof of this was given in chapter 10.10, the section about matrices
multiplying their transposes). For example, the element in the 4th row and

254 II Foundations

10th column is the same as the element in the 10th row and 4th column.
You can verify this yourself in MATLAB by comparing cov2(4,10) with
cov2(10,4).

The second thing to notice is that the diagonal (from the top left to the
bottom right) is different from the off-diagonal elements. The diagonal is
the covariance of each channel with itself; in other words, the variance. If
the data were normalized to produce a correlation coefficient matrix (we’ll
get to this topic soon), then the diagonal would be all ones.

The diagonal elements in a matrix can be extracted using the
MATLAB function diag (see also chapter 10, exercise 14). If you type
plot(diag(cov2)), the result will be a line, and each element in
this array corresponds to cov2(1,1), cov2(2,2), and so on up to
cov2(end,end). The variances on the diagonal can be informative about
the data. Interpolating these values over the topography reveals that some
electrodes have higher variability than other electrodes (figure 16.3). In
general, this is due to some combination of noisy electrodes plus some elec-
trodes measuring brain activity that is more task-relevant and thus more
dynamic. However, this is just a single trial of data, so we might expect the
noise to be greater than the signal.

Figure 16.2

Channel-by-channel covariance matrix of scalp EEG data recorded from a human

brain.

Channels

C
h

an
n

el
s

16 Covariance and Correlation 255

Interpolation is done in figure 16.3 using a function called topoplotIn-
die. This function is the same as the eeglab function topoplot except that
all dependencies are bundled so you can use this function without needing
to download the eeglab toolbox (Delorme and Makeig 2004), which is avail-
able for free download from the Web. The small indie version is provided
here because you shouldn’t need to install a third-party toolbox just to
reproduce this figure.

Enough of the variances; let’s inspect some covariances. Each row (or
column) of the covariance matrix reflects the covariance from each elec-
trode to all other electrodes. Therefore, one way to visualize the covariances
is to select one “seed” electrode and examine the covariances between that
and all other electrodes. Note that covariance is a symmetric measure—a
covariance value indicates nothing about directionality, it simply describes
the relationship between pairs of electrodes. Figure 16.4 shows a few topo-
graphic maps of seeded covariances. You can try using different seed sites
and see how the covariance changes.

16.3 From Covariance to Correlation

A correlation coefficient is similar to a covariance, except that the value
is normalized between –1 and +1. A coefficient of –1 means that whenever

Figure 16.3

A topographic plot of variances over space, estimated from one trial of EEG data.

0

60

120

180

V
arian

ce (μ
V

2/cm
2)

256 II Foundations

x goes up, y goes down. A coefficient of zero means that x and y are com-
pletely unrelated to each other, and a coefficient of +1 means that x
and y go up and down together, with no deviations. In practice, if you
ever see a correlation coefficient of exactly or very close to –1 or +1 in
empirically measured biological data, then you should check for mistakes.
Two different components of a complex biological system like the brain
will rarely show such a strong correlation, although of course there are
exceptions.

There are two ways to obtain a correlation coefficient from a covariance.
One is to normalize all of the variables to their standard deviations prior to
computing the covariance. This involves subtracting the mean and divid-
ing by the standard deviation per channel. In fact, you’ve already done half
the work for this normalization by subtracting the mean. The code below
does the rest.

data = bsxfun(@minus,data,mean(data,2));

data = bsxfun(@rdivide,data,std(data,[],2));

cor2 = data*data'/(EEG.pnts-1);

Note the difference in input order between the mean and std func-
tions. The mean function takes the second input as the dimension over
which the mean should be computed, while the std function takes the
third input as the dimension (the second input is a normalization option,
and this should be kept at empty to use the default). Now the covariance
is a correlation.

The second way to obtain a correlation coefficient from a covariance is
to compute the unscaled covariance as we did in the previous section, and
then divide that covariance by each channel’s variance. Actually, this isn’t
really a different way; either you normalize the data before computing the

Figure 16.4

Seeded covariance topographic maps illustrate covariance between selected elec-

trodes (see stars) and all other electrodes. Data are shown from a single trial.

16 Covariance and Correlation 257

covariance matrix or you normalize the covariance matrix. The effect is the
same. We’ll start with the two variables created at the beginning of this
chapter. These variables are already zero-mean with unit variance, meaning
correlation and covariance are the same thing. Let’s make our task more
difficult by first stretching out the variables.

x(:,1) = x(:,1)*100 + 2;

x(:,2) = x(:,2)*20 + 10;

Next we compute the covariance between these variables, and then com-
pute the variances of each variable individually.

cx = x(:,1)'*x(:,2) / (n-1);

vx1 = x(:,1)'*x(:,1) / (n-1);

vx2 = x(:,2)'*x(:,2) / (n-1);

Finally, we divide the covariance by the square root of the product of the
variances—square root because we actually want to scale by the standard
deviation, not by the variance. (In case your high-school math slipped for a
moment, recall that the square root of a times b is the same thing as the
square root of a times the square root of b.) Let’s test our normalized covari-
ance against the output of MATLAB’s corr function (you can use cor-
rcoef if you don’t have the stats toolbox). The results should be identical.

cor1 = cx / sqrt(vx1*vx2);

cor2 = corr(x);

Of course, the variables cor1 and cor2 should be identical. But, uh-oh,
they’re not. Our sanity checking revealed a mistake somewhere. Check
my code carefully and see if you can find one small but important missing
step.

Now let’s figure out how to apply this covariance-to-correlation conver-
sion to a larger covariance matrix. We need to create a channel-by-channel
matrix in which each element is the product of the standard deviations
of each pair of channels. Needless to say, we’re not going to do this in a
double for-loop when we can implement it as an outer product. To get a
better idea of what this rank-1 matrix looks like, try making an image and
plotting it.

stdMat = sqrt(diag(cor2)*diag(cor2)');

imagesc(stdMat)

plot(stdMat)

From the image you might not see that this is a rank-1 matrix. Plotting
all rows of the matrix, however, reveals that all rows are a scalar multiple of

258 II Foundations

Box 16.1

Name: Hualou Liang

Position: Professor

Affiliation: Drexel University, Philadelphia, Pennsylvania

When did you start programming in MATLAB, and how long did it

take you to become a “good” programmer (whatever you think “good”

means)?

I was introduced to MATLAB way back in 1996 when I just started my postdoc

career. My experience in programming prior to MATLAB was heavily Fortran,

largely due to my PhD training in high-energy physics where Fortran has

established itself as the lingua franca. I must admit I was a tad dubious about

MATLAB when I gave it a try. I was completely blown away with the demon-

strations. I do not remember how long it took to become a “good” program-

mer. My sense is that it’s rather easy and quick to get started, though it may

take years to master MATLAB.

What do you think are the main advantages and disadvantages of

MATLAB?

Pros: Intuitive and easy to learn, fast prototyping, large collections of demos

and toolboxes, and many more.

Cons: Not free. Lot of built-in functions, but many people do not know

about them. Slow for large-scale problems.

Do you think MATLAB will be the main program/language in your field

in the future?

It seems certain that MATLAB will remain the main language and will become

even more powerful when used in combination with C and R, and even other

languages such as Python.

How important are programming skills for scientists?

Programming skills are becoming more important, turning into the core com-

petency for the new generation. The more you know about programming

skills, the more you will be efficient, creative, and competitive.

Any advice for people who are starting to learn MATLAB?

Learning by doing and by reading the codes from experts.

16 Covariance and Correlation 259

the same data (the standard deviations). The final step is to scale the covari-
ance by the standard deviation matrix.

cov2 = cov2 ./ stdMat;

The result is shown in figure 16.5. On the diagonal, you end up with the
variance divided by the variance, which is 1. A sensible result, of course,
because every variable is perfectly correlated with itself.

16.4 Pearson and Spearman Correlations

There are a few different types of correlations. The method described so far
in this chapter produces a Pearson correlation. Pearson correlations are
appropriate when you expect a linear relationship between normally dis-
tributed variables. Not all relationships are linear, however, and these situ-
ations can produce misleading Pearson correlations. This limitation is often
illustrated using Anscobe’s quartet (figure 16.6).

A second type of correlation is called a Spearman correlation, sometimes
also called a rank correlation. The Spearman correlation tests for a mono-
tonic relationship, regardless of whether it is linear or nonlinear. This is
useful for data that have a non-Gaussian distribution, such as power spec-
tra, neuron firing rates, and image pixel values. Neuroscience data are often

Figure 16.5

A channel-by-channel correlation matrix that is based on the covariance matrix.

When generating this image on your computer, compare the color scale for this fig-

ure with that of figure 16.2.

Channels

C
h

an
n

el
s

260 II Foundations

non-normally distributed, and unless you have a specific reason to expect a
linear relationship, the Spearman correlation is often preferable. If the data
are roughly normally distributed and there are no outliers, Pearson and
Spearman will generally produce very similar results (e.g., top left panel of
figure 16.6).

The Spearman correlation works similarly as a Pearson correlation,
except that the data are converted to rank order. Rank order means that, for
example, the numbers [0 0.1 0.11 10,000] become [1 2 3 4]. Now you see
why the Spearman tests for a monotonic and not necessarily linear
relationship.

To compute a Spearman correlation, the first step is to rank-transform
the data. You’ve already been introduced to the tiedrank function in

Figure 16.6

Anscobe’s quartet illustrates that different data distributions can have identical Pear-

son correlation coefficients. In some cases, a Spearman (rank-order) correlation is

preferable.

Spearman r = 0.82
Pearson r = 0.82

Spearman r = 0.69
Pearson r = 0.82

Spearman r = 0.99
Pearson r = 0.82

Spearman r = 0.50
Pearson r = 0.82

5 10 15 5 10 15

4

8

12

4

8

12

16 Covariance and Correlation 261

chapter 14, and now you can learn a bit more about it here. This function
accepts matrix inputs and will rank-transform along the second dimension.
Consider the following code. The goal is to rank the rows, but inspect the
output of tiedrank.

d = [1 2 10 100; 2 10 100 1];

tiedrank(d)

Rather than ranking row-wise, tiedrank ranked column-wise. The solu-
tion is to transpose the input, and you might want to transpose the output
as well to restore the original matrix size.

tiedrank(d')'

With that in mind, we can convert our bivariate data to rank order and
apply the Spearman formula, which involves the number 6.

xr = tiedrank(x')';

c1 = 1–6*sum((xr(1,:)-xr(2,:)).^2)/(n*(n^2–1));

Confirm that in this case, the Spearman and Pearson correlation coeffi-
cients are similar to each other. Why is this? (Hint: What is the distribution
from which these data were drawn?)

Spearman and Pearson are not the only types of correlation coefficients.
There are perhaps a half-dozen different correlation methods that are
designed for specific types of data. However, Spearman and Pearson are
appropriate for the vast majority of correlation analyses in neuroscience.

Are you wondering why you should use these multiline implementa-
tions rather than simply using the functions cov, corr, and corrcoef? I
have three answers to that: (1) this chapter would have been much shorter;
(2) you would have learned a lot less; and (3) the mechanics of correlation
might have remained a mystery. Correlation and covariance form the bases
for many simple analyses like correlation, and also for many advanced anal-
yses, including principal components analysis, source-space imaging of
MEG and EEG, source separation, optimization, and clustering. It is impor-
tant to understand the basic building blocks in order to apply more sophis-
ticated analyses in appropriate ways. That said, in practice, there is nothing
wrong with using the functions corr, corrcoef, or cov.

16.5 Statistical Significance of Correlation Coefficients

The statistical significance of a correlation coefficient can be obtained
through parametric or permutation-based methods. The parametric

262 II Foundations

method is computed by MATLAB in the corrcoef and corr function, and
the p-value is given in an optional second output. The p-value given by
these functions is based on assumptions about the distributions of correla-
tion coefficients expected under the null hypothesis for variables with
normally distributed values.

The second approach for obtaining statistical significance is to use per-
mutation-based statistics, as discussed in the previous chapter. This involves
shuffling the mapping of the two variables with respect to each other and
creating an empirical distribution of correlation coefficients expected under
the null hypothesis of random associations between the two vectors. This
method will be explored in the exercises.

16.6 Geometric Interpretation of Correlation

There is one final point I’d like to discuss. Recall from chapter 10 that many
expressions in linear algebra have an algebraic interpretation and a geomet-
ric interpretation. So far you’ve learned about the algebraic interpretation
of covariance and correlation. There is also a geometric interpretation of
the same mathematical procedure.

The geometric interpretation of a dot product between two vectors in
N-dimensional space is the magnitude of those vectors scaled by the cosine
of the angle between them. If you imagine that the two to-be-correlated
data series each reflect a coordinate in an N-dimensional space and then
imagine those two coordinates being end points of vectors from the origin,
then the product of their magnitudes scaled by the angle between them is
the covariance. Furthermore, if the two vectors are normalized to have
length one (the linear algebra term would be unit vectors along the same
direction as the original vectors), then the dot product is simply the cosine
of the angle between the vectors. Now recall some basic trigonometry:
When two vectors point exactly opposite each other, their angle is 180° (π
radians) and the cosine is –1; when two vectors meet at a right angle, their
angle is 90° (π/2 radians) and the cosine is 0; and when two vectors point in
the same direction, their angle is 0° and the cosine is +1. (Don’t believe
me—try it in MATLAB using the cos function!)

Thus, correlation is the same thing as the cosine of an angle between two
unit-vectors in a high-dimensional space. This interpretation is sometimes
called cosine similarity, but don’t let the fancy term confuse you.

16 Covariance and Correlation 263

16.7 Exercises

1. In this exercise, you will explore the effects of correlation strength and
sample size on simulated correlated data. Write a triple-loop to create
two signals of different lengths and correlation strengths and 100 itera-
tions (trials) of each length-strength pair. For each simulated correla-
tion, compute the squared distance between the true correlation that
you specified and the estimated correlation coefficient. Plot the trial-
averaged results in two 2D images (one image for average correlation
coefficients, and one image for the average distance to the true correla-
tion. How do you interpret the results—is it better to have a strong
effect or more data?

2. So far you’ve learned only how to create a bivariate data set with known
correlation. What about a multivariate data set with a known covari-
ance structure? This can be implemented by constructing the desired
covariance matrix and scaling random numbers by the Cholesky fac-
torization of that covariance matrix (the Cholesky factorization is a
way to represent a symmetric matrix using two triangular matrices).
You can also create multivariate correlated data using eigendecomposi-
tion, which you’ll learn about in the next chapter. Below is code to
create a 1,000-by-3 matrix of correlated random numbers. Perform a
sanity check to test whether the data show the requested covariance
matrix.

v = [1 .5 0; .5 1 -.3; 0 -.3 1];

d = randn(1000,3)*chol(v);

3. The biggest potential mistake when using the function tiedrank is to
rank along the incorrect dimension. This was easy to check visually in
a small matrix. How could you sanity check the output of tiedrank
for a large matrix (e.g., channels by time)?

4. Use the MATLAB function corrcoef to sanity check the correlation
for the channel pair [13, 46] in figure 16.5.

5. What is the difference in the code below if x and y are column vectors
versus row vectors? What if x were a row vector and y were a column
vector?

cov1 = x'*y/(n-1);

6. Generate random variables x and y and evaluate corr(x,y) with x
and y being column vectors or row vectors. What happens in either
case? How could you adjust the code to make sure the output always

264 II Foundations

produces a single covariance value rather than a rank 1 matrix (the
outer product)? What happens when you repeat this exercise using the
functions corrcoef and cov?

7. Use permutation testing to obtain a p-value for the statistical signifi-
cance of the correlation produced in the first section of this chapter.
What do you shuffle on each iteration? Check your significance against
the p-value returned from the second output of corrcoef or corr.

8. Assume the variable cov2 is a 64-by-64 covariance matrix. If cov2(end)
is the same thing as cov2(end,end), and cov2(1) is the same thing
as cov2(1,1), is cov2(4) the same thing as cov2(4,4)? Why or
why not?

9. Compute the channels-to-channels covariance matrix that was used in
figure 16.4 in two different ways. First, average all trials together before
computing the covariance matrix. Second, compute the covariance
matrix for each trial separately and then average together 99 covari-
ance matrices (there are 99 trials). Plot the two results next to each
other, using the same color scaling. Are there striking differences, and
how would you explain them?

10. Write a function that takes 3D raw EEG data (channels by time by tri-
als) and a number of trials as input and that outputs and plots the
covariance matrix for a random selection of the specified number of
trials. If there is only one trial, the input would be a 2D channels-by-
time matrix; make sure your function can deal with this situation.

11. MATLAB code to produce figure 16.6 is not provided (don’t worry, the
data values are provided). Re-create this figure. (Hint: try the function
lsline.)

12. Compute the covariance matrix from section 16.2 as double-
loop. Make sure the result is the same as the matrix multiplication
implementation.

Principal components analysis (PCA) is a matrix decomposition technique
that is applied to multivariate data sets. It can be used for reducing the
dimensionality of the data, for denoising the data, as a spatial filter, or as a
precursor for certain analyses.

17.1 Eigendecomposition

PCA is based on a matrix factorization technique called eigendecomposi-
tion (also sometimes called eigenvalue decomposition or eigenvector
decomposition). Here is the idea of an eigendecomposition: When you
multiply a vector by a matrix, the matrix typically changes the direction
of the vector. That is, matrix A transforms vector x into vector b (thus
producing the familiar Ax = b), and vector b points in some direction that
is different from that of vector x. However, some vectors are special and
point in the same direction going into and coming out of multiplication
with matrix A. Matrix A may cause vector x to get longer or shorter or it
may cause vector x to face the other direction, but vector x will stay on
the same line (figure 17.1). This leads to the fundamental eigenvalue
equation: Ax = λx (the λ is the scaling factor; it’s just a single number).
This equation says that multiplying vector x by matrix A is the same thing
as scaling vector x by the number λ. The vectors x are called eigenvectors.
They are unique to matrix A in that the eigenvectors of matrix A are dif-
ferent from the eigenvectors of matrix B (except in a few exceptional cases
such as B = A). The eigendecomposition of a matrix finds those special
eigenvectors and their associated eigenvalues. Eigendecomposition can
be applied only to a square matrix, and if the matrix has full rank, there
are as many unique non-zero eigenvalues as there are columns in the
matrix.

17 Principal Components Analysis

266 II Foundations

Interesting things happen when the matrix A is symmetric (i.e., when
A = AT). First, the eigenvectors are all orthogonal to each other (more pre-
cisely: the eigenvectors can be constructed in a way that they are all pair-
wise orthogonal), which is to say that the dot product among all pairs of
eigenvectors is zero. Second, each eigenvector reveals the direction of
highest variance that is orthogonal to the previous directions. That is, the
first vector points in the direction of maximum variance; the second
vector points in the direction of maximum variance that is orthogonal to
the first direction; the third vector points toward the maximum variance
that is orthogonal to the first and second directions; and so on. Finally,
the eigenvalues are guaranteed to be real-valued if A is real-valued,
although this property is not terribly interesting for most neuroscience
applications.

PCA is one of several blind source separation (sometimes called BSS) tech-
niques. These techniques are called “blind” because they are not restricted
by a priori knowledge of patterns in the data. Other BSS techniques include
independent components analysis, generalized eigendecomposition, and
many other variants. BSS is a major topic in computer science and data
mining. PCA is a fundamental technique that is the starting point or inspi-
ration for many other BSS techniques. If you are interested in BSS and
related multivariate spatial filtering techniques, eigendecomposition is a
good place to start.

Figure 17.1

Illustration of eigenvectors in two dimensions. The left panel shows the visual repre-

sentation of a 2-by-2 matrix. The other two panels show a vector v (black line) and

vector Av (i.e., the result of multiplying vector v by matrix A). When vector v is not

an eigenvector, Av points in a different direction; when vector v is an eigenvector,

Av is simply a scaled version of v.

v
Av

v
Av

Matrix A Not eigenvector Eigenvector

0 1–1 0 1–1

0

1

–1

0

1

–1

3

2

1

1

17 Principal Components Analysis 267

17.2 Simple Example with 2D Random Data

We’re going to generate a plot that you may have seen before when reading
about PCA (figure 17.2). This figure illustrates the concept that an eigende-
composition of a covariance matrix (which, you will remember from the
previous chapter and from chapter 10, is always symmetric) returns vectors
that produce new axes such that each eigenvector (a.k.a. principal compo-
nent) captures as much variance as possible along one dimension while
being orthogonal to previous eigenvectors. We can also call these “orthogo-
nal basis vectors of the eigenspace of the data” (tip for a drinking game:
trying repeating that phrase five times as fast as possible).

Now that you understand the concept of PCA, let’s see how it is imple-
mented in MATLAB. We begin, as we usually do, by simulating some 2D
random data. We want the distribution to be “squashed” (the technical
term would be anisotropic) for reasons that will soon become clear.

x = [randn(1000,1) .4*randn(1000,1)];

These data are not rotated, so a PCA will tell us that the standard Carte-
sian coordinates are the best basis vectors ([0 1] and [1 0]). That’s pretty
boring. To see the PCA in action, we want to swirl these data around and
thus force them to be correlated. In the previous chapter, you learned one
method of creating correlated variables; now you will learn an alternative
method, which is to rotate the data distribution around the origin.

Figure 17.2

Illustration of PCA on actual simulated data. Correlated random data were created

(left and middle panels). The middle panel shows the two eigenvectors of the covari-

ance matrix of the data (a.k.a. principal components). The right panel shows the

same data plotted in PCA space instead of the original xy space.

x-axis

y-
ax

is

x-axis PC1-axis

y-
ax

is

P
C

2-
ax

is

268 II Foundations

To rotate the data, we can multiply the data matrix by a rotation matrix.
A 2D rotation matrix involves multiplying the data by cosines and sines of
the angle (θ) to rotate. In MATLAB this is implemented as follows:

th = pi/4;

R = [cos(th) -sin(th); sin(th) cos(th)];

y = x*R;

Thinking back to the discussion in section 16.6 that correlation is the
same as cosine similarity, it shouldn’t be surprising that rotating the angle
of an anisotropic distribution produces correlated variables.

Now that we have our data, the next step in performing PCA is to com-
pute the covariance matrix (let’s call it covmat). Because the data here were
generated using the function randn, the mean should be zero or very close
to it. Does that mean we can forget about mean-normalizing the data in
this example? Nope! You should always mean-normalize the data before
computing covariance. It’s a good habit and promotes healthy data-analysis
hygiene. It’s the MATLAB equivalent of brushing your teeth before asking
that special someone out to dinner.

Now we’re ready for the eigendecomposition. The MATLAB eig func-
tion takes an N-by-N matrix as input and returns two N-by-N matrices that
contain the eigenvectors and the eigenvalues. The eigenvalues are scalars
and appear in the diagonal elements; all other elements are zeros. The input
matrix can be any N-by-N matrix, but in this chapter (and most often in
neuroscience analyses), the input will be a symmetric covariance matrix.

[vecs,vals] = eig(covmat);

If you get confused about the order of the outputs, the easiest sanity
check is to create an image of both of them (figure 17.3). The eigenvectors
matrix is all non-zero and looks like channel 900 on the hotel television.
The eigenvalue matrix has all zeros on the off-diagonals and eigenvalues
(typically sorted by magnitude) on the diagonals. Some people call these
variables V (vecs) and D (vals).

The reason why the eigenvalues come in matrix form instead of vector
form is that one commonly used matrix factorization (called diagonaliza-
tion) requires this format. In case you are curious, that factorization is A =
SΛS–1, which means the square matrix A can be represented using eigenvec-
tors (S) and eigenvalues (Λ). This decomposition works when the eigenvec-
tors are all independent, and is useful, among other reasons, for decoupling
linear system components or for computing matrix powers. You can check
yourself that covmat is the same thing as vecs*vals*inv(vecs).

17 Principal Components Analysis 269

Anyway, if you want to extract the diagonal elements of a matrix, use the
function diag. The same function can be used to create a diagonal matrix
from a vector.

valsVec = diag(vals);

valsMat = diag(valsVec);

The eigenvectors associated with the largest eigenvalues are the most
important. In fact, you can compute the amount of variance explained by
each eigenvector by scaling the eigenvalues (you will see this in the exer-
cises). Although there is no inherent ordering of eigenvalues and eigenvec-
tors, the algorithms that MATLAB uses to compute eigenvalues typically
results in eigenvalues (and their associated vectors) appearing in ascending
order. Some people find it more intuitive to have the eigenvectors sorted in
descending order and therefore will re-sort the matrices. It doesn’t matter
whether you have them ascending or descending, but it is important to
know which order you are working with. And it is even more important
to sort both matrices or neither of the matrices; don’t open yourself up to
confusion by sorting only one of them.

Another thing to know about MATLAB’s eig function is that it normal-
izes all eigenvectors to have unit length (when the input matrix is symmet-
ric, which is always the case for covariance matrices). We will now plot the
eigenvectors on top of the scattered data, and scale the vectors to have
lengths defined by the eigenvalues (figure 17.4).

Figure 17.3

It’s easy to confuse the order of the outputs of the eig function. An easy sanity check

is to visually inspect the two outputs.

Eigenvectors Eigenvalues

270 II Foundations

plot(y(:,1),y(:,2),'o’)

plot(vals(1,1)*[0 vecs(1,1)],vals(1,1)*[0 vecs(2,1)])

plot(vals(2,2)*[0 vecs(1,2)],vals(2,2)*[0 vecs(2,2)])

Those are long lines of code; let’s work through them. Plotting a line
requires specifying two x points and two y points, as you learned in chapter
9. We want the lines to start at the origin, hence the zeros. The two pairs of
square brackets define the x and y coordinates. And then the vector is scaled
by the eigenvalues. Try removing the eigenvalue scaling to see that the vec-
tors are given unit length. Displaying the scaled eigenvectors helps you
appreciate the concept of finding directions of maximal variance.

Before moving on, take a few minutes to play around with the MATLAB
code for this section. Try changing the amount of anisotropy (the ampli-
tude coefficients for the two vectors) and the angle of rotation. Inspect the
eigenvalues and eigenvectors to see how those are affected. Try to gain an
intuitive feel for what PCA reveals about a 2D data distribution. A PCA
on a 1,000-dimensional data set is exactly the same concept, just really
difficult to visualize.

Figure 17.4

Original and scaled eigenvectors. The eigenvalues tell you how important each direc-

tion is; the vectors just tell you which way to point. The two λ’s here are 0.144

and 1.01.

x–axis
0–.5–1 .5 1

0

–.5

–1

.5

1

y–
ax

is

Original
λ–Scaled

17 Principal Components Analysis 271

17.3 PCA and Coordinate Transformation

One application of PCA is to change the coordinate space from the original
axes to another set of axes that better characterize the data. This was briefly
introduced in figure 17.1. Our data were initially in Cartesian space, and
the PCA gave us two vectors that better described the patterns of variance
in the data. We can now use those eigenvectors (principal components) as
new-and-improved axes with which to describe the data. This means that
the data go from xy space to principal components space, and this in turn
means that each data point is defined by having “scores” on each compo-
nent rather than having an x and a y value. For a standard basis space (the
typical Cartesian plane), the “score” (i.e., the distance along each basis vec-
tor) is simply the x and y coordinates. But PCA rotates the axes, so we want
to compute the distance from each eigenvector. Scores are computed by
multiplying the data by the eigenvectors, and there are therefore as many
scores as there are vectors.

pc1 = y*vecs(:,1);

pc2 = y*vecs(:,2);

Remember that the eigenvalues and vectors are typically in ascending
order, meaning that pc2 contains most of the variance (how could you
sanity-check to make sure the second component is the biggest?). We can
plot the data using their principal component scores (figure 17.2, right-
most plot). You might immediately notice that the “new” plot looks awfully
similar to the original data, even though the PCA was computed on the
rotated data instead of on the original data. Indeed, that’s how the data
began their existence before they were rotated. But if you look closely,
you’ll see that the data are flipped relative to the original data. The compo-
nent axes are designed to capture the most variance, and the components
sometimes point in different directions from the original data.

There are several advantages of such a coordinate transformation. One is
to identify patterns of variance in multivariate data. Another is to perform
dimensionality reduction by ignoring dimensions in the data that have
little meaningful variance. In this example, if we assume that PC1 (the
smaller component) is just noise, we can ignore it and perform subsequent
analyses only on PC2 (the larger component). This would bring the dimen-
sionality of the data from two to one. This dimensionality reduction can be
used to group variables together (analogous to how factor analysis is used
in questionnaire studies) or it can be used for cleaning the data (ignoring
dimensions that contain only noise).

272 II Foundations

17.4 Eigenfaces

Now that you have an intuition of what PCA does and how to program it
in MATLAB, it’s time for an example. An early idea for how to get comput-
ers to recognize faces and emotional expressions was to learn a set of “eigen-
faces” and categorize each face according to its score on different eigenface
dimensions. In this section, we will compute eigenfaces and show that it
takes only a small number of eigenfaces to recognize an individual.

The faces are stored as vectors in binary files (the full set includes
more than 5,000 of them, but I took 500 for this exercise). You can find
many different eigenface data sets freely available online; I downloaded a
sample from http://courses.media.mit.edu/2004fall/mas622j/04.projects/
faces/. Let’s start by loading in one file.

dat = fread(fopen('3500'));

In chapter 8, we had the fopen function on its own line with the option
'r' (read) and a pointer (fid) to that file. Here, we access each file only
once, and we read the entire file in one shot, so the additional complexity
seems unnecessary.

The variable dat is a 1-by-16,384 vector. That doesn’t seem quite right.
We are expecting this file to contain an image, and therefore we should
expect the data to be 2D or maybe 3D. This is our first time dealing with
this type of file, so we should make sure that we successfully imported some-
thing (instead of, e.g., all zeros). Typing plot(dat) reveals that there are
valid numbers in this variable.

Perhaps you’ve already guessed that this is a 2D image that has been
linearized. The image is 128 × 128, and a quick reshape will reveal the con-
tent of the image: imagesc(reshape(dat,128,128)). It’s easier to see
when transposed and shown in greyscale (figure 17.5).

Maybe you are tempted to write a loop that will load in all pictures and
store them in a 500-by-128-by-128 matrix. But before you do, let’s think
ahead about what we plan to do with the data. We want to compute a PCA,
which means we need a covariance matrix. For images, each pixel is like a
channel that measures “activity” at that location. The covariance matrix
needs to be channel by channel, meaning we would want to linearize the
matrix (PCA doesn’t know or care about spatial locations). That is, the PCA
requires a 500-by-128*128 = 500-by-16,384 matrix. Except for viewing the
content of the images, it’s best to leave them linearized.

Now it is time to load in all of the images in the folder. The files have no
extension, so we can use dir('*') to list all files. Do we need to worry

17 Principal Components Analysis 273

Fi
g

ur
e

17
.5

A
 li

n
ea

ri
ze

d
 im

ag
e

is
 d

if
fi

cu
lt

 fo
r

m
os

t
p

eo
p

le
 t

o
re

co
gn

iz
e

(l
ef

t
p

lo
t)

 b
u

t
lo

ok
s

a
bi

t
be

tt
er

 w
h

en
 r

es
h

ap
ed

 a
n

d
 s

h
ow

n
 a

s
an

 im
ag

e
(r

ig
h

t
p

lo
t)

.

0
2

P
ix

el
 in

d
ex

 (
x1

00
0)

4
6

8
10

12
14

16

Pixel intensity

0

10
0

20
0

274 II Foundations

about the file order? (No, but it’s always good to ask this question when
loading in many files.) Because we are using a nonselective filter, the first
two entries in the output of the dir function will be “.” and “..” (check
chapter 8 if you need to refresh your memory about this situation). In order
to initialize the matrix, we need to know the number of files and the num-
ber of pixels (we assume that each file has the same number of pixels). If we
don’t know this a priori, we can initialize the matrix inside the loop, making
sure it runs only once.

for fi=1:length(filz)

 if fi==1

 allF = zeros(length(filz), ...

 length(fopen(fread(filz(fi).name))));

 end

 allF(fi,:) = fopen(fread(filz(fi).name));

end

The variable allF is for all faces. Take a close look at the initialization. It
runs only in the first iteration of the loop (what would happen otherwise?),
and it has five embedded functions. But you are now becoming an expert
at interpreting multiple embedded functions, so this one should be no
problem to figure out.

Now that we have the data, the next step is to compute the covariance
matrix (mean-center first!) and then apply the eig function. In this
example, we have 16,384 variables instead of two. You can understand
why we began this chapter with 2D data. I sometimes wonder whether
there is intelligent life somewhere in the universe that can conceptualize
a 16,384-dimensional geometric space. The rest of us will just have to
pretend.

Before computing the pixel-by-pixel covariance matrix, let’s think about
matrix size. The full covariance matrix will contain 268,435,456 elements.
That’s a really big matrix. It will take a long time to compute and will be
slow to work with. And if your lab computer is from the 1980s, it probably
cannot even create a matrix that big. Looking at the image in figure 17.6
reveals that the information we care about is smaller than the entire image.
We can define a subregion that we care about and select only pixels in that
subregion. We might also call this a region-of-interest analysis.

mask = false(128);

mask(40:100,20:120) = true;

allfaces = allfaces(:,mask);

17 Principal Components Analysis 275

The mask is initialized to be a matrix of Boolean falses, and then a box
including pixels from row 40 to 100, and columns 20 to 120, is set to trues.
This means the matrix that stores all the data is reduced. Notice that mask
is a 2D matrix but is automatically converted to linear indices. It’s a danger-
ous move, but I sanity-checked the result by plotting the image before and
after applying the mask. Feels good to live life dangerously, doesn’t it?

The eigenvectors returned by eig are the eigenfaces. They can be viewed
like pictures, by reshaping them to two dimensions. Remember that they
are not reshaped to 128-by-128, but to 61-by-101 because of the masking
(the new covariance matrix will be 6,161-by-6,161). Figure 17.6 shows some
eigenfaces with the largest and smallest eigenvalues. I think component no.
3 is the one most likely to enter the nightmares of small children.
One of the goals of eigenfaces is dimensionality reduction. Imagine that a
computer could identify an individual’s face not by analyzing all 6,161
dimensions (and this is a huge underestimate; most digital photographs
have much higher resolution), but by projecting them onto a subspace of,

Figure 17.6

A selection of eigenfaces. The number in the boxes is the order of the eigenface.

Smaller numbers capture more variance in the data.

1 2 3

6161 6162 6163

276 II Foundations

Box 17.1

Name: Pascal Wallisch

Position: Clinical Assistant Professor

Affiliation: Department of Psychology, New York University, New York,

New York

Photo credit: Alison Wynn

When did you start programming in MATLAB, and how long did it take

you to become a “good” programmer (whatever you think “good” means)?

I started programming in MATLAB in 2002. Literally the first question my

PhD adviser asked me was “How is your MATLAB,” and I didn’t know—despite

having a relatively strong background in programming and quantitative

methods—what that was. I would say it took about 5 years to become good

and about 10 years to become really comfortable, but I’m still learning.

What do you think are the main advantages and disadvantages of

MATLAB?

MATLAB has several key advantages. First, its help function is actually helpful.

Second, it is extremely beginner-friendly, as it basically takes care of all

“plumbing” (e.g., memory handling) behind the scenes. Third, most of the

things that are important to scientists, such as linear algebra and data visual-

ization, are very fast end relatively effortless. Fourth, there is a tremendous

user base, so if you encounter a problem, it is likely that someone else has

17 Principal Components Analysis 277

already encountered—and solved—it. On a related note, it is a great advantage

to be able to read and understand code from other people in your lab or even

other labs. Having a common lingua franca helps with that.

Most of the key disadvantages are the flip sides of these advantages. For

instance, a lot of what makes MATLAB so user-friendly for beginners (e.g., no

strong typing) makes it relatively slow at runtime. Another disadvantage is

that MATLAB grew out of wrapper around LINPACK—a linear algebra library

in Fortran—and it works great for that. But a lot of the things people now use

MATLAB for feel rather tacked on; for example, GUIs (which invoke Java

frames). Most important, MATLAB is still effectively stuck in pre-Internet

times. If I want to deploy a program online and run it on a server, I can do that

in Python, but not MATLAB. As more and more data collection is done online

and even the analysis moves to the cloud, this matters.

Do you think MATLAB will be the main program/language in your field

in the future?

It could go either way. We are at a turning point right now. More and more

people are making the switch to Python because they feel too constrained by

MATLAB—and probably because they want to join on the bandwagon. If this

movement reaches critical mass, some of the key advantages of MATLAB (e.g.,

the large user base) go away. Then again, there are now new fourth generation

languages like Julia, which are—mostly due to strong typing—extremely fast

and natively support the parallel processing of big data, so the Python move-

ment might be quenched. Moreover, MATLAB has been quite adaptive; for

example, it is moving more and more toward object-oriented programming.

The latest release (2016a) saw the incorporation of some Python features with

the “live editor.” I think if MATLAB manages to create strong online data col-

lection and analysis capabilities, it will be around for a long time.

How important are programming skills for scientists?

Absolutely critical. As time goes on, all fields are becoming ever more quanti-

tative, and the quantity of the data itself is also ever increasing. These are all

good things, but if one cannot program, one is sidelined by these exciting

developments. Importantly, if one has strong programming skills, one can

always get an academic job (e.g., postdoc). From my students, I know that

scientific programming skills (MATLAB in particular at this point) are literally

the most important selling point that gets them into programs and allows

them to launch an academic career.

Any advice for people who are starting to learn MATLAB?

Make sure to get a good book that focuses on the kinds of applications you

have in mind. If you can, take a class from a master teacher. If possible, do

all of this together with a peer. Peer-coding is becoming more and more

important.

278 II Foundations

say, 50 dimensions. Let’s try that—let’s project a face onto the first 50 eigen-
faces and see whether a 50-dimensional representation of the face is close
to the full 6,161-dimensional representation.

nPCs = 50;

scores = allF(1,:)*vecs(:,1:nPCs);

imagesc(reshape(scores*vecs(:,1:nPCs)',facedims)')

The code above computes the scores from the first 50 eigenfaces (com-
pare this code to computing the PC scores in the 2D case earlier in this
chapter). This is done only for the first face; in the online code, the PC
scores are computed for all faces, and you can select one face for plotting.

Notice that extracting the first 50 components (i.e., the first 50 columns
of the matrix vecs) is valid only if the eigenvectors matrix has been re-
sorted to go from largest to smallest eigenvalue. Otherwise, these first 50
components are actually the ones that account for the smallest amount of
variance. See the online code for an illustration of this.

It’s not perfect, of course, but it’s “not bad.” That is a subjective rating
and we’re not doing anything quantitative here. You can change the nPCs
variable to see how many components give what level of detail. I think
you could recognize some individuals with around 10 components. After
around 300 components, the image is nearly perfect and there is almost no
difference between using 300 versus 6,000 components. In real-world appli-
cations, you can imagine that reducing a 10 million–dimensional image to
a 1,000-dimensional subspace while retaining accuracy is pretty good.

17.5 Independent Components Analysis

Independent components analysis (ICA) has several conceptual similarities
to PCA—it is a BSS technique that involves finding vectors that point in the
direction of maximal variance, and it is often used as a data-reduction or
data-cleaning technique. There are several algorithms for ICA, a few of
which are commonly used in neuroscience (Makeig et al. 2004; Onton et al.
2006), including FastICA and Jade. The main distinction of ICA compared
to PCA is that ICA is an iterative procedure that constrains the component
vectors to be independent but not orthogonal. In this sense, ICA is used to
unmix data, rather than to decorrelate data.

A striking example of this PCA-ICA distinction can be seen in figure
17.7. Here I generated 2D data that have a clear structure (data were gener-
ated using the squash-and-rotate procedure described in section 17.2), but
a structure that is clearly not orthogonal. It is obvious that there are two

17 Principal Components Analysis 279

Figure 17.7

Comparison of PCA and ICA. Two data streams were generated; the goal was to sepa-

rate these streams using PCA or ICA. The left-side plots show the data (gray circles)

and the components (black lines). The right-side plots show the data after being

transformed into PC or IC axes.

X axis

Y
 a

xi
s

Data in XY space

PC1 axis

P
C

2
ax

is

Data in PC space

X axis

Y
 a

xi
s

Data in XY space

IC1 axis

IC
2

ax
is

Data in IC space

Data
Components

Data
Components

280 II Foundations

streams of data here. However, the principal components (black lines in the
top left panel of figure 17.7) fail to capture this structure. This isn’t wrong
per se; the eigenvectors did exactly what they are supposed to do—find the
orthogonal directions of maximal variance. But the independent compo-
nents were able to unmix the two streams of data (black lines in the lower
left panel of figure 17.7). This is more striking when plotting the data
on axes defined by principal components versus by the independent
components.

Before running off to proclaim to the world the horrible stupidity of
PCA, keep in mind that this problem was carefully constructed to illustrate
a specific example where ICA captures the data better than PCA. ICA and
PCA are different techniques, and in different situations different methods
are appropriate. You will see an example in chapter 24 (spike sorting) in
which PCA and ICA provide nearly identical results. That said, the orthogo-
nality constraint of PCA is a strong limitation in neuroscience. There are
few if any dynamics in a complex nonlinear system like the brain that are
truly orthogonal, and therefore independent (as opposed to orthogonal)
components will often provide more meaningful characteristics of the data.
Eigendecomposition is one of the most important matrix decompositions
in mathematics and in scientific applications, and PCA is one of the sim-
plest uses of eigendecomposition. As you continue working with matrices
in your data analysis career, you will see eigendecomposition at the heart of
many processing techniques.

There are many algorithms for computing ICA. Included in the online
MATLAB code is a function to implement the Jade algorithm (Cardoso
1999), which was downloaded from http://perso.telecom-paristech.
fr/~cardoso. ICA is often used for cleaning EEG data by isolating noise
components (e.g., eye movements, heartbeat, or muscle artifacts) from the
brain-related EEG activity. Several different ICA algorithms have been com-
pared, and most provide comparable performance (Delorme et al. 2012).

17.6 Exercises

1. Why does the following line of code not produce a 2-by-1,000 matrix?
Add one character to make it produce a 2-by-1,000 matrix, and then
add one more character (without changing the previous character) to
produce a 1,000-by-2 matrix.

x = [1*randn(1,1000) .5*randn(1,1000)];

17 Principal Components Analysis 281

2. Relative eigenvalue magnitudes encode the proportion of variance
explained. Divide all eigenvalues by their sum and multiply by 100 to
transform the eigenvalues to percent variance explained. How much
variance is explained by the first 50 eigenfaces? Write code to compute
how many eigenfaces you would need to explain 73% (or any other
percent) of the variance.

3. Repeat PCA on 2D random correlated data, but add a mean offset to
one dimension (and don’t remove it when computing the covariance
matrix!). What happens to the eigenvalues and eigenvectors? Try it
again with mean offsets to both dimensions. Now do you see why the
data must always be mean-subtracted?

4. Your mother-in-law wants to compute a PCA on her multichannel
data. She’s taking things slow, starting just with the covariance matrix.
Her code below produces no MATLAB errors, but it contains four prob-
lems (variable y is a time-by-channels matrix of data). What are they,
what are the effects, and how do you fix them (remember to be nice—
she’s your mother-in-law!)?

cov = (y*y');

5. Build on figure 17.2 by repeating with 3D data. You’ll need to use
plot3 instead of plot, and you might need to do a bit of research to
figure out how to construct a 3D rotation matrix. When plotting, use
the view function to make sure the data and eigenvectors are easily
visible.

6. I claimed that MATLAB returns eigenvectors with unit length. Test this
in MATLAB by writing a script that will generate random square sym-
metric matrices of any size, and compute the lengths of all eigenvec-
tors. If you get complex eigenvectors, you’ll need to compute their
magnitude. Try this again with square nonsymmetric matrices.

7. Below are two pairs of lines of code that differ slightly (assume evalsX
and evecsX are 2-by-2 matrices used in the 2D PCA example at the
beginning of this chapter). For each pair, decide whether the two lines
produce different results, and explain why or why not. After you come
up with answers, test yourself in MATLAB.

a1 = evalsX(1,1)*[0 evecsX(1,1)];

a2 = [0 evalsX(1)*evecsX(1,1)];

b1 = evalsX(2,2)*[0 evecsX(2,2)];

b2 = [0 evalsX(2)*evecsX(2,2)];

282 II Foundations

8. The MATLAB function to perform a PCA is called princomp (in the
future it will be called pca; both in the statistics toolbox). For a few
examples from this chapter, compare the results obtained here with the
outputs of the princomp function. Are there any differences? If so,
read the help file for this function to figure out what else princomp is
doing that might cause the differences.

9. We can define the reconstruction error of each eigenface as the sum of
squared errors of the difference between the PCA-reconstructed face
versus the original face. Compute this for varying numbers of compo-
nents (1 to 200) used to reconstruct each of 500 faces. Plot the recon-
struction error as a function of the number of components, averaged
over all 500 faces. Show the variance over faces using a patch.

10. Let’s say your friend Mike really likes to have eigenvectors in ascending
order. But he’s not very good at MATLAB and needs your help. Write
code to re-sort both the eigenvectors and the eigenvalues. What is a
sanity check to make sure that the sorting is correct?

11. A PCA of a covariance matrix can be used to create multivariate ran-
dom correlated data. Write code to implement this based on the fol-
lowing description. Then test your code by computing the correlation
matrix. Create an N-by-N covariance matrix (N is the number of chan-
nels) that contains only positive values. Then take its eigendecomposi-
tion, then multiply the eigenvector matrix by the square root of the
eigenvalue matrix (vectors on the left, values on the right). Finally,
right-multiply the transpose of that matrix by an K-by-N matrix of ran-
domly generated numbers (K time points).

12. How did I know the picture was 128-by-128 pixels? I have to tell the
truth: There were instructions when I downloaded the data. But it
would also be possible to figure it out without knowing a priori. You
know that the images must be reshaped to integer values, and you
know that pictures are generally square or close to square (assume here
the images are 2D not 3D). Write some code that will report all possible
sizes of reshaping a vector to two dimensions.

13. Do you agree with my choice of mask? Plot a few images before and
after applying the mask. You can change the mask if you want to
include more or fewer pixels.

14. Redo figure 17.2 using ICA instead of PCA. Make a figure that shows
both methods, similar to figure 17.7. You can see that PCA rotated the
axes to show the directions of maximum variance, whereas ICA
unmixed the data into uncoupled sources. Neither approach is

17 Principal Components Analysis 283

“better”; they are different methods, and in some cases they can be
used to obtain comparable outcomes.

15. One of the many functions of PCA is to variance-normalize a matrix,
which is also called sphering a matrix. This means reconstructing the
data to have equal variance in all principal directions. The formula is
ˆ /y y= −SLL 1 2, where y is the original data, S is the matrix of eigenvectors,
Λ is the matrix of eigenvalues, and Λ–1/2 indicates the square root of the
matrix inverse of Λ. Implement this formula for the data used in figures
17.2 and 17.7. Then plot the new data (ŷ) on top of the original data
(y). What is the effect of sphering the data? What are the eigenvalues
and eigenvectors of the sphered data?

III Analyses of Time Series

Frequency-domain analyses are used to investigate processes that can be
localized in the frequency domain, such as neural oscillations. The advan-
tages of frequency-domain analyses are that they are computationally fast
(thanks to a class of algorithms known as the fast Fourier transform) and are
ubiquitous in many branches of science, engineering, and communications
technologies.

The disadvantages of frequency-domain analyses are that the results are
easily interpretable only for stationary signals (this will be demonstrated
later in this chapter), and that the temporal dynamics of the signal are “hid-
den” in the result of the Fourier transform. “Hidden” is written with apol-
ogy quotes because the Fourier transform is a perfect reconstruction of the
signal; no information is lost. However, the temporal dynamics are encoded
in the phases over different frequencies, and they are not easy to interpret
visually or statistically. Time-varying changes in the spectral characteristics
of the signal are the primary motivation for conducting time-frequency–
based analyses, which are described in the next chapter.

18.1 Blitz Review of the Fourier Transform

Chapter 11 introduced the Fourier transform in detail, and you should go
through that chapter before this one. Here is a quick review to get you back
in the mood for thinking about the frequency domain.

The idea of the Fourier transform is to compute the dot product between
the time domain data and a series of complex sine waves (sine waves that
have a real part corresponding to a cosine and an imaginary part corre-
sponding to a sine). There are as many sine waves as there are data points,
and the first half-plus-one sine waves are labeled in units of hertz in linear
steps from 0 (also called DC) to one half of the sampling rate (the Nyquist
frequency). The resulting complex dot products per frequency are called

18 Frequency Analyses

288 III Analyses of Time Series

Fourier coefficients, and each one produces a vector in a 2D complex space
from the origin to the location specified by the real and imaginary parts of
the complex dot product. The squared length of that line is the power at
each frequency, and the angle relative to the positive real axis is the phase
at each frequency.

18.2 Frequency Resolution

The frequency resolution is the distance between successive frequencies in
hertz. It is determined by the number of time points because, as you recall
from chapter 11, the number of time points defines the number of fre-
quencies between 0 Hz and the Nyquist. It can therefore be computed from
the vector of frequencies. If srate is the sampling rate in hertz and n is the
number of data points in the signal, the following code will compute the
frequency resolution.

hz = linspace(0,srate/2,floor(n/2)+1);

freqres = mean(diff(hz));

freqres = hz(2)-hz(1);

Notice that the two computations of freqres produce identical results:
The first takes the average of the derivative of the entire vector of frequen-
cies while the second takes only the difference of the first two points.
Because frequencies are linearly spaced, both implementations are correct.

Frequency resolution can also be computed without first computing the
vector of frequencies, by considering that the number of frequencies is the
ratio of the sampling rate to the number of data points.

freqres = srate/n;

Conceptualizing frequency resolution as a ratio of the sampling rate to
the number of data points allows us to do some simple algebra and solve
that equation for n. For example, if you want to extract a 35.25 Hz signal
from your data, you would need 0.25 Hz frequency resolution (or 0.125 Hz,
etc.). If you define the frequency resolution a priori, you can calculate the
specific number of data points to use when computing the fast Fourier
transform (zero-padding when necessary).

srate = 1000;

freqres = .25; % in Hz

nFFT = ceil(srate/freqres);

In this case, a frequency resolution of 0.25 Hz requires 4,000 data points
in the fast Fourier transform (FFT). FFT lengths must be integers, which is

18 Frequency Analyses 289

why the code above rounds up. It’s a good idea to check that your desired
frequency will indeed be produced by the new nFFT.

18.3 Edge Artifacts and Data Tapering

The Fourier transform is a perfect representation of any time-domain
signal, regardless of whether that signal comprises or contains sinusoidal
features. This is mostly a good thing, but it can cause difficulties when
interpreting the results of a Fourier transform with data that look nothing
like a periodic signal. An extreme example of this is an edge.

ts = zeros(100,1);

ts(48:52) = 10;

plot(abs(fft(ts)/100))

This result, shown in figure 18.1, is completely accurate and valid. But
you can imagine that having sharp edges in your time series data produces
frequency-domain results that are difficult to interpret. These are called edge
artifacts.

Figure 18.1

Sharp edges in the time domain (top panel) have extended representations in the

frequency domain (bottom panel). If these edges are present in the data (e.g., from

brief artifacts during recording), these features can impede interpretation of the

results.

Time (a.u.)

Frequency (a.u.)

A
m

p
lit

u
d

e
(a

.u
.)

0

4

8

0

.1

.2

0 20 40 60 80 100

Po
w

er
 (

a.
u

.)

0 20 40 60 80 100

290 III Analyses of Time Series

Edges that produce artifacts can appear in one of two places in the data.
First, edges can result from an artifact during data acquisition such as ampli-
fier saturation or interference from a mechanical device. These artifacts
should be identified and removed during data cleaning. Second, edges nat-
urally appear at the boundaries of epoched data. These edge artifacts are
unavoidable and must be addressed.

The standard way to attenuate sharp edges near the boundaries of epochs
is through attenuation. This is done by applying a window, also known as
a taper (not tapir, that’s something else), to the data prior to computing the
Fourier transform. The purpose of the taper is to dampen the signals at the
beginning and end of the data epoch. Note that tapering fixes only edges
from cutting data, not edges that appear in the middle of the data like in
figure 18.1.

There are several tapers that are used, including Blackman, Gaussian,
Hann, and Hamming. I prefer Hann tapers because they touch zero at both
sides and are relatively wide. However, the differences among different
taper functions are minor. It is extraordinarily unlikely that you will get a
finding with one taper that you cannot reproduce when using another.

The Hann window is basically a half-cycle of a cosine wave. MATLAB has
a function hann that returns a Hann window, but it’s also easy enough to
compute it on your own. Tapering the data involves point-wise multiplica-
tion of the taper with the data. The taper needs to be the same length as the
data for this operation to be valid.

n = 100;

r = randn(n,1);

hannwin = .5*(1 - cos(2*pi*(0:n-1)/(n-1)));

plot(r), hold on

plot(r.*hannwin,'r')

As you can see in figure 18.2, tapering the data necessarily results in a
loss of some signal. This is the price you pay for preventing edge artifacts
from contaminating your results. One method to mitigate the loss of signal
is to compute the FFT over sliding, overlapping windows and then average
the power spectra together. Attenuated signal in one window is less attenu-
ated in the next window, and so on. If you do not average the spectra
together but instead consider these as a time course of changes in power
spectra, you are computing the short-time Fourier transform, which is one
method for time-frequency analysis discussed in the next chapter.

Tapering is most often applied when the time series is relatively short;
that is, hundreds of milliseconds or a few seconds. If the time series is very

18 Frequency Analyses 291

long, tapering will produce significant attenuation of real signal, while the
edges might have relatively little contribution to the resulting power
spectrum.

18.4 Many FFTs for Many Trials

If you have a task-related experimental design, then your data will be cut
into discrete epochs (one epoch would typically correspond to one trial in
the experiment). Frequency-domain analyses then involve computing the
Fourier transform on each trial separately. Then, the power is extracted for
each trial, and finally the average is computed over all trials. The other way
around—averaging in the time domain and then taking the FFT of the trial
average—is often not a useful approach, because much of the oscillatory
activity in task-related data is non-phase-locked to the trial onset and there-
fore will be lost in the time-domain averaging process.

Figure 18.2

In order to attenuate edge artifacts, the data (black line) are tapered (solid gray line)

before computing the FFT. The dotted black line shows the window used to taper the

data. You will see an example of the effects of tapering on the power spectrum later

in this chapter.

Time (a.u.)
20 40 60 80 100

A
m

p
lit

u
d

e
(a

.u
.)

–2

0

2

Tapers taper data

Original data
Tapered data
Hann taper

0

292 III Analyses of Time Series

The function fft accepts 2D input and will return the 1D Fourier trans-
form of each column of the input matrix. This is useful because it allows
you to avoid looping over epochs (trials). In the code below, the variable
data will be a 2D matrix of time by epochs.

dataX = fft(data,[],1);

The second input in the function fft (the number of points) is empty,
which means MATLAB will use the default: the number of points in the
input data. The empty brackets are a placeholder to allow us to specify the
third input, which is the dimension over which we want to compute
the Fourier transform. Here we specify that the Fourier transform should
be applied over the first dimension, which is the time dimension. Comput-
ing the FFT over trials at each time point doesn’t make sense. This is an
important detail, and you should always sanity check the result. One way
to sanity check is by plotting the power spectrum: If you see a power spec-
trum that looks like something you might expect (1/f shape, peaks at some
frequencies, possibly line noise artifacts at 50/60 Hz, etc.), you’ve computed
the FFT along the correct dimension.

Did you notice something missing in that line of code? Of course, you
noticed that there was no tapering. This means that the power spectrum
might be contaminated by edge artifacts.

N = length(data);

hannwin = .5 – cos(2*pi*linspace(0,1,N))/2;

dataTaper = bsxfun(@times,data,hannwin);

dataX = fft(dataTaper,[],1);

Here I used the bsxfun function to multiply the matrix data by the vec-
tor hannwin, and bsxfun figured out how to expand hannwin appropri-
ately over trials. Also notice that I used slightly different code to create the
Hann taper compared to the code that created the Hann taper earlier in the
chapter.

Perhaps you don’t have trials because your data are from resting state or
sleep recordings. It might still be advantageous to cut the data into many
epochs, compute the Fourier transform on each epoch, and then average
the power spectrum together across all epochs, rather than computing one
Fourier transform of the entire time series.

There are two main advantages of epoching continuous data. First, it
increases the signal-to-noise characteristics by averaging together more
data. Second, it allows you to examine changes in spectral power or other
features over time. One disadvantage of epoching continuous data is that

18 Frequency Analyses 293

the frequency resolution will be reduced by having fewer time points, but
in practice the frequency resolution after epoching remains sufficient rela-
tive to the bandwidths of neural oscillations that are typical observed in
EEG/LFP data. Typical epoch lengths are 1–2 seconds.

What’s a good way in MATLAB to epoch continuous data? I’m glad you
asked. The code below will create a continuous time series and then epoch
that time series into however many epochs can be created, given the speci-
fied length of the epochs.

srate = 512;

n = 21*srate; % 21 seconds

data = randn(1,n);

epochLms = 2345; % epoch length in ms

epochLidx = round(epochLms / (1000/srate));

nE = floor(n/epochLidx); % N epochs

epochs = reshape(data(1:nE*epochLidx),nE,epochLidx);

There are several things I’d like to discuss about the code above. First, an
epoch length of 2,345 milliseconds (variable epochLms) is an odd choice,
and I wouldn’t recommend using it in practice; it’s specified like this here
to show that this code will work with any arbitrary length.

The next line of code converts the requested epoch length to a number
of data points, given the sampling rate. In the easy case of a sampling rate
of 1,000 Hz, for example, 2,345 milliseconds would correspond to 2,345
data points.

The exact epoch duration you specify might not be possible given the
sampling rate, which is why the formula is encased in the round function.
If you type epochLidx*1000/srate you will see that in fact these epochs
are not exactly 2,345 milliseconds long, but instead are 2,345.703125 mil-
liseconds long. It’s pretty close, though.

If you compare numel(epochs) to n, you’ll notice that they differ.
That’s because the length of the signal does not evenly fit into an integer
number of epochs. Therefore, some points were dropped at the end of the
signal in order to define equal-length epochs. Although this means sacrific-
ing some data (1,144 time points, in this case), it would be a small headache
otherwise to have N – 1 epochs of the same length (and thus the same fre-
quency resolution) and one epoch with a different number of data points
(and thus a different frequency resolution). If you have limited data and do
not want to sacrifice part of your signal, you could re-epoch the data from
the end so that 1,144 points are cut off from the beginning. Results could
then be averaged across the two sets of epochs.

294 III Analyses of Time Series

From here you can proceed to use the fft function on the epochs
matrix, as illustrated earlier for data. Don’t forget to taper the data.

Another option for epoching continuous data, which works well for
multichannel data, is to use the reshape function. Shall we have a primer
on how the reshape function works? I agree; it would be a good idea. Run
each line below individually and inspect the results.

data = 1:12;

reshape(data,1,[])

reshape(data,[],1)

reshape(data,2,[])

reshape(data,3,4)

reshape(data,4,3)

reshape(data,4,4)

The first reshape function did nothing. We requested to convert the
1-by-12 vector into a 1-by-whatever vector (when you use the empty bracket
in the reshape function, MATLAB interprets that to mean “whatever is left
over”). The variable was already a row vector, so that line simply reshaped
it to itself. The line thereafter reshapes to a column vector (whatever-by-1).
You can also reshape to a 2-by-whatever matrix, or a 3-by-whatever matrix,
and so on.

Reshaping to either 3-by-4 or 4-by-3 results in valid reshapes (note that
3 times 4 is 12, which is the number of elements in the original vector), but
the different reshapes make the matrix look different. The last reshape com-
mand produced an error, because you tried to reshape a 12-element vector
into a 16-element matrix. That’s the MATLAB equivalent of trying to push
a square peg through a round hole.

Now that you understand the reshape function, let’s get back to epoch-
ing multichannel data. You need to be careful to use the reshape function
correctly, because you will soon see that it’s easy to make horrible mistakes
when reshaping.

nchans = 10;

data = randn(nchans,n);

epochs = reshape(data(:,1:nE*epochLidx), ...

 [nchans nE epochLidx]);

The data were epoched incorrectly. How do I know that? Because I
sanity-checked the result.

plot(data(1,1:100),'r'), hold on

plot(squeeze(epochs(1,1,1:100)))

18 Frequency Analyses 295

The first line above plots the first 100 time points from channel 1 in the
continuous data, and the second line plots the first 100 time points from
channel 1 and epoch 1. Those lines should perfectly overlap, but they do
not (figure 18.3, top panel). That’s because the epochs were reshaped over
channels, not over time. So those first 100 “time points” are actually the
first 10 channels looping over the first 10 epochs. Any analysis on the
matrix epochs would produce junk results. But it was a legal MATLAB
operation, and without our sanity check, we might never have known. The
following code will epoch the data correctly.

epochs1 = reshape(data(:,1:nE*epochLidx), ...

 [nchans epochLidx nE]);

plot(squeeze(epochs1(1,1:100,1)),'k')

Figure 18.3

Using the reshape function to convert continuous (channels by time) to epoched

(channels by time by epochs) data must be done carefully. It is easy to make mistakes

with disastrous consequences, so you should always sanity check the results. In the

top panel, the data were reshaped so that “time” and “channels” were swapped; in

other words, the second data point comes from channel 2, not from time point 2.

Time (a.u.)
0 20 40 60 80 100

A
m

p
lit

u
d

e
(a

.u
.)

–2

0

2

Uh oh.

Looks better.

Time (a.u.)
0 20 40 60 80 100

A
m

p
lit

u
d

e
(a

.u
.)

–2

0

2

296 III Analyses of Time Series

Now the black line perfectly overlaps the gray line, meaning we are in
fact plotting the first 100 time points of the first channel (figure 18.3, bot-
tom panel). There are rules for how the reshape function works, and you
could have written accurate code by following those rules. But in my opin-
ion, trying to memorize lots and lots of MATLAB rules is tedious and is
more likely to cause confusion than to prevent errors. Sanity checking is a
preferable strategy that doesn’t require a near superhuman capability to
remember a lot of function-specific rules. And sanity checking forces you to
look at and think about your data, and the closer you are to your data, the
better.

Figure 18.4 shows the results of computing the power spectrum of each
epoch, and then averaging the results over all epochs. You can also see the
effects of applying a Hann taper to the epochs prior to computing the FFT.

Figure 18.4

Power spectra of resting-state human EEG data showing three typical features: 1/f

scaling, a peak at around 10 Hz (the alpha band), and line noise at 50 Hz. Data were

epoched into sixty 2-second epochs, and the power spectrum was averaged across all

epochs. The black line shows the power spectrum of the raw data, and the gray line

shows the power spectrum of the Hann-tapered data. Because the data are attenuated

from the tapering, the two results can be compared only when they are normalized

(bottom plot; normalization is relative to the peak power).

Raw time series
Tapered time series

Frequency (Hz)
50403020100

2

4

6

Frequency (Hz)
50403020100

Po
w

er
 (

n
o

rm
.)

.2

.4

.6

.8

1.0

Po
w

er
 (

μ
V

2)

18 Frequency Analyses 297

Although the overall amplitude decreases, the important metric is the
amplitude relative to other features in the frequency domain (figure 18.4,
bottom plot). In this case, tapering had minimal effect (the alpha-band
peak appears slightly larger), suggesting that—in these data—edges result-
ing from epoching did not cause significant artifacts in the frequency
domain (this should not be interpreted as being generally the case).

18.5 Defining and Extracting Frequency Ranges

The main purpose of a frequency analysis is to isolate certain frequencies or
ranges of frequencies. The logical step after applying the fft function is
therefore to extract power from a frequency or range of frequencies. In
most cases, it is preferable to use a range of frequencies rather than one
single frequency component, in order to increase signal-to-noise ratio and
to reduce the possibility of the result being driven by noise.

The question how to define frequency ranges can be interpreted in two
ways. The simple interpretation is how to implement the definition and
averaging of a range in MATLAB. The more difficult interpretation is how
to determine what frequency boundaries are appropriate in empirical
data sets.

We’ll deal with the easy stuff first. Let’s say you want to extract the power
averaged between 8 Hz and 12 Hz (commonly known as the alpha band in
humans). So far, all you have is a vector of frequency labels (variable hz),
but you don’t know a priori which frequencies correspond to 8 Hz and
12 Hz. It is exceedingly unlikely that this happens to correspond to the
8th and 12th entries of hz.

srate = 1000;

nFFT = 5128;

hz = linspace(0,srate/2,floor(nFFT/2)+1);

hz([8 12])

In this example, the indices 8 and 12 correspond to 1.3 Hz and 2.1 Hz,
which is not even close to the desired alpha band. You can keep trying
other indices until you happen to find an index close to 8 Hz, but this is
time-consuming and not scalable to many frequencies and data sets. We
need an automated way to identify the indices into the variable hz that
correspond to desired frequencies in hertz. Trying to find the exact fre-
quency (find(hz==8)) won’t work (why not?).

There are three methods that will work. One is called the “min-abs” pro-
cedure (not to be confused with the exercise practice of minimizing your

298 III Analyses of Time Series

rectus abdominis muscle groups). It’s worth taking the time to explain how
this works, as an exercise in MATLAB thinking. Let’s start by plotting the
variable hz. You can follow the procedure visually in figure 18.5.

plot(hz)

We want to find the element in the hz vector that contains the value
closest to our desired frequency of 8 Hz. The first thing we’ll do is subtract
the desired frequency from the vector hz.

desfreq = 8; % in hz

plot(hz-desfreq)

The plot is almost exactly the same, except that the line is shifted down
on the y axis. This is useful, because we know that in this new plot, the ele-
ment closest to zero contains the value closest to eight. Now our task has
been reduced to finding the element in this vector (hz-desfreq) that is
closest to zero. We don’t care if we are a bit over or a bit under, so we can
take the absolute value of this function.

plot(abs(hz-desfreq))

Now we’re getting close. We want to find the minimum of this V-shaped
function.

[minval,idx] = min(abs(hz-desfreq));

Figure 18.5

Graphical illustration of the min-abs procedure to identify the index in a vector clos-

est to a specified point. In this example, the goal is to find the frequency in the vector

of frequencies (variable hz) that is closest to 8. We start by plotting this vector (left-

most panel); then subtracting the desired frequency (variable desfreq), which

changes our goal to finding the index closest to zero (middle panel); then taking the

absolute value of this function, which changes our goal to finding the minimum

(right-most panel).

Indices into variable hz

0 200 400 0 200 400 0 200 400

Fr
eq

u
en

ci
es

 (
H

z)

0

5

10

15

20

25

30
hz

H
z

re
la

ti
ve

 t
o

 8

–30

–20

–10

0

10

20

30
hz–desfreq abs(hz–desfreq)

H
z

re
la

ti
ve

 t
o

 8

–30

–20

–10

0

10

20

30

42 4242

18 Frequency Analyses 299

The variable minval is 0.0047, and the variable idx is 42. What do these
numbers mean? Let’s start with idx. Typing hz(idx) reveals that the idxth
value in the vector hz contains the number 7.9953, which is extremely
close to but not exactly 8. In fact, it is 0.0047 Hz off. When finding fre-
quency indices, you will almost never need to know the actual minimum
value, so in practice you can just request the second output.

[~,idx] = min(abs(hz-desfreq));

I like this min-abs construction because it is easy to understand how it
works, and because it works well for indexing any kind of ordinal, ratio, or
interval scale information (frequencies, time points, age, reaction time,
etc.). It also works regardless of whether the data in the vector are linearly
or nonlinearly spaced. The downside is that it works only for 1D vectors,
and only for one point at a time.

The second method you can use to identify a desired frequency in the hz
vector is the MATLAB function dsearchn. This function is also simple and
can handle finding nearest points in N-dimensional space. The main
annoyance is that dsearchn is sensitive to input formatting—it expects
column-format inputs and it will produce an error if the inputs are not to
its liking.

idx = dsearchn(hz,8);

The code above will produce an error message about column dimen-
sions, and a simple transpose on the hz vector will give you an idx of 42,
which is exactly the same answer as we got from the min-abs construction.
That number also happens to be the answer to the ultimate question of life,
the universe, and everything, as discussed elsewhere (Adams 1989).

Finally, the third method is to compute the indices directly from the
frequency resolution. The MATLAB code is presented below. I think this
should be the least preferred solution, because it works only for the per-
fectly linearly spaced frequencies of the Fourier transform. This method
would not generalize to the many data analysis situations in which fre-
quencies are logarithmically spaced, sparsely sampled, or specified based on
a priori justifications. But it’s good to have options.

idx = hz(1+round(desfreq/(srate/n)));

Let’s talk about that code for a minute. The formula for the index is 1 +
d/f, where d is the desired frequency, and f is the frequency resolution. In
the code above, srate/n is the frequency resolution, and desfreq is the
desired frequency. That ratio is unlikely to be an integer, and indices need

300 III Analyses of Time Series

to be integers, so we encapsulate the code into the round function. You’ll
have to figure out on your own why the +1 is necessary, but a hint is to
think about what hz(1) is.

That was a long but important tangent. The goal of this section is to
extract specific frequency ranges from a power spectrum.

desfreq = [8 12]; % boundaries for averaging

idx = dsearchn(hz',desfreq');

pow = mean(abs(dataX(idx(1):idx(2))).^2);

That third line of code is dense. You could separate it into two lines of
code, but it is good practice to be comfortable reading code with multiple
embedded functions. Let’s read that line of code together, starting from the
most deeply embedded part. First, extract the proper range of coefficients
from the Fourier series (dataX(idx(1):idx(2))); second, extract power
from each of those coefficients (abs().^2); third, average the power values
over all frequencies between 8 Hz and 12 Hz (mean()). Technically, the
average is not between 8 Hz and 12 Hz; it is between 7.9953 Hz and 12.0905
Hz. But the brain is never so precise in frequency, so a little bit of simplifica-
tion is fine.

It is important to extract power first and then take the average, rather
than averaging the complex Fourier coefficients and then extracting power.
To the extent that different Fourier coefficients have different phases
(which they will), averaging the complex vectors will reduce the estimate
of power.

The technical aspects of extracting a particular frequency range from the
Fourier coefficients series are straightforward. The more difficult problem is
knowing how to define appropriate boundaries of frequency ranges. To cap-
ture alpha-band activity, is 8–12 Hz really the best range? Or 7–12 Hz, or
8–13.3 Hz? In the literature, you will see quite some diversity in the precise
boundaries of frequency ranges, not just for the alpha band, but for all
frequency bands. This is because there are individual differences in peak
oscillation frequencies, as well as differences between brain regions and
the specific processes elicited by the experimental task if there is one (e.g.,
Haegens et al. 2014). How do you pick the appropriate frequency range for
your data?

The best approach here is a combination of previous literature and visual
inspection of your results. Look for published studies that have similar data
recording and analysis pipelines, and a similar experiment setup, and draw
inspiration from the frequency ranges they used. This can then be refined
by inspection of the power spectral plots of your data. The key feature to

18 Frequency Analyses 301

look for is “bumps” or “peaks” in the power spectrum. These reflect devia-
tions from the 1/f background power spectrum. The ranges you select
should not be too wide (or else they will lose frequency specificity) and they
should not be too narrow (or else the signal-to-noise characteristics will
decrease and your results might be overly sensitive to noise).

18.6 Effects of Nonstationarities

The Fourier transform is always a perfect representation of the time-domain
signal. But that doesn’t mean the Fourier coefficients are always perfectly
interpretable. When the time-domain signal contains nonstationarities, the
Fourier coefficients become less meaningful. The more severe the nonsta-
tionarities, the weirder the frequency representation. These nonstationari-
ties are one of the primary motivations for performing time-frequency
analyses. Here we will explore how nonstationarities in amplitude and in
frequency affect the frequency-domain representation of the signal. First
the amplitude nonstationarity.

t = 0:1/.001:10;

ampl = linspace(1,10,length(t));

signal = ampl .* sin(2*pi*3*t);

The only difference between this sine wave and the typical sine wave
that you learned about in chapter 11 is that the amplitude is a vector rather
than a scalar. The frequency representation of this signal (figure 18.6) still
has a clear peak at 15 Hz, but there is also non-zero power at surrounding
frequencies. Those non-15-Hz frequencies were not present in the signal,
but the side-lobes are necessary for the Fourier transform to capture the
amplitude nonstationarities.

Now let’s try frequency nonstationarities. To create frequency nonsta-
tionarities, you need to learn how to simulate sine waves with time-varying
frequencies. The simplest frequency nonstationarity is called a “chirp” and
involves a linear change in frequency as a function of time.

f = [5 15];

ff = linspace(f(1),mean(f),n);

chirp = sin(2*pi.*ff.*t);

Before evaluating this code, type which chirp. The result you see tells
you that chirp is a MATLAB function. In fact, it’s a MATLAB function
that creates a chirp signal. Using this same name for the variable is bad

302 III Analyses of Time Series

programming. You should rename this variable (perhaps to churp) and
then compute its FFT to obtain the result in figure 18.6.

It is also possible to create a sine wave with frequencies that vary
arbitrarily over time. The third example in figure 18.6 was generated by
defining frequencies from triangles.

18.7 Spectral Coherence

In chapter 11, you learned that power can be extracted from the Fourier
coefficients by multiplying the complex coefficients by their conjugate
(this is equivalent to the distance squared from the origin). To compute
spectral coherence, the Fourier coefficients of one time series are multiplied
by the complex conjugate of the Fourier coefficients of a second time series.
(The linear algebra–inclined reader might recognize this as the Hermitian
dot product.) This means the power of each of the two signals is combined,
scaled by the phase angle between them. The magnitude of this multiplica-
tion is taken as the strength of connectivity. Often, the magnitude is
squared, and the measure is called magnitude squared coherence.

Let’s start with some simulated data to see how spectral coherence works.
Two signals will be generated, each of which contains two frequency

Figure 18.6

This figure illustrates the effects of temporal nonstationarities on the power

spectrum.

Nonstationary
Stationary

0

Frequency (Hz)
1 2 3 4 5 6

A
m

p
lit

u
d

e

1

2

3

4

5

Frequency (Hz)
0 5 10 15

.2

.4

.6

.8

1

Frequency (Hz)
0 5 10 15

.2

.3

.4

.1

Time (s)
0 2 84 6

0

–5

5

Time (s)
0 2 84 6

Time (s)
0 2 84 6

0

–1

1

0

–1

1
A

m
p

lit
u

d
e

18 Frequency Analyses 303

components with one frequency component being synchronous. We could
generate simple sine wave functions, but you already know how to do that.
Let’s move one step forward and learn how to generate a signal with time-
varying frequencies, similar to how FM radio uses time-varying frequency
changes to encode information.

srate = 1000;

t = 0:1/srate:9;

n = length(t);

% create signals

f = [10 14 8];

f_ts1 = (2*pi*cumsum(5*randn(1,n)))/srate;

f_ts2 = (2*pi*cumsum(5*randn(1,n)))/srate;

f_ts3 = (2*pi*cumsum(5*randn(1,n)))/srate;

sigA = sin(2*pi.*f(1).*t + f_ts1) + randn(size(t));

sigB = sigA + sin(2*pi.*f(2).*t + f_ts2);

sigA = sigA + sin(2*pi.*f(3).*t + f_ts3);

Notice that signal B is defined by signal A plus unique dynamics. And
then other unique dynamics are added into signal A. The effect of this code
is that both signals have two frequency components, one of which overlaps
(this overlap is our simulated “connectivity”).

Before moving forward with coherence, let’s have a look at these signals
(figure 18.7). Their frequency fluctuations are too subtle to be detected by
eye (you’ll see more extreme frequency fluctuations later). Inspecting the
power spectra reveals these nonstationarities as “carrot-shaped” frequency
responses. If you have worked with neurophysiology data, you will recog-
nize that these distributions look more physiologic than pure sine waves.
You can modify the code to make the nonstationarities even larger, although
we want the spectra to be fairly narrow in order to recover frequency-
specific coherence.

Once we have our signals, computing spectral coherence is surprisingly
simple: Compute the Fourier coefficients of both signals and point-wise
multiply the coefficients of one signal by the complex conjugate of the
coefficients of the other signal.

% spectral coherence

sigAx = fft(sigA)/n;

sigBx = fft(sigB)/n;

specX = abs(sigAx.*conj(sigBx)).^2;

specX = specX./(abs(sigAx).^2 .* abs(sigBx).^2);

plot(hz,abs(specX(1:length(hz))))

304 III Analyses of Time Series

Notice that the coherence is normalized to the individual power of the
two time series. I’m sure you can see the link between spectral coherence
and correlation—both involve computing the covariance and then normal-
izing it by the product of the individual variances. There are two important
differences between correlation and spectral coherence: (1) correlation
coefficients range from –1 to +1, whereas coherence varies between zero
and one—zero means no coherence and one perfect coherence; there is no
such thing as “negative coherence” (although relative coherence between
conditions or over time can be negative); (2) correlation coefficients are
computed in the time domain and have no inherent spectral interpreta-
tion, whereas spectral coherence is computed in the frequency domain and
can reveal frequency-specific interactions.

Figure 18.7

Two signals were created (A and B), each comprising two spectral components plus

noise. The spectral component at 10 Hz was shared between them, which is how

coherence was simulated. The lower plots show the individual power spectra and the

coherence spectrum.

Time (s)
0

A
m

p
lit

u
d

e

Frequency (Hz)
0 5 10 15

A
m

p
lit

u
d

e

.2

Power: Signal B

C
o

h
er

en
ce

.05

.10

Spectral coher.: A–B

Frequency (Hz)
0 5 10 15

Frequency (Hz)
0 5 10 15

.6

.2

.6

Power: Signal A

4 8

0

–4

+4

0

–4

+4

Time (s)
0 4 8

Time domain: Signal A Time domain: Signal B

18 Frequency Analyses 305

18.8 Steady-State Evoked Potentials

I wrote earlier that it is advisable to use fairly broad frequency ranges to
boost the signal-to-noise ratio of the analyses. One noteworthy exception
to this rule is the so-called steady-state response, which is a rhythmic neural
response to rhythmic sensory input (typically visual, but other modalities
work as well). Let me repeat that sentence with less jargon: If you look at a
strobe light, a large population of neurons in your brain’s visual system will
fire rhythmically in sync with the flickering light. The steady-state visual
evoked potential (SSVEP) is of interest to the cognitive neuroscience and
vision science communities, in part because the amplitude of the SSVEP
correlates with the amount of attention paid to the flickering stimulus
(Norcia et al. 2015).

SSVEPs are a very narrow-band frequency feature, and therefore the anal-
ysis should isolate the stimulation frequency. Figure 18.8 shows an example
of an SSVEP, in which two stimuli were simultaneously presented on the

Figure 18.8

Power spectrum from an electrode over visual cortex in humans during an SSVEP

experiment. The subject saw two images on the monitor, one flickering at 7.5 Hz and

one flickering at 10 Hz. In different conditions, the subject was instructed to attend

to the 7.5 Hz stimulus (black line) or to the 10 Hz stimulus (gray line). The difference

between the power at these frequencies is taken as a measure of attention. The atten-

tion modulation can also be observed at the harmonic frequencies (15 Hz and 20 Hz).

0 5 10 15 20 25

10

20

30

40

50

60

Frequency (Hz)

Attend 7.5 Hz
Attend 10 Hz

P
o

w
er

 (
μ

V
2)

306 III Analyses of Time Series

monitor but flickered at different rates and attention was directed to one or
another stimulus in different conditions. You already know how to analyze
these data—compute the FFT of the data, extract power, and plot the power
spectrum as a function of frequencies—so successfully completing exercise
13 should be no problem.

In SSVEP analyses, it is often useful to convert the data from the scale of
the original data (microvolts or picoteslas) to signal-to-noise ratio (SNR)
units. SSVEP-SNR units can be defined as the ratio of the power at the fre-
quency peak relative to the power at surrounding frequencies. Converting
to SNR units helps normalize and thus make comparable the SSVEP effect
across different frequencies, individuals, and measurement devices (e.g.,
magnetoencephalography and EEG, which have completely different and
therefore incomparable units).

18.9 Exercises

1. The online code doesn’t exactly reproduce figure 18.1. The code is
missing the black circles and the vertical lines. Adjust the code to repro-
duce these features of the figure.

2. Pretend I gave you an array of numbers and asked to you reshape this
array into a matrix of R epochs that each have exactly N data points
(also pretend it’s for some really important mission that will save the
galaxy). You decide to write a function that can do this computation
for arrays of any size. Write a function that takes two inputs (the array
and the requested number of points N per epoch) and provides two
outputs (the epoched data in an R-by-N matrix and an array with what-
ever data are left over)—the code that solves this epoching is already in
this chapter, but you should try to write this function from scratch.
Your function should do some initial input checks to make sure the
input is an array and long enough to create at least two epochs.

3. There is one mistake in each of the following MATLAB code pairs.
Identify and correct the errors.

hz = linspace(0,nyquist,floor(N/2)+1);

hz = linspace(0,nyquist,floor(N/2)-1);

freqres = hz(2)-hz(1);

freqres = hz(1)-hz(2);

hannwin = .5*(1-sin(2*pi*(1:n)/(n-1)));

hannwin = .5*(1-cos(2*pi*(1:n)/(n-1)));

[~,idx] = min(abs(timevec- -200));

[~,idx] = abs(min(timevec - 200));

18 Frequency Analyses 307

4. If you perform a Fourier transform of a signal that contains 200 time
points sampled at 100 Hz, what is the highest frequency (in hertz) that
you can reconstruct? What would the highest frequency be if you had
400 time points?

5. Figure 18.1 showed the effect of an edge in the time domain on the
power spectrum. Is this detrimental for the spectrum of sinusoidal
components? To find out, add a pure sine wave to the variable ts.

6. The online MATLAB material includes a file called mouseHippocam-
pus.mat, which contains 100 trials of LFP recordings from the hippo-
campus. On each trial, a visual stimulus was displayed. Show the power
spectrum from this electrode for two methods of averaging over trials.
First, compute the FFT and extract the power spectrum of each trial,
and then average the power spectra together. Second, average the time-
domain LFP traces together, and then compute the power spectrum.
Show the results on the same plot.

7. How much of the data are lost when tapering? To find out, create a 100-
by-120 matrix of normally distributed random numbers (120 epochs,
each with 100 time points). Then, taper each epoch with a Hann win-
dow (can you do this without a loop?). Make sure you are tapering the
time dimension, not the epoch dimension. At each time point over
epochs, compute the sum of squared errors between the tapered signal
and the original signal. The result will be a 1-by-100 vector of how
much and where information is lost due to tapering. Finally, repeat this
procedure using Hamming and Gaussian windows. Plot the results for
different tapers overlaid on the same window.

8. The variable data is a 3,000-by-60 (time by trials) matrix. What is the
error in the following code, and how can you fix it?

dataX = fft(data)/length(data);

dataPow = abs(dataX(1:length(hz))).^2;

9. Compute the power spectrum of the online data EEGrestingState.mat.
The variable eegdata is a time-by-epoch matrix. Use the entire time
series in one FFT, with and without applying a Hann taper. In one fig-
ure with 2 × 1 subplots, plot in the upper subplot the time-domain
data before (black line) and after (red line on top) applying the Hann
taper. In the lower subplot, plot the power spectrum from the entire
time series without (black line) and with (red line on top) the Hann
taper.

308 III Analyses of Time Series

10. With the same resting-state data, cut the time series into non-
overlapping epochs of two seconds. Then taper each epoch using a
Hann window, take the power spectrum, and then average the power
spectrum over epochs. First do this using a loop over epochs. Then get
rid of the loop by inputting a matrix into the fft function. Check that
the loop and no-loop code produce identical results.

11. Using the epoched resting-state data, compute the power spectrum
using an N parameter for the FFT corresponding to the length of the
entire time series. That is, zero-pad the FFT of the epochs so the fre-
quency resolution is the same for the epochs and for the continuous
time series. Then plot three power spectra on the same plot (don’t taper
the data for this exercise): from the continuous data, from the zero-
padded epoched data, and from the non-zero-padded epoched data.
You might want to scale up the power from the continuous data in
order to make the power spectra more directly comparable.

12. For task-related data, it might not make sense to take the Fourier trans-
form of the entire epoch. Using the data set sampleEEGdata.mat, com-
pute the FFT from electrode FCz (take the power spectrum of each trial
and then average the spectra over trials). First, use the entire epoch
time series, and then compute again using only the data from 0 to 800
milliseconds. Plot the power spectra on top of each other. Keep in mind
that the frequency resolutions will differ, and don’t forget to apply a
taper.

13. Reproduce figure 18.8. The data are in the ssvepdata.mat file in the
online code. It might help to detrend the data before applying the FFT,
and you might want to use a 4,096-point FFT to obtain fine-enough
frequency resolution.

14. SSVEP data are sometimes quantified as SNR units. The frequency of
the stimulus flicker is taken to be the signal (the numerator), and the
surrounding frequencies are taken to be the noise (the denominator).
Compute SNR at each electrode using two methods to quantify the
denominator. First, take the power from frequencies 1 Hz above and 1
Hz below the peak frequency (averaged together). Second, find the
minimum power values from between the peak frequency to –3 Hz,
and from between the peak frequency to +3 Hz. Average those two
power values to use as the denominator. Plot the results in a 1-by-3
array of topographic maps: raw power values at the peak frequency in
the left-most plot, SNR using 1 Hz surrounding values in the middle
plot, and SNR using the surrounding local minima in the right-most

18 Frequency Analyses 309

plot. The color ranges will differ, but you can compare the spatial
distributions qualitatively.

15. One way to attenuate the 1/f characteristic of the power spectrum is to
take the FFT of the first derivative of the time series (sometimes called
“pre-whitening”). The MATLAB function diff takes the derivative,
and the result is length N – 1 (this makes sense: the discrete derivative
of [2 1 4] is [–1 3]). In this problem, you will simulate “pink” noise with
1/f characteristics, add some sine waves, and then compute the power
spectrum before and after pre-whitening. One method to create 1/f
noise is to modulate the power spectrum of white noise and then take
its inverse Fourier transform. The code below does most of the work
for you.

nPnts=1000; nTrials=40;

dataX = fft(randn(nPnts,nTrials));

modfunc = linspace(-1,1,nPnts).^2;

data =

Make sure data is a nPnts-by-nTrials real-valued matrix. Next,
add two sine wave components to the signal, one of 5 Hz and one of 60
Hz. Then, take the FFT of the signal on each trial and average the power
spectra together. Do this before and after pre-whitening the signal. Plot
the power spectra on the same plot.

How could you sanity check the result? (Hint: What should be the
size of the matrix before versus after applying the diff function?)
With this in mind, do you need to have different frequencies vectors
for the raw versus pre-whitened signals?

16. Name two of the major limitations of the Fourier transform for neuro-
science data analyses.

17. You perform a Fourier transform of a signal that is sampled at 100 Hz.

a. What would be the highest frequency (in Hertz) that you can
reconstruct if there are 200 time points?

b. What would be the highest frequency if there were 400 time
points?

c. What would be the highest frequency if there were 4,000 time
points?

d. What would be the highest frequency if there were 4 × 10100
(a googol) time points?

310 III Analyses of Time Series

18. What is the error in the following code? Write code to perform the
following sanity check: Create a 1-second sine wave at 13 Hz using a
sampling rate of 1 kHz. Then plot the power spectrum of that sine wave
and identify the frequency of the peak power. If the peak is not 13 Hz,
then the frequencies vector is incorrect. You should use the datacur-
sormode tool to check the exact frequency.

hz = linspace(0,srate/2,floor(n/2));

The previous chapter introduced you to frequency-domain analyses of time
series data. You also saw that when the time series data contained nonsta-
tionarities (meaning that the statistical characteristics of the signal such as
mean, variance, frequency structure, and so forth, changed over time), the
results of the Fourier transform were difficult to interpret. This is quite
problematic for neuroscience, because the brain is a highly nonstationary
machine. Indeed, it is no understatement to write that the vast majority of
the research into the functional organization of the brain is focused on the
nonstationarities in brain activity; that is, the changes in brain activity dur-
ing sensory processing, memory, language, motor planning, and so on.

Enter time-frequency analyses. The idea of time-frequency analyses is to
combine the advantages of time-domain and frequency-domain analyses
while demanding only minimal sacrifices from either. Time-frequency anal-
yses have been applied in neuroscience for decades and have been growing
in popularity in recent years.

One thing to be aware of is that time-frequency–based analyses, unlike
frequency-domain analyses, are lossy analyses. That means information is
lost when going from the time domain to the time-frequency plane. This
isn’t a bad thing, because the goal of time-frequency analyses is to stay in
the time-frequency plane. But unlike with the Fourier transform, it is
not possible to reconstruct a time-domain signal from the time-frequency
representation as implemented in the methods presented in this chapter
(technically, it is possible, but it would entail a loss of information).

Time-frequency analysis is a big topic, much too big to cover fully in one
chapter. Entire books have been dedicated to the application of time-
frequency analyses in neuroscience and cognitive neuroscience (oh, just to
pick one example at random: Cohen 2014). This chapter is an introduction
to these methods with a stronger focus on the MATLAB programming than
on the justifications of the analyses.

19 Time-Frequency Analysis

312 III Analyses of Time Series

19.1 Complex Morlet Wavelets

A Morlet wavelet is a sine wave tapered by a Gaussian. You can probably
guess that a complex Morlet wavelet is a complex sine wave tapered by a
Gaussian. Let’s first have a look at this wavelet before learning what to do
with it (figure 19.1).

srate = 1000;

wavtime = -2:1/srate:2;

frex = 6.5;

s = 5/(2*pi*frex);

csine = exp(2*1i*pi*frex*wavtime);

Figure 19.1

A complex Morlet wavelet is a complex sine wave tapered by a Gaussian. The top plot

shows the 3D time-domain representation of a Morlet wavelet, and the bottom plot

shows the power spectrum of the wavelet.

Time (s)
0

1

–1

2

–2

.5
0

–.5Real part

.5

0

–.5Im
ag

in
ar

y
p

ar
t

Frequency (Hz)
0 2 4 6 8 10 12 14 16

0

.04

.08

.12

.16

A
m

p
lit

u
d

e

19 Time-Frequency Analysis 313

gaus = exp(-(wavtime.^2) / (2*s^2));

cmw = csine .* gaus;

plot3(time,real(cmw),imag(cmw))

rotate3d

Notice that the time vector used to create the wavelet starts and ends at
the same distance away from zero. This is important because (1) the wavelet
will be centered at zero, which prevents phase shifts from being introduced,
and (2) the wavelet will have an odd number of points, which makes con-
volution convenient (this was discussed in chapter 12).

A complex Morlet wavelet involves the product of two exponentials. You
might remember from your high-school algebra class that exponents of the
same base can be condensed by summing those exponents. In other words,
exey = ex+y. Therefore, the implementation of the wavelet can be shortened.

cmw = exp(2*1i*pi*frex*wavtime-(wavtime.^2)/(2*s^2));

And now let’s see what the wavelet looks like in the frequency domain.
A neat feature of Morlet wavelets is that they have a Gaussian shape in the
frequency domain.

cmwX = fft(cmw);

hz = linspace(0,srate/2,floor(length(wavtime)/2)+1);

plot(hz,abs(cmwX(1:length(hz))))

There are two parameters that define a Morlet wavelet. One is the fre-
quency, which defines the frequency of the sine wave in the time domain
and the peak frequency of the wavelet in the frequency domain. This is the
variable frex in the code above.

The second parameter is the width of the Gaussian, which defines the
width of the wavelet in the time domain and the width of the Gaussian in
the frequency domain. This parameter determines the trade-off between
temporal and frequency precisions. It is indicated by the variable s in the
code above. The denominator is actually just a frequency-specific scalar;
the number before it (“5” in the code above) sets the width. In publica-
tions, this number is often called the “number of cycles.” The higher this
number, the wider the Gaussian. You will see in exercise 3 of chapter 20
that a higher number of cycles parameter creates wider wavelets in the
time domain and narrower Gaussians in the frequency domain. Higher
numbers result in better frequency precision but worse temporal precision,
and lower numbers result in better temporal precision but worse frequency
precision. Typical values are somewhere around 4–12, depending on the
goal of the analysis.

314 III Analyses of Time Series

19.2 Morlet Wavelet Convolution

Assuming you haven’t just started reading this book at this chapter
(although it would be understandable—time-frequency analyses are great),
you now know everything you need to know to perform wavelet convolu-
tion: how to create wavelets, how to perform convolution, and how to
extract power and phase information from the complex dot products that
result from convolution. All we need are some data. Let’s start with that
linear chirp from the previous chapter that produced the plateau-shaped
Fourier power spectrum (see figure 18.6). We will see whether Morlet wave-
let convolution is useful for characterizing nonstationary signals (spoiler: it
works well providing the nonstationarities are slower than the width of the
Gaussian).

The signal is the same as created in the previous chapter. We can dis-
pense with the time-domain convolution and go straight to frequency-
domain implementation, as promised by the convolution theorem.

nData = length(time);

nKern = length(wavtime);

nConv = nData+nKern-1;

halfwav = floor(length(wavtime)/2)+1;

as = ifft(fft(cmw,nConv) .* fft(signal,nConv));

as = as(halfwav:end-halfwav+1);

plot(time,abs(as).^2)

I won’t reiterate the mechanics of convolution, but I would like to draw
your attention to the different time vectors (and therefore different lengths)
that define the signal and the wavelet. It is important, however, that they
have the same sampling rate. Very important.

Figure 19.2 shows the time course of power at 6.5 Hz. Why does it peak
near the center? Because that’s where the chirp goes through 6.5 Hz on its
way up to 10 Hz. Try re-running the code above but changing the frequency
of the wavelet. You’ll notice that as the wavelet frequency gets closer to 2
Hz, the power peaks earlier, and as the wavelet frequency gets closer to 10
Hz, the power peaks later. Next try changing the width of the Gaussian (the
number of cycles) while leaving the frequency the same. What happens to
the result, and why?

19.3 From Line to Plane

Single-wavelet analyses were hip in the 1980s, before smartphones and
before Twitter (hard to believe, I know, but humans managed to squeak out

19 Time-Frequency Analysis 315

a meager existence before technology saved us). To appreciate the time-
frequency dynamics of a signal, we need to see the changes over time and
over frequency simultaneously. This means many wavelets and a time-
frequency plane instead of a line.

There’s no big mystery about how to create a time-frequency plot. You
simply repeat wavelet convolution over many frequencies and then show
the results as an image.

nFrex = 30;

frex = linspace(1,15,nFrex);

s = linspace(4,12,nFrex) ./ (2*pi.*frex);

sigX = fft(signal,nConv);

tf = zeros(nFrex,length(signal));

for fi=1:nFrex

 cmw = exp(2*1i*pi*frex(fi)*wavtime + ...

 -(wavtime.^2)/(2*s(fi)^2));

 cmwX = fft(cmw,nConv);

 as = ifft(sigX .* cmwX);

 tf(fi,:) = abs(as(halfwav:end-halfwav+1))*2;

end

Figure 19.2

A linear chirp (top panel) and the time course of power of that signal at 6.5 Hz

(bottom panel).

Time (s)
0 2 4 6 8 10

Signal

6.5 Hz power

0

1

–1

0

1

2

A
m

p
lit

u
d

e
A

m
p

lit
u

d
e

(x
10

4)

316 III Analyses of Time Series

There are two things to point out about this code. First, the fast Fourier
transform (FFT) of the signal was computed before the frequency loop. The
signal doesn’t change inside the loop, and so recomputing its FFT inside the
loop is redundant. Second, the variables frex and s are now defined as vec-
tors, not single numbers. Inside the loop, each element of frex and s is
called to make each wavelet be frequency- and width-specific.

This is the first time we are writing a loop over frequencies and defining
wavelets. This is an important part of the analysis, so it’s a good idea to stop
and do a sanity check. We can do this by plotting the real part of the wave-
let and its power spectrum inside the loop. You should always inspect the
wavelets (or any other kernel used in data analysis). You want to look at the
time-domain version of the kernel to make sure you recognize the Gauss-
ian-tapered sine wave, and you want to look at the frequency-domain ver-
sion to make sure the power spectrum peaks at the right frequency. The two
most common problems I’ve seen when creating complex Morlet wavelets
are using i instead of 1i when i was previously defined to be a variable,
and mis-specifying s.

hz = linspace(0,srate/2,floor(length(wavtime)-1)/2);

for fi=1:nFrex

 cmw = exp(2*1i*pi*frex(fi)*wavtime + ...

 -(wavtime.^2)/(2*s(fi)^2));

 cmwX = fft(cmw,nConv);

 subplot(211), plot(real(cmw))

 subplot(212), plot(hz,2*abs(cmwX));

 title(['Frequency = ' num2str(frex(fi))])

 pause

end

The pause command freezes MATLAB until you press a key on the key-
board. Run the code and keep pressing keys until the loop finishes (if you
press keys and the plot doesn’t update, try mouse-clicking on the figure or
on the Command window; if you get bored, you can press Ctrl-c to break
out of a pause function). If you are disappointed in what you see, then you
have a good eye. There is something wrong with that code that causes a
mismatch between the peak in the power spectrum and what should be the
peak frequency of the wavelet.

Once you find and fix the error, you should see that these wavelets all
look fine. (Hint: How do you determine the frequency resolution when
creating the vector of frequencies?) Now we can move forward and look at
the results.

contourf(time,frex,tf,40,'linecolor','none')

19 Time-Frequency Analysis 317

There are three striking features about this plot (figure 19.3). First of all,
it looks pretty neat, like a comet careering through the sky (the color ver-
sion of the figure looks better). Second, it seems to represent the chirp rea-
sonably well, although it is smoother than the chirp itself. Here you see
how wavelet convolution (and many other time-frequency methods) can
smooth the results. Try changing the ranges of the number of cycles to see
how this affects the smoothness of the plots. However, don’t eschew the
smoothing. There is noise in data, there are nonstationarities in brain sig-
nals, and there is natural variability in the precise timing and frequencies of
activity over trials, conditions, and individuals. Some amount of smooth-
ing is beneficial. I would even venture a stronger statement and say that
most of the time (there are always some exceptions), having amazing preci-
sion in time and in frequency will only negatively impact your results,
particularly when doing group-level analyses. By analogy, consider spatial
locations: You wouldn’t assume that a single neuron at some xyz coordinate
has exactly the same function in every single person; instead, you assume
that some patch of brain tissue has a common function, and applying a
bit of spatial smoothing will help make that patch comparable across
individuals.

The third striking feature of figure 19.3 is that the amplitude decreases
with increasing frequency. In this case, this is not due to 1/f scaling,
but instead is due to the wavelets not being normalized per frequency.
This means that the amplitude of the original signal is incorrectly

Figure 19.3

A time-frequency representation of a linear chirp, computed via Morlet wavelet

convolution.

Time (s)
0 2 4 6 8 10

Fr
eq

u
en

cy
 (

H
z)

2

4

6

8

10

12

14

0

250

500

318 III Analyses of Time Series

reconstructed. You can see this by adding a color bar (type colorbar).
The color range goes from zero to somewhere around 3,000. But the
amplitude of the chirp is a constant 1.0. You can also see the incorrect
amplitude in figure 19.2.

The easiest way to normalize Morlet wavelets for convolution is by
scaling their amplitudes to a value of one in the frequency domain. Try
re-running the previous code, but this time, insert the following line after
taking the Fourier transform of the wavelet.

cmwX = cmwX ./ max(cmwX);

And then re-create figure 19.3 and observe the accurate amplitude recon-
struction. If you look carefully, you will observe that the reconstruction is
not exactly perfect, because the frequency structure of the signal is chang-
ing faster than the width of the wavelets, which produces some inaccura-
cies. Still, it’s pretty good. Max-value-normalizing works for wavelets that
integrate to zero in the time domain. This normalization is not guaranteed
to reconstruct accurate amplitudes for all kernels.

A brief tangent about amplitude versus power. Power, being amplitude
squared, will exaggerate the features of the time-frequency response; that is,
relatively large amplitude values will become relatively larger power values.
People generally think about squared numbers as being larger than their
unsquared progenitors, but remember that the square of a number between
zero and one is actually smaller than the original number. Try replacing
amplitude in the code above with power.

You may have noticed that the frequencies of the wavelets were not con-
strained the same way frequencies in the Fourier transform are constrained.
This is one of the primary reasons why I wrote in the beginning of this
chapter that time-frequency decomposition as presented here is a “lossy”
conversion. The time-frequency plane is typically constructed using only
the frequencies of interest in the data analysis, not the full possible range of
frequencies.

Frequencies can be scaled linearly or logarithmically. Linearly spaced fre-
quencies were created above, and you’ve seen the function linspace in
the Fourier transform chapter as well. Now it’s time to learn how to create
logarithmically spaced numbers. The MATLAB function is logspace, and
you might be tempted to use it the same way you’d use linspace. For
example, if you wanted to have 10 logarithmically spaced numbers between
2 and 20:

logspace(2,20,10)

19 Time-Frequency Analysis 319

But this produces an unexpected result. The numbers are very large. Any
idea what’s going on? If you look at the first number, you might recognize
that MATLAB turned your “2” into “100.” 100 is 102. And the last number
in this series is 1020. The function logspace returns numbers as 10 to the
power of the inputs. The way to use the logspace function as you might
want to use it is to convert the inputs to base 10.

frex = logspace(log10(2),log10(20),10);

19.4 From Single Trial to Super-trial

If you have a task-related experiment, you will need to perform wavelet
convolution on all trials. This means having a loop over trials, taking the
FFT of the data from each trial, looping again over frequencies, and running
convolution per trial and per frequency. “But Mike,” you are probably
thinking right now, “can’t we do this without violating the avoid-loops-
whenever-possible principle?” Yes we can.

This can be done by reshaping the 2D matrix of time-by-trials into a 1D
matrix of time-trials. As long as the N for convolution is properly com-
puted, the result will be comparable to the result of single-trial convolution.
Let’s have a look.

data = squeeze(EEG.data(47,:,:));

data = reshape(data,1,[]);

← convolution here →

as = reshape(as,size(data,1),size(data,2));

If you have multichannel data, it is also possible to concatenate data
over channels to have a channel-time-trial vector. But in my experience,
that ends up being such an incredibly long vector that MATLAB will
run into memory problems. So you might want to keep the loop over
channels.

After the analytic signal—the result of convolution between the time-
trial vector and a Morlet wavelet—is reshaped back to a 2D time-by-trials
matrix, the power and phase-angle time series can be extracted (figure
19.4). Trial-averaged power shows a clear stimulus-related increase in activ-
ity, as well as edge artifacts that will be discussed in the next section. Inter-
trial phase clustering (ITPC) is a measure of the consistency of phase angles
over trials at each time point and provides insight into the likelihood of
frequency-band-specific activity taking on similar temporal configurations
over trials.

320 III Analyses of Time Series

Fi
g

ur
e

19
.4

M
u

lt
it

ri
al

 d
at

a
ca

n
 b

e
co

n
ca

te
n

at
ed

 i
n

to
 a

 s
in

gl
e

ve
ct

or
, t

h
en

 c
on

vo
lv

ed
 w

it
h

 a
 M

or
le

t
w

av
el

et
, a

n
d

 t
h

en
 r

es
h

ap
ed

 b
ac

k
to

 a
 t

im
e-

by
-t

ri
al

s

m
at

ri
x

(t
op

 p
an

el
s;

 e
ac

h
 g

ra
y

li
n

e
is

 a
 t

ri
al

).
 T

h
e

lo
w

er
 p

an
el

s
sh

ow
 t

ri
al

-a
ve

ra
ge

d
 p

ow
er

 a
n

d
 I

T
PC

 (
in

te
r-

tr
ia

l p
h

as
e

cl
u

st
er

in
g,

 w
h

ic
h

 r
ef

le
ct

s

th
e

co
n

si
st

en
cy

 o
f

p
h

as
e

an
gl

es
 o

ve
r

tr
ia

ls
 a

t
ea

ch
 t

im
e

p
oi

n
t)

.

T
im

e
(m

s)
0

–5
00

50
0

10
00

T
im

e
(m

s)
0

–5
00

50
0

10
00

01020 34

99
 t

ri
al

s

A
ve

ra
g

e
A

ve
ra

g
e

99
 t

ri
al

s

0.2.4

ITPC

π

Phase (rad.) –π0

Amplitude (μV
2
)

19 Time-Frequency Analysis 321

Box 19.1

Name: Arnaud Delorme

Position: Professor

Affiliation: CerCo, CNRS, Toulouse, France

Photo credit: Arnaud Delorme

When did you start programming in MATLAB, and how long did it take

you to become a “good” programmer (whatever you think “good” means)?

I learned Octave during my PhD and wrote some small programs. However, I

only started to delve into MATLAB in my postdoc at the Salk Institute when I

started to work on EEGLAB, which was originally only designed to streamline

my own research.

What do you think are the main advantages and disadvantages of

MATLAB?

I program in many other languages including Python and R. I am one of the

few programmers I know who defends MATLAB.

Our users want to achieve results fast and spend the minimum time

programming. Some of them have no programming experience. Python, for

example, is not a language for beginners. It is too structured and is designed

for professional programmers (0 for first index of matrices as in C while in

MATLAB it is 1, which is more intuitive to naïve users; in Python, you have to

322 III Analyses of Time Series

install the numpy library to deal with matrices, which is not necessary in

MATLAB; when dealing with matrices, Python also assumes object-oriented

programming terminology, which can be difficult to grasp for naïve users).

The indenting format of Python is also confusing for beginners (and this pre-

vents the code from being copied and pasted to the Python command line as

in MATLAB). Python is an elegant language but not one I would recommend

to a novice.

R syntax is very similar to MATLAB. It is intuitive and simple. The problem

with R is the quasi absence of high-performance computing solutions.

I agree that MATLAB might not be as elegant and structured as other pro-

gramming languages. However, it does the job for beginners and nonprogram-

mers, and I think this is what counts. These users are not interested in learning

to program. They want to get results with minimal programming efforts and

knowledge.

Do you think MATLAB will be the main program/language in your field

in the future?

In the long term, I do not think so and I do not hope so. I hope some open-

source language will take precedence because the scientific community should

be in charge of developing such tools.

How important are programming skills for scientists?

It depends on what level one is dwelling. The best scientists I know can pro-

gram. However, they are not the best programmers either. Programming is

an important skill for a scientist, but it is not the most important one.

Statistics, for example, is a skill that I think is more important than pro-

gramming. Then, intuition and rigorous experimental design are also two

skills that might be more important than programing. Of course, the abilities

to write journal articles and to write grants are the most important skills a

scientist in our society can have. This is why languages like MATLAB are

important. It takes the burden off programming. It shortens the path from

thinking about a way to analyze the data and implements it.

Any advice for people who are starting to learn MATLAB?

My advice would be to use your intuition and try out solutions in the MAT-

LAB command line when you write scripts. Beginners should not start by

writing a stand-alone MATLAB script or function in one shot. Beginners and

even advanced users might want to copy and paste small snippets of code on

the MATLAB command line to test them. When writing a MATLAB function,

beginners might want to start writing a script first, then convert the script to

a function once they are done. This solution makes it easier to access the

variable inside the script/function while designing it.

19 Time-Frequency Analysis 323

19.5 Edge Artifacts

Where there are edges, there will be edge effects. In the previous chapter,
you learned that edges can be attenuated by tapering the data. With wave-
let convolution, it works a little bit differently. First of all, notice that wave-
lets have no sharp edges, neither in the time domain nor in the frequency
domain (see figure 19.1). The edges come from the data, in particular, at the
first and final data points. Whether you work with single trials or create a
time-trial vector, there will be edges at the boundaries between trials.

Before talking about what to do about these edges, let’s see what edge
artifacts look like in the time-frequency plane. Watch what happens when
the same edgy time series from the previous chapter is convolved with
wavelets. Only the result is shown here (figure 19.5); one of the exercises at
the end of this chapter is for you to re-create this figure. (Hint: Copy the
code from earlier in this chapter and replace the data.) There are two things
to notice in this figure. First of all, although this picture might make a great
T-shirt, it’s a horrible artifact and you definitely do not want this to con-
taminate your data. Depending on the size of the edge, the artifacts in the

Figure 19.5

Sharp edges in a time domain have large-magnitude and multifrequency representa-

tions in the time-frequency plane. If the edges are artifacts, their time-frequency

representations may overshadow the brain-related dynamics.

Time (s)
.6 1 1.4

Fr
eq

u
en

cy
 (

H
z)

1

50

100

A
m

p
lit

u
d

e

1

0

Time domain

Time-frequency
domain

324 III Analyses of Time Series

time-frequency plane could be orders of magnitude larger than the brain-
generated dynamics in your signal.

The second thing to notice is that the artifacts do not last forever. We can
use this to our advantage. Most edge artifacts subside in one or two cycles
of the frequency of the wavelet (e.g., the edge artifact in a 10 Hz wavelet
will last 100–200 milliseconds). One solution to edge artifacts in time-fre-
quency analyses is to make sure they are far away from the data you want
to interpret. This is accomplished by making sure the data epochs are wide
enough to allow for three cycles of the lowest frequency before any time
period that you care about. If the lowest frequency you want to analyze is 2
Hz, then you should make sure to have 1,500 milliseconds (500 ms per
cycle times 3 cycles) before the earliest time point you want to include in
your analyses (e.g., the start of the baseline period) and 1,500 milliseconds
after the last time point you want to include in your analyses.

If your data are already cut into epochs that are too short, and if it is not
possible to re-cut the epochs from the continuous data, you can use a pro-
cedure called reflection. Reflection is a signal processing trick to avoid edge
artifacts. The idea of reflection is to make the time series three times as long
by concatenating a flipped version of the time series to the beginning and
to the end. It’s like putting a mirror on both sides of the time series. The
edge artifacts will contaminate the flipped time series, and these can then
be discarded prior to analyses. For visual clarity, the exercise below will
illustrate reflection using the derivative of a Gaussian (figure 19.6).

t = -1:1/srate:3;

x = diff(exp(-t.^2));

reflex = [x(end:-1:1) x x(end:-1:1)];

Figure 19.6

Reflection procedure that can be used to attenuate edge artifacts in short epochs.

Original

Re�ected Re�ected

19 Time-Frequency Analysis 325

Just make sure not to interpret any of the reflected results, lest you think
that the brain works backward.

19.6 STFFT

STFFT stands for short-time fast Fourier transform (sometimes the non-furi-
ous people drop the “fast” and just go with STFT). STFFT is a different tech-
nique for extracting time-frequency information from a time series, but it
produces qualitatively similar results as complex Morlet wavelet convolu-
tion. Therefore, I will review the STFFT method only briefly as an excuse to
go over a bit more MATLAB.

The idea of the STFFT is to compute the FFT on a limited window of
time; for example, a few hundred milliseconds. The power spectrum from
that window is then stored in a separate matrix. Then the time window is
shifted by some amount (e.g., 100 milliseconds), and an FFT is taken on the
data from that window. This creates a time series of power spectra from
temporally shifted FFTs. The code below will set up the timing parameters
for the STFFT, including the window width, the number of time points
around which to compute the FFT, and the frequencies vector (remember
that the frequency resolution is defined by the smaller time windows, not
the length of the entire time series).

fftWidth_ms = 1000; % FFT width in ms

fftWidth = round(fftWidth_ms/(1000/srate)/2); % in ms

Ntimesteps = 50; % number of time widths

ct = round(linspace(fftWidth+1,n-fftWidth,Ntimesteps));

% figure out Hz vector for our FFT width

hz = linspace(0,srate/2,fftWidth-1);

% Hann window for tapering

hwin = .5*(1-cos(2*pi*(1:fftWidth*2)/ (fftWidth*2–1)));

After specifying parameters, we loop through time points (the center
time points are in variable ct), extract a window of 1,000 milliseconds
around each center time point, apply a Hann taper, and then compute the
FFT. A question for you—when defining the center time points, why doesn’t
the code take linearly spaced points between 1 and n?

Now we’re ready to go. Let’s test the STFFT on the same chirp signal used
earlier (variable signal). That will facilitate a comparison between Morlet
wavelet convolution and STFFT. It’s always a good idea to test multiple
analysis methods on the same data.

326 III Analyses of Time Series

tf = zeros(length(hz),length(ct));

for ti=1:length(ct)

 tdat = signal(ct(ti)-fftWidth:ct(ti)+fftWidth-1);

 x = fft(hwin.*tdat)/fftWidth;

 tf(:,ti) = 2*abs(x(1:length(hz)));

end

A few things to notice about this code. The width of the FFT provides the
temporal precision, but it also constrains the frequency resolution. There
is a trade-off here between having shorter windows to increase temporal
precision versus having longer windows to increase frequency resolution.
Common values are in the range of hundreds of milliseconds, but these
windows should be sized according to your expectations about the rate of
changes in the data.

The temporal resolution of the result is determined by the center time
points (variable ct). This means that the time-frequency result will not
have the same resolution as the original data. This usually isn’t a problem
because of the temporal smoothing inherent in time-frequency analyses.
But this feature makes STFFT different from complex Morlet wavelet convo-
lution, which produces an estimate of time-frequency activity at each
time point.

Next is the loop over time points. This is different from wavelet convolu-
tion, in which there is a loop over frequencies. Here, the frequencies are all
computed simultaneously during the FFT. At each iteration inside the loop,
the data corresponding to the tith time window needs to be cut out and
tapered with a Hann function (or any other tapering function), and then
the FFT can be computed as you have previously done. The example above
has only a single trial of data, but as you know, the fft function works on
2D data. Just make sure to compute the FFT over the correct dimension.

To plot the results, you need to compute the vector of frequencies in
hertz. Make sure to compute the hz vector based on the number of time
points in the FFT, not the total number of time points in the entire trial.
Results are shown in figure 19.7.

Given certain parameter selection, the STFFT can produce the
same results as wavelet convolution and other time-frequency analysis
methods (Bruns 2004). There are, however, several important differences
in implementation.

1. In wavelet convolution you get to define the frequencies, whereas the
frequencies in the STFFT are defined by the number of time points in
the window.

19 Time-Frequency Analysis 327

2. Wavelet convolution natively provides time-frequency results with
the same temporal resolution as the original data. Obtaining high
temporal-resolution power estimates from the STFFT requires moving
the time window forward by the smallest time step, which is time-
consuming relative to wavelet convolution, though simple to
implement.

3. Wavelet convolution can estimate activity at all time points, even the
first and last time points. The STFFT cannot estimate activity within
one half of the width of the time window at the beginning and end of
the signal because each FFT has a center time point. These edges are
typically contaminated by artifacts and are therefore typically uninter-
pretable, but having the same time points often simplifies subsequent
analyses.

19.7 Baseline Normalization

So far in this chapter, we’ve been computing “raw” power. There are several
limitations of interpreting and analyzing raw power that motivate comput-
ing and interpreting normalized power:

1. 1/f scaling of brain activity impedes direct comparisons of activity
across frequencies.

2. Ongoing task-unrelated activity can obscure smaller (and possibly
more theoretically meaningful) effects.

Figure 19.7

Results of the STFFT applied to the linear chirp. You can compare this result with that

in figure 19.3.

Time (s)

1 3 5 7 9

Fr
eq

u
en

cy
 (

H
z)

0

5

10

15

0

1

.8

.6

.2

.4

328 III Analyses of Time Series

3. Relative decreases in power can be difficult to observe.
4. Normalized power is normally distributed under the null hypothesis

and is therefore more amenable to statistical evaluation.
5. Absolute power differences across experiments, electrodes, individuals,

recording equipment, and so forth, are often difficult and sometimes
impossible to interpret. A simple example is comparing EEG (micro-
volts) with MEG (picoteslas). Relatedly, different electrode referencing
montages will change the “absolute” power values.

Baseline normalization shifts and scales the data on the y axis. It has no
effect on the shape of the activity over time. To illustrate this, we will simu-
late data with the same overall shape but different scales. You’ll see that the
raw data are incomparable but the baseline-normalized responses are easily
visually and numerically comparable. Our two signals will be the same sinc
function with different DC offsets.

time = -2:1/100:5; % 100 Hz sampling rate

mothersig = sin(2*pi*5* (time-3))./(time-3);

sig1 = mothersig + 2000;

sig2 = mothersig + 200;

Next, we apply a baseline normalization. Below I’ll use decibel (dB) nor-
malization, which is defined as 10 log10(a/b), where a is the activity and b
is the baseline. The baseline will be defined as the average signal between
–1.5 and –0.5 seconds.

basePow1 = mean(sig1(:,baseidx(1):baseidx(2)),2);

sig1DB = 10*log10(bsxfun(@rdivide,sig1,basePow1));

basePow2 = mean(sig2(:,baseidx(1):baseidx(2)),2);

sig2DB = 10*log10(bsxfun(@rdivide,sig2,basePow2));

plot(time,sig1DB,time,sig2DB)

It is clear from figure 19.8 that the signals are comparable only after
baseline normalization. Zooming in to one of the signals will show that the
overall shape of the function has not changed (hint to people reading this
in the lab: this works better using the zoom function on your computer
screen than putting this book under a microscope).

The important part of normalization is to divide the “interesting”
activity by the “baseline” activity. This division provides the scale- and
frequency-independent normalization; a linear subtraction of the baseline
will not suffice. If you have a single time series, then decibel normalization
involves dividing the entire time series by a single number. In case of multi-
channel or multicondition data, this can be simplified to dividing each row

19 Time-Frequency Analysis 329

in a matrix by each element in a vector. That requires expanding the vector,
which can be accomplished using the bsxfun function (you’ll get to prac-
tice this in the exercises). Taking the estimate of the baseline activity as the
average activity over a time period (e.g., –300 to –100 ms) rather than as a
single time point (e.g., only –100 ms) is generally a good idea to increase
the signal-to-noise characteristics of the baseline.

Decibel conversion involves taking a logarithm and therefore works
only for positive values (the log of negative values is undefined, and pro-
duces Inf, or infinity, in MATLAB). This normalization is therefore most
frequently used for power, because power values cannot be negative.

Decibel normalization is not the only valid method for baseline normal-
ization. Percent change, for example, works the same way as decibel
normalization, except the formula is different: 100*(activity − baseline)/
baseline. Notice that both decibel and percent change normalizations
involve dividing by the baseline activity. Sometimes, z-normalizations are
also used (subtracting the mean baseline power and dividing by the stan-
dard deviation in the baseline period). This method can be suboptimal
because it is sensitive to the variance in the baseline period.

Figure 19.8

The top panel shows two time series that have large offsets. It’s difficult to compare

their fluctuations visually. Baseline-normalizing the time series (lower panel) puts

both time series on the same scale and therefore facilitates direct comparison.

Time (sec.)
0–1 1 2 3 4 5

d
B

 a
m

p
lit

u
d

e
R

aw
 a

m
p

lit
u

d
e

0

.2

.6

0

1000

2000

330 III Analyses of Time Series

19.8 Time-Frequency Analysis in Real EEG Data

Now let’s apply our new skills to real data. Figure 19.9 shows results of a
time-frequency decomposition using complex Morlet wavelet convolution
of human EEG data from one electrode (code is not provided to create this
figure—that’s going to be your mission!). The new feature in the figure is
the overlay of the event-related potential (ERP)—the time-domain trial
averaged signal. Overlaying the time course is somewhat complicated by
scales: the y axis of the ERP time course is microvolts, but the y axis of the
time-frequency plot is frequency. Those are incomparable, so the time
course needs to be amplitude-normalized. This is a two-step process: first,
normalize the ERP amplitude to have a minimum of 0 and a maximum of
1; second, rescale the amplitude to the y-axis limits of the image.

erp = (erp-min(erp))./max(erp-min(erp));

yscale = get(gca,'ylim');

erp = erp*(yscale(2)-yscale(1))+yscale(1);

Figure 19.9

Time-frequency power map of human EEG data. Overlaid on top is the event-related

potential, the time-domain average signal.

Time (ms)

0 400 800 1200

Fr
eq

u
en

cy
 (

H
z)

5

10

20

30

40

15

25

35

–3

3

d
B

 ch
an

g
e fro

m
 b

aselin
e

19 Time-Frequency Analysis 331

19.9 Exercises

1. In the code for figure 19.5, uncenter the Morlet wavelet by defining
wavtime from –2 to +3 seconds (also try other ranges like –2 to +2.1).
How does this change the time-frequency plot, why does this happen,
and what is the important lesson about constructing wavelets?

2. Write code to produce figure 19.9.
3. Adjust the code for the STFFT to estimate power at the first and last

time points. (Hint: Try reflection.)
4. Adapt the code from figure 19.5 by replacing the boxcar function

with a sine wave at 30 Hz. Confirm that the time-frequency result is an
accurate representation. Then decibel-normalize the result. First use a
baseline period of 0 to 0.2 seconds, then use a baseline of 0.2 to 0.5
seconds, and finally use a baseline of 0.8 to 1.2 seconds. Why do the
results look so different for these different baseline periods?

5, Can you rescale the ERP normalization (figure 19.9) in one step instead
of two? Either way, rescale the ERP to span 50% of the y axis instead of
100%.

6. In the code for figure 19.7, experiment with different values for the
fftWidth parameter. What are reasonable and unreasonable ranges?

7. Reproduce figure 19.9 using decibel, percent change, and z-normaliza-
tion for baseline normalizations. The numerical ranges of these differ-
ent normalizations differ, so each plot will need its own color scaling.
Nonetheless, they can be visually compared. Which methods are most
similar to each other and why?

8. One common mistake when defining the width of the wavelet is to
write 5/2*pi*f instead of 5/(2*pi*f). MATLAB interprets these two
expressions, respectively, as (5*pi*f)/2 versus 5/(2*pi*f). Create a
wavelet with these two pieces of code. How would you sanity check the
result to make sure you’ve done it correctly?

9. The power spectrum of the “triangle” signal from figure 18.6 is nearly
uninterpretable. Apply a time-frequency analysis of this signal. Does
this better capture the dynamics in the data?

10. Perform a PCA of the human EEG data, then apply a time-frequency
analysis on the first two component time series (i.e., the two compo-
nents with the largest eigenvalues). Do the results depend on whether
you compute the covariance matrix of the trial-averaged data versus
the average of single-trial covariance matrices?

11. There is a MATLAB function called chirp, which creates a chirp.
On the basis of the help information, create a chirp using the same

332 III Analyses of Time Series

parameters as for the chirp we created manually in this chapter. Plot
them against each other. Do they match? (The answer is no.) How
much are they off, and how can you adjust your code to match the
output of chirp?

12. Without reflection, the earliest and latest time points that can be
extracted from time series data when using the STFFT is constrained by
the width of the FFT window. Write code to determine the earliest and
latest center time points given a specified time window width.

13. Put the two sinc signals used in figure 19.8 into a 2-by-time matrix.
Then use the bsxfun function to apply decibel-normalization in one
line of code. Check that the results are the same as when decibel-nor-
malizing each line separately.

14. To create a Morlet wavelet, point-wise multiply a ___________ by a
___________. The frequency of that wavelet is determined by the
frequency of the ___________.

15. What are the five steps of implementing convolution in the frequency
domain? Which of these are necessary and which are optional?

16. There is at least one mistake in each of the following MATLAB code
paragraphs (one in part a and one in part b). Identify and correct the
two mistakes.

a.

fftEEG = fft(csd(7,:,10),n_conv);

fftWave = fft(wavelets(3,:),n_conv);

as = ifft(mean(fftEEG.*fftWave),n_conv);

b.

sine_wave = exp(2*1i*pi*frequency(10).*time);

gaus_win = exp(time.^2./(2*(6/(2*pi*frex(10)))^2));

wavelet = sine_wave .* gaus_win;

17. In the following two pairs of code, one line is correct and one contains
an error. Find and fix the errors.

hz = linspace(0,nyquist,floor(N/2)+1);

hz = linspace(0,nyquist,floor(N/2)-1);

n_conv = size(csd,3) + length(wavelet_time) – 1;

n_conv = length(size(csd,3))+length(wavelet_time)–1;

18. Take the time-frequency representation of the linear chirp using Mor-
let wavelet convolution, and average the power values over all time
points. Then take the FFT of the entire chirp. Plot both power spectra

19 Time-Frequency Analysis 333

on top of each other (note that the frequencies vectors will be differ-
ent). How similar do they look? Try changing the maximum number
of cycles for the wavelets to make the two results more similar. What
does this tell you about the relationship between time-frequency anal-
yses and the FFT?

19. The online code contains the following line in the section that creates
figure 19.6. What is the meaning of the first input in the plot
function?

plot(length(g)+1:2*length(g),g,'ko’)

Time series data in neuroscience are filtered either as a pre-processing
strategy (e.g., to attenuate noise in the data) or as part of data analyses (e.g.,
to focus analyses on frequency-specific components of the data). In the
previous chapter, you learned about filtering via complex Morlet wavelet
convolution; here, you will learn additional approaches for filtering time
series data.

20.1 Running-Mean Filter

This filter is also variously called moving-mean, moving-average, sliding
mean, and so forth. I prefer “running-mean” because it feels healthier.

A running-mean filter is a simple low-pass filter that has the effect
of smoothing the time series. It involves replacing each data point by the
average of the surrounding k data points. Called the order parameter, k is
the only parameter in this filter. As the order of the filter gets larger, the
smoothness increases. To illustrate this filter, we’ll apply it to a sine wave
with noise. And to make things more interesting, we’ll use a random ampli-
tude-modulated sine wave by interpolating a few random values.

srate = 1000;

time = 0:1/srate:6;

ampl = interp1(0:5,rand(6,1),time,’spline');

f = 8; % Hz because time is in seconds

noise = 3*randn(size(time));

signal = ampl .* sin(2*pi*f*time) + noise;

Before moving on to the filter, let me point out the use of .* and * in the
definition of this signal. Inside the sin function, the .* was not necessary
because 2*pi*f together make a scalar (they are just single numbers that
multiply to make another single number). That scalar multiplies each

20 Time Series Filtering

336 III Analyses of Time Series

element in the vector time (in other words, this is a scalar-vector multipli-
cation). The output of the sin function is a 1-by-N vector, and we want to
point-wise multiply that vector by ampl, which is also a 1-by-N vector. If
you use a * instead of .*, you will get an error (to understand why, recall the
rules of matrix-matrix multiplication). You could “fix” this error by trans-
posing ampl or the output of the sin function, but this would produce the
dot product or the outer product. Neither is what we want; we want point-
wise multiplication. Now onto the filter.

k = 7;

filtsig = zeros(size(signal));

for i=1:length(time)

 filtsig(i) = mean(signal(i-k:i+k));

 %filtsig(i) = sum(signal(i-k:i+k))/(k*2+1);

end

Run the code. What happened? MATLAB crashed. Try to figure out why
it crashed before reading the next paragraph.

MATLAB crashed because at the first iteration of the loop, MATLAB tried
to access the (i-k)th element in the matrix, which is 1 – 7 = –2. The solution
is to start the loop at k+1 (not at k, because then i-k=0 and you would
get the same error). For the same reason, the loop should end not at
length(time), but at length(time)-k. (This is another example of how
filtering produces uninterpretable data at the edges.) The commented line
produces the same result as the previous line and is included in case you
needed a refresher on what mean means. The original and filtered signals
are shown in figure 20.1.

In the code, k is set to 7. Does this mean the filter had an order of 7? How
many points are averaged together at each time step? That’s right, the filter
order is actually 2k + 1 in the code above.

Before moving forward, play around with this code a bit. Trying chang-
ing k and the magnitude of the noise (the hard-coded parameter “3” in the
variable noise). The running-mean filter is very popular, in part because it
is simple to implement. Do you think it works well? Does your opinion
depend on k and on the amount of noise?

The running-mean filter can be slow for long time series, in part because
it is done in the time domain. Let’s think for a minute about whether it
might be possible to speed this up, perhaps using the convolution theorem.
Remember that the idea of time-domain convolution is to compute a time
series of sliding dot products between a kernel and a signal. Now here is the
million-dollar question: Can we interpret an average as a dot product, and

20 Time Series Filtering 337

if so, what is the kernel? (Okay, that was two questions; each can be worth
$500,000).

The key realization is that all data points in an average are equally
weighted, so the shape of the kernel is a boxcar with amplitude of 1/N (in
other words: multiply each of N numbers by 1/N and then sum). This means
we can perform the running-mean filter in the frequency domain. You’ll
have the chance to do this in the exercises.

Now that you appreciate that the mean over a window of time is actually
just a dot product with a plateau-shaped kernel, the running-mean filter
can be extended from an unweighted filter to a weighted running-mean
filter. For example, the weighting can be based on distance away from
the center time point. I hope you see the bigger picture here, which is
that many manifestations of temporal filtering can be thought of and
implemented as convolution. The differences among different types of
filters lie more in the shape of the kernels than in their mechanical
implementations.

20.2 Running-Median Filter

The running-median filter is very similar to the running-mean filter, except
that it uses the median instead of the mean. The median of a distribution is
defined as the center of that distribution (or the mean of the two center

Figure 20.1

Illustration of a running-mean filter. Random noise (drawn from a normal distribu-

tion, meaning there are both positive and negative values) was added to a sine wave.

The running-mean filter successfully attenuated the noise while preserving the

signal.

Original
Filtered

Time (s)
1.3 1.4 1.5 1.6 1.7 1.8

A
m

p
lit

u
d

e

–1

0

+1

338 III Analyses of Time Series

values if there is an even number of points). The advantage of the median
over the mean is that the median is insensitive to outliers. Consider how a
single outlier affects the mean versus the median.

q = randn(100,1);

q(50) = 1000;

mean(q)

median(q)

If the noise in your data is characterized by infrequent extreme values,
a running-median filter might be more appropriate than a running-mean
filter. In the example below, we will add infrequent extreme values to the
same noisy sine wave used above.

signal = signal + 1000*isprime(1:length(time));

The function isprime returns a vector of trues and falses according to
whether each input number is a prime number. These logical values are
then treated as the numbers 0 and 1 when multiplied by 1,000. Now we
apply the median filter.

for i=k+1:length(time)-k-1

 sortnums = sort(signal(i-k:i+k));

 filtsig(i) = sortnums(k);

end

Instead of explicitly using the function median, we computed the
median by taking the middle value of the sorted vector. There is no major
advantage of this code over the median function; I just wanted you to see
that computing the median is simple. Figure 20.2 shows the unfiltered,
mean-filtered, and median-filtered signals. You can see that the running-
mean filter gave undesirable results.

If you have spikes in your data or other extreme values, it may not be
necessary to apply the median filter to all time points as shown in the code
above. Instead, you can identify only the time points that need to be fil-
tered and take the median around those points. The exercises explore this
idea further.

Is it possible to perform the running-median filter in the frequency
domain? To answer this question, you need to think about whether the
median is a linear function, and if so, what the kernel is. Sadly, the answer
is no. The median is a nonlinear operation, while convolution is a linear
operation.

20 Time Series Filtering 339

20.3 Edges in the Frequency Domain

You’ve already learned that sharp edges in the time domain produce fea-
tures in the frequency domain that can be artifacts when they overshadow
more subtle effects (see figure 18.1). The reverse is also true—sharp edges in
the frequency domain can cause large-amplitude features in the time
domain. These features take the form of ripples. You can imagine that these
features are artifacts in the context of time-frequency analyses, because
oscillatory features in the data should come from oscillations in the brain,
not from artifacts of filter edges. For this reason, a lot of fuss in filtering
involves minimizing edge effects.

To gain an intuition of the kinds of time-domain artifacts that result
from frequency-domain edges, let’s create an edge in the frequency domain
and then consider its time-domain representation (figure 20.3).

N = 400;

X = zeros(N,1);

X(round(N*.05)) = 1;

subplot(221), plot(X)

subplot(223), plot(abs(ifft(X))*N)

Notice how I set the frequency of the spike to be at whatever frequency
is 5% of the length of the signal. What are the advantages and disadvan-
tages of this choice?

A straight edge in the frequency domain produces an “artifact” in the
time domain that is a pure sine wave. That’s an interesting way to think

Figure 20.2

Illustration of a running-median filter. In this example, large noise spikes were added

to the sine wave signal. The mean-based filter, being sensitive to outliers, does a

horrible job at removing the noise. The running-median filter worked like a charm.

Note the y-axis limits in the three plots.

Time (s)
1 1.4 1.8

Time (s)
1 1.4 1.8

Time (s)
1 1.4 1.8

–1

0

+1

A
m

p
lit

u
d

e

–1

0

+1

0

100

200

300

Signal Mean-�ltered Median–�ltered

340 III Analyses of Time Series

about sine waves—they are the artifactual manifestation of an impulse
function in the frequency domain. We can also see what happens when we
widen this impulse response to a boxcar shape.

X = zeros(N,1);

X(10:30) = 1;

Here I hard-coded which frequency values should be set to 1. Try
evaluating the code to produce figure 20.3 and changing the parameter N.
Which method is dependent and which is independent of the frequency
resolution?

From these two examples, you can appreciate the trade-off that must be
considered when constructing narrow-band filters: You want the filter to be
narrow to maximize frequency specificity, but you want the filter to have
gentle slopes rather than sharp edges, although this reduces frequency spec-
ificity. What shape might come into mind when you think about a narrow
peak that has smoothly decaying sides?

Figure 20.3

Edges in the frequency domain (top row) produce ringing in the time domain (bot-

tom row). Although these are accurate reconstructions, if they are introduced into

the data because of filtering, these ringing features could be misinterpreted as oscil-

lations. Notice the difference in y-axis scaling in the two time-domain plots.

Time (a.u.) Time (a.u.)

A
m

p
lit

u
d

e

0

1

–1

A
m

p
lit

u
d

e

A
m

p
lit

u
d

e

A
m

p
lit

u
d

e

0

1

Frequency (a.u.)
0 100 200 300 400

Time (a.u.)
0 100 200 300 400

0 100 200 300 400 0 100 200 300 400

0

10

–10

0

1

20 Time Series Filtering 341

20.4 Gaussian Narrow-Band Filtering

If you weren’t already thinking that the answer is a Gaussian, then I’m
sure you are thinking it now. Perhaps you remember from the previous
chapter that Morlet wavelets have a Gaussian shape in the frequency
domain. Here we will construct a similar filter, except we define the kernel
in the frequency domain instead of in the time domain.

Whereas time-domain Morlet wavelets are defined by the number of
wavelet cycles, frequency-domain Gaussian filters are defined by their full-
width at half-maximum (FWHM). What is FWHM? It is a description of the
width of a Gaussian (or Gaussian-like function). If you have a pure Gauss-
ian, FWHM can be computed analytically, but in practice—and certainly
when looking for an excuse to write a few lines of MATLAB code—it is
better to measure it empirically.

FWHM is the distance between the 50% amplitude points before to after
the peak (figure 20.4). If the Gaussian is normalized to have an amplitude
of 1.0 (which can be obtained by dividing by the maximum), then the task
is simplified by finding the point before the peak and after the peak closest
to 0.5. We start by creating a Gaussian and maximum-normalizing it.

x = -4:.1:4;

gaus = exp(-x.^2);

gaus = gaus./max(gaus);

Figure 20.4

Demonstration of empirical FWHM of a Gaussian. In this case, the empirical estimate

will be slightly off from the theoretical value, because there are no data points at

exactly 0.5.

A
m

p
lit

u
d

e
(n

o
rm

.)

0

.2

.4

.6

.8

1

.5
FWHMAmplitude = .5

342 III Analyses of Time Series

A few things about this code: First, before I wrote this code, I thought
that gaus seemed like it could be the name of a function. Typing which
gaus confirmed that it’s safe to use this name for a variable. Second, what
is the s parameter of this Gaussian? Third, truth be told, we didn’t need
to normalize this Gaussian (try re-running the code without that scaling
line and you’ll see that it’s already scaled to 1), but it’s good practice to
remember that our empirical FWHM procedure requires a normalized
Gaussian. Depending on how you define it, your Gaussian might not be
amplitude-normalized.

Our next step is to find the indices before and after the peak that are
closest to 0.5. You might think of using min-abs or dsearchn, but those
will give only one result corresponding to whichever side of the Gaussian
happens to be a tiny bit closer to 0.5 (don’t trust me—try it yourself—and
then look forward to learning a solution to this problem in chapter 21).
A better strategy is to find the point closest to 0.5 only before the peak,
and then in a separate line of code, find the point closest to 0.5 after the
peak.

[~,pidx] = max(gaus);

prepeak = dsearchn(gaus(1:pidx)',.5);

postpeak = pidx-1+dsearchn(gaus(pidx:end)',.5);

The first two lines should be pretty easy to understand. We find the
index of the peak of the Gaussian, and then we use dsearchn to find the
point closest to 0.5 prior to that peak. The third line is a bit more compli-
cated. Why is there a pidx-1+?

Only the post-peak data are entered into dsearchn, which means index
1 in dsearchn is really index pidx in the actual signal. Next, think about
what would happen if we were searching for the maximum of the function.
The maximum would be pidx, which means the output of dsearchn
would be 1, which in turn means that postpeak would be pidx+1. Try re-
running this code without the –1 to convince yourself that it is necessary.
You can plot and use the datacursor tool as a sanity check.

Okay, enough about FWHM. Let’s get back to filtering. We will define the
width of the Gaussian slightly differently here compared to the previous
chapter, in order to obtain the correct width when specified in hertz, and
when the Gaussian is maximum-value-normalized.

srate=1000; N=4000;

hz = linspace(0,srate,N);

s = fwhm*(2*pi-1)/(4*pi); % normalized width

x = hz-f; % shifted frequencies

20 Time Series Filtering 343

gx = exp(-.5*(x/s).^2); % gaussian

gx = gx./max(gx); % gain-normalized

There are two things I’d like to point out about this code. First, I specified
the frequencies vector to go up to the sampling rate. As written in section
11.6 of chapter 11, this is generally something you should avoid, but it’s
convenient in this case because we want the Gaussian to have as many
points as the data. Second, the exponential is coded slightly differently but
is equivalent to what you saw previously. You can practice your math skills
by converting the following two lines of code to formulas on a piece
of paper, and then applying some simple algebra to prove that they are
identical.

fx = exp(-.5*(x/s).^2);

fx = exp(-(x.^2)/(2*s^2));

This Gaussian will be our filter kernel, and filtering now proceeds as dis-
cussed for convolution—element-wise multiply this Gaussian by the Fou-
rier coefficients of the data. Figure 20.5 shows the frequency-domain filter
kernel and the result of applying this filter using a similar linear chirp as
what we used in the previous chapter.

If this is convolution, why don’t we have N + M – 1? Because here we are
performing circular convolution, not linear convolution. The beginning and
end points of the convolution get wrapped around, as if the signal were
circular. You can see this in figure 20.5. This does mean that the beginning
and end of the signal should not be interpreted because of the wraparound
summation, but that was also the case with linear convolution. More gener-
ally, filtering methods nearly always produce uninterpretable results at the
edges; you should always design your analyses with this in mind.

Applying this filter to data involves point-wise multiplying this filter by
the Fourier transform of the signal and taking the inverse Fourier trans-
form. You’ll need to double the amplitudes of the result, because our filter
has only non-zero values between DC and Nyquist—it’s missing the corre-
sponding shape in the negative frequencies range. Recall the discussion in
chapter 11 that the amplitudes of a real-valued function get split between
the positive and negative frequencies.

The Gaussian narrow-band filter has three advantages. It is easy to con-
struct and implement in MATLAB; it produces minimal ripple artifacts in
the time-domain reconstruction, because there are no edges in the fre-
quency domain; and it is a non-causal filter, meaning it does not produce
any phase distortions in the result (although it does mean that there is
temporal leakage “backward” in time as well as forward in time). There are

344 III Analyses of Time Series

Figure 20.5

The top panel shows the frequency-domain Gaussian kernel and its requested and

empirically measured properties. The lower panel shows the result of a circular con-

volution between this Gaussian kernel and the Fourier transform of a linear chirp.

The gray line shows the original chirp, and the black line shows the filtered time

series.

Frequency (Hz)
6 10 14 18 22

A
m

p
lit

u
d

e
ga

in

0

.5

1

Requested:
Peak: 14 Hz
FWHM: 5 Hz

Empirical:
Peak: 14.0035 Hz
FWHM: 5.0013 Hz

Time (s)
0 1 2 3 4

A
m

p
lit

u
d

e

0

1

–1

20 Time Series Filtering 345

two disadvantages. The result is real-valued, so you’ll need to apply the
Hilbert transform if you want to extract power and phase (more about this
in a later section). Perhaps the main disadvantage is that you cannot con-
trol the shape of the filter. The Gaussian filter is—I feel silly writing this but
it segues to the next section—shaped like a Gaussian. If you want one filter
that spans, say, 30–60 Hz, a Gaussian filter is a suboptimal choice.

20.5 Finite Impulse Response Filter

Let’s say you don’t like Gaussians for some reason. Or maybe you think
Gaussians are okay but you want a filter that is less restrictive than a Gauss-
ian. In these cases, you want the freedom to define the shape of your filter.
You want a finite impulse response (FIR) filter.

FIR filters can produce qualitatively the same results as wavelet convolu-
tion, Gaussian filters, and short-time Fourier transform, given certain
parameter settings (Bruns 2004). Rather than implementing frequency-
domain multiplication, however, FIR filters work by setting each time point
to be a weighted sum of previous values (the number of previous values is
called the order of the filter), and the weights are defined in a way that
extracts certain frequencies or frequency ranges from the past values.
Because each time point is a weighted sum of previous time points, the filter
is causal, and therefore introduces phase shifts into the filtered signal. To
make the filter non-causal, the filtered signal is flipped backward, filtered
again, and then flipped forward again. If you want a causal filter, then the
filter is applied only in one direction.

There are two steps to FIR-based filtering in MATLAB: First, specify the
shape of the frequency response of the filter and the corresponding
frequencies normalized to the Nyquist frequency. Second, apply the filter
kernel to the data.

We start with step 1. We want our filter to have a “boxcar” shape that
allows frequencies between 12 Hz and 18 Hz to pass through while attenu-
ating frequencies below 12 Hz and above 18 Hz.

freqshape = [0 1 1 0];

frequencies = [0 12 18 srate/2];

Why are four numbers there when I wrote that we want to filter between
12 and 18 Hz? Because the shape needs to be defined across the entire fre-
quency spectrum, going from DC to Nyquist. But this isn’t a good filter
shape. To see why, type plot(frequencies,freqshape). This filter
moves gradually from DC to 12 Hz, and then gradually from 18 Hz to

346 III Analyses of Time Series

Nyquist (figure 20.6). This filter lacks frequency specificity, and the results
of such a filter will be difficult to interpret. A better approach is to add two
additional anchor points to make the desired frequency response look more
like a boxcar. Not too boxy, though—we don’t want to have sharp edges in
the frequency-domain response. We will use transition zones of 15% of the
edges. This will give us a smoother filter kernel shape.

tz = .15; % trans. zone, in percent

fbnd = [12 18]; % freq boundaries

freqshape = [0 0 1 1 0 0];

frex=[0 fbnd(1)*(1-tz) fbnd fbnd(2)*(1+tz) srate/2];

frex = frex./(srate/2); % norm. to Nyquist

plot(frex,freqshape)

Now we’re getting somewhere. This frequency shape is still a bit edgy,
although the edges are not so severe. We will next use this shape as an input
into one of several MATLAB functions that will compute a time-domain
filter kernel based on this shape. The filter kernel will be designed to maxi-
mize the gain in the frequency ranges of interest, minimize the gain in the
frequency ranges not of interest (those associated with zeros), and smooth
the sharp edges in between. Notice also in the code above that the vector of
frequencies is now divided by the Nyquist frequency. This converts the fre-
quencies from hertz to fraction of the Nyquist. This makes life easier for the

Figure 20.6

The top panel shows the frequency response of a poorly designed filter kernel. The

lower panel shows a better design.

Frequency
0 .4 .8.6.2 1

G
ai

n

0

.2

.4

.6

.8
1

G
ai

n

0

.2

.4

.6

.8
1

4-corner �lter

6-corner �lter

20 Time Series Filtering 347

filter kernel construction algorithms, because they can optimize any filter
kernel without knowing the sampling rate.

There are several MATLAB functions that will compute filter kernels,
including firls, firpm, fir1, and so forth. Most are provided in the sig-
nal processing toolbox. If you do not have this toolbox, you can use the
Octave signal package. In the interest of brevity, I’ll focus only on one filter
kernel method, firls, which stands for FIR least squares. Other filter ker-
nel construction functions work similarly from the MATLAB implementa-
tion perspective. The function fir1 is slightly different because you do not
specify transition zones; instead, fir1 calls firls with no transition zones
and then smooths the resulting kernel to soften the edges.

The last piece of information we need is the order of the filter. The order
determines the number of time points in the filter kernel, which means it
also determines the frequency resolution of the kernel. For real-time online
filtering, smaller orders are preferred because of the reduced computation
time (IIR filters, for example, have small orders and are often used for real-
time filtering applications). For off-line filtering, this is generally not a sig-
nificant concern. The function firpmord estimates a filter order for the
filter kernel construction function firpm, but these estimates are more
suggestions than mathematical requirements. You might want to specify a
longer or shorter order to control the filter precision, and anyway, within
reasonable ranges, many different order parameter values will produce the
same qualitative pattern of results (this point is discussed more at the end
of this section).

We will set the order to be the number of points corresponding to three
cycles of the lower bound of the filter. For a filter of 10 Hz, that corresponds
to 3 × 100 = 300 milliseconds.

x = chirp(time,5,time(end),20);

ford = round((3*1000/frange(1)) / (srate/1000));

fkernel = firls(ford,frex,fshape);

Is three a good factor for the filter order? That’s a question without a
straightforward answer. Good ranges of order depend on, among other
features, the frequency and the sampling rate. But you can use the code
that produces figure 20.7 to gain some intuition for how this parameter
controls the frequency precision of the filter. Try changing the 3 to other
numbers between, say, 1 and 10 (need not be integers), and watch the
effect of that parameter on the time-domain and frequency-domain ver-
sions of the figure. Also try changing the sampling rate and the frequency
bounds.

348 III Analyses of Time Series

Now that we have our filter kernel, we can use MATLAB’s filtfilt
function (also in the signal processing toolbox) to apply the filter to some
data. The function is called filtfilt because it forward-filters the data,
flips the data backward, filters again, and flips the data forward again.
Forward-only filtering can be done with the function filter (not in the
signal processing toolbox). For the sake of comparison, we’ll filter the same
linear chirp from earlier in this chapter (figure 20.8).

fdata = filtfilt(fkernel,1,x);

A final note about filter parameter selections. Occasionally in the
psychology-EEG literature, there are strong opinions about which kernel
construction functions and parameters should and should not be used. It’s
a strange debate because if you talk to enough people, you will hear equally
strong opinions on opposite sides of the arguments (“always use causal

Figure 20.7

Two filter kernels were constructed that differed only in their order parameter (3

on top, 1 on bottom). The left-side plots show the time-domain filter kernels. The

right-side plots show the requested (gray lines) and actual (black lines) frequency

responses of the kernel.

Empirical �lter
“Ideal” �lter

Time (ms)
50 100 150 200

0

.01

–.01

Frequency (Hz)
0 10 20 30 40

50 100 150 200 0 10 20 30 40

0

1

G
ai

n

Frequency (Hz)

0

1

G
ai

n

A
m

p
lit

u
d

e

Time (ms)

0

.01

–.01A
m

p
lit

u
d

e

20 Time Series Filtering 349

filters” vs. “never use causal filters”; “filter forward and then correct using
group delay” vs. “filter in reverse because group delay depends on fre-
quency”; “always use fir1” vs. “use firls or firpm because you have
more control” [this isn’t even a sensible argument because fir1 calls
firls] and so on). Certainly, filter parameters are important and certainly
it is possible to design bad filters that will produce bad results.

Ultimately, however, you should trust findings, not parameters. If your
result disappears or qualitatively changes after minor changes to filter
parameters, do not trust that result. The results you should trust, and the
results you want your name associated with, are those that can be repli-
cated regardless of who is doing the analysis, and regardless of whether
you use wavelet convolution, Gaussian filter, FIR filter, an order factor of 3
versus 3.4, and so on.

If you would like to learn more about the signal processing and mathe-
matical details of filtering as used in neuroscience, consider the book from
van Drongelen (2006).

Figure 20.8

Applying a band-pass filter to the linear chirp. This is a zoomed-in view to highlight

the differences. You can use the figure pan and zoom options to see that the ampli-

tude of the filtered signal attenuates when the chirp is slower than 13 Hz and faster

than 15 Hz.

Time (s)

6 6.5 7 7.5 8 8.5 9

A
m

p
lit

u
d

e

0

1

–1

Filtered signal
Original chirp

Order factor: 3

Order factor: 1

350 III Analyses of Time Series

20.6 The Hilbert Transform

The result of band-pass filtering is a real-valued time-domain signal. If you
want to use this signal to extract power and phase information, for example
in a time-frequency analysis, you will need to convert the real-valued signal
to a complex-valued signal (also called the analytic signal), similar to the
output of complex Morlet wavelet convolution.

The Hilbert transform computes the so-called phase quadrature compo-
nent and adds it back to the original signal. In practice, the Hilbert trans-
form can be implemented by FFT-based manipulations, so it is useful to
work through this method here as a MATLAB exercise. The FFT implemen-
tation of the Hilbert transform involves multiplying the positive-frequency
Fourier coefficients by –i and the negative-frequency coefficients by +i (for
a more involved explanation of why this is the case, see chapter 14 of
Cohen 2014). The positive Fourier coefficients are those between but not
including DC and Nyquist, and the negative Fourier coefficients are those
above the Nyquist. So, to compute the Hilbert transform, we need a copy
of the Fourier coefficients, and we need to identify the DC and Nyquist
frequencies. We’ll start by computing the Hilbert transform of a series of
random numbers.

n = 20;

r = randn(n,1);

rx = fft(r);

% a copy that is multiplied by the complex operator

rxi = rx*1i;

% find indices of positive and negative frequencies

posF = 2:floor(n/2)+mod(n,2);

negF = ceil(n/2)+1+~mod(n,2):n;

% rotate Fourier coefficients

rx(posF) = rx(posF) + -1i*rxi(posF);

rx(negF) = rx(negF) + 1i*rxi(negF);

% take inverse FFT

hilbert_r = ifft(rx);

And voilà! We have the Hilbert transform of vector r. Identifying the DC
+ 1 frequency is easy—it’s always the second index. Identifying the Nyquist
is a bit trickier because it depends on whether the signal has an odd or even
number of points. You could use an if-else construction here, but an easier
method is to use mod (introduced in chapter 7; it returns the remainder of
the division of the first input by the second input). The output of mod with

20 Time Series Filtering 351

the second input “2” tells us whether the number is odd (output: 1) or even
(output: 0). To identify the negative frequencies, we just reverse this by add-
ing the tilde.

You can compare the above results with the output of the MATLAB func-
tion hilbert (in the MATLAB signal processing toolbox or Octave signal
package) and check that they are the same. In practice, it’s easier to use the
hilbert function than to write out the FFT manipulations above. The
MATLAB hilbert function uses a different and slightly more efficient
algorithm. If you want to challenge yourself to reproduce MATLAB’s imple-
mentation, complete exercise 8 before looking at the file hilbert.m.

Once you have this analytic signal, you can extract power and phase
values as you would the result of complex Morlet wavelet convolution. The
results of the Hilbert transform are only interpretable for narrow-band sig-
nals, so it should be applied after band-pass filtering of the data.

20.7 Exercises

1. The following code is correct, but probably doesn’t produce the desired
result. What is the problem and how can you fix it? (Hint: Try
plotting.)

x = 0:100;

gaus = exp(-(x.^2)/100);

2. How does a frequency-domain Gaussian compare with time-domain
wavelets created in the previous chapter? Plot the real part of the
inverse Fourier transform of the Gaussian. You’ll need to use ffts-
hift, because we haven’t defined the proper phases.

3. In this exercise, you will explore the reason why the number-of-cycles
parameter of the Morlet wavelet controls the trade-off between tempo-
ral and frequency precisions. Generate five wavelets at 10 Hz, changing
the number of cycles from 2 to 15 in linear steps. In one figure using a
5-by-2 subplot organization, show the time-domain Gaussian that
tapers the sine wave on the left plot and the frequency-domain repre-
sentation of the wavelet power in the right plot. Title each subplot to
indicate the number of cycles. Does this figure help you understand the
time-frequency precision trade-off? (If not, make a better figure!)

4. Write a MATLAB function that applies a frequency-domain Gaussian
filter. It should take five input arguments: data, sampling rate, peak
frequency, FWHM, and a plotting toggle. And it should give two out-
puts: the filtered data and the empirical FWHM. The function should
do the following steps:

352 III Analyses of Time Series

a. Have a useful help information that explains what the function
does and how to use it.

b. Check the inputs for accuracy and consistency, and report a useful
error message if something is wrong. For example, the sampling
rate input should be just a single number.

c. Compute the filter in the frequency domain based on the input
parameters (number of points, peak frequency, and FWHM).

d. Apply the filter to the data.

e. Compute the empirical FWHM of the Gaussian.

f. If the plot toggle is true, produce a plot that looks like figure 20.5,
although you might want to plot only a selection of the data (e.g.,
the first 10% of the time series).

5. I think it would be nice to have a vertical line from the peak of the
Gaussian to the y = 0 line in figure 20.4. If you agree, then implement
this in the code. If you disagree, then do it anyway, but complain about
it afterward.

6. Look up the theoretical FWHM of a Gaussian. Then implement that
equation in MATLAB. Empirical estimates will differ when the sam-
pling rate is low. Compute several Gaussians with varying sampling
rates and compare the theoretical and empirical FWHMs.

7. The Gumbel distribution is sometimes used for modeling skewed statis-
tical distributions (sadly, it has nothing to do with the inspirational
claymation character Gumby). Look up the formula for a Gumbel dis-
tribution and implement it in MATLAB. Write code that will produce
its time-domain and frequency-domain representations. There are two
parameters to the Gumbel formula; see how these affect the time- and
frequency-domain responses. Do you think the Gumbel distribution
would make a good narrow-band filter? Why or why not?

8. The following paragraph contains an explanation of how the Hilbert
transform is implemented in MATLAB. On the basis of this explana-
tion, write code to implement the Hilbert transform. Then, make sure
it produces identical results to the code presented in this chapter.
Finally, inspect the contents of the file hilbert.m to compare your
solution against MATLAB’s.
Identify the positive and negative frequencies. Double the Fourier coef-
ficients from the positive frequencies and zero-out the Fourier coeffi-
cients from the negative frequencies. Then take the inverse Fourier
transform.

20 Time Series Filtering 353

9. Construct a series of FIR filters (band-pass: 8–12 Hz) that vary in filter
order from one cycle to 15 cycles of 8 Hz, keeping other parameters
the same. Show a plot of the filter kernels in the time domain (you
might want to add a small y-axis offset to each kernel to improve
visibility) and their power spectra in a frequency-by-order image
(you’ll need to zero-pad to make the power spectra comparable). How
do the frequency characteristics of the filter vary as a function of
order? Next, create a real-valued Morlet wavelet centered at 10 Hz.
Apply each filter to the wavelet, and measure the empirical FWHM
of each filtered result. (Hint: Measure FWHM on the result of
abs(hilbert(filtsig)).). Plot the FWHM as a function of the
filter order. On the basis of these results, at what point would you
draw a different conclusion about the results based on the different
orders?

10. Here is an alternative way to compute the frequency response of a filter
kernel. Create an FIR filter using parameters that you specify. Just keep
the pass-band frequencies below 100 Hz. Then create a loop over fre-
quencies, ranging from 1 Hz to 100 Hz in 1 Hz steps, in which the fol-
lowing is done at each iteration. Create a sine wave at that frequency
and apply the FIR to the sine wave. Then compute the FFT of the fil-
tered result, and extract the power at the frequency of the sine wave.
After the loop, make a plot of power as a function of the frequencies of
the sine waves. How does this procedure differ from taking the FFT of
the filter kernel?

11. Produce a sinc function in the time domain. Use the fft function and
plot its power spectrum. Probably the plot is empty. Inspect the Fourier
coefficients in the Command window to see what’s going on. There is
something “weird” about the time-domain function—inspect the for-
mula for a sinc function and think about what happens at x = 0. Add
some code to make sure the entire signal contains finite values (hint:
do you know the function isfinite?), then inspect the frequency
distribution.

12. Create a linear chirp and design a narrow band-pass filter. Extract time-
varying power from the Hilbert transform of the filtered chirp. Also
extract the power spectrum of the filter kernel. Repeat this procedure in
a loop over filter order factors ranging from 1 to 8. Then plot all power
time courses on top of each other and, in a separate plot, all filter
kernel power spectra on top of each other.

13. The chirp power time series in the previous exercise will have a Gauss-
ian-like shape. Estimate the FWHM of the power time series from each

354 III Analyses of Time Series

filter order factor. Create a plot of FWHM as a function of order. What
do this and the previous exercise tell you about the filter order param-
eter? Do you have any inspirations for ways to sanity check that your
filter parameters are reasonable?

14. The running-mean filter shown in this chapter is a non-causal filter,
meaning each data point becomes a weighted sum of previous and
future data points. Change this to be a causal filter, meaning that each
data point becomes a weighted sum only of previous (or only of future)
values. Can this filter also be implemented in the frequency domain?

15. Create a low-pass FIR filter with a cutoff at 40 Hz (the lower bound is 0
Hz, meaning there is no lower bound). Guess a reasonable filter order,
and inspect the time- and frequency-domain representations of the fil-
ter kernel. Then try other filter orders. On the basis of these plots, what
seems to be a reasonable filter order, and what does this tell you about
the amount of data you need to apply a low-pass filter? Does your
answer depend on the sampling rate of the data?

16. There are many filter kernel construction algorithms, several of which
come in the MATLAB signal processing toolbox. Modify the code that
produces figure 20.8 to achieve similar results using fir1 and firpm
instead of firls. The results won’t be exactly identical, but it should
be possible to get qualitatively similar results.

21.1 Root Mean Square to Measure Fluctuations

Root mean square (RMS) is simple to compute and to interpret, easy to
adapt to different kinds of data, and relies on no assumptions. It is therefore
a ubiquitous measure of fluctuations in many physical and biological
applications. Several data analysis approaches involve RMS, one of which
(detrended fluctuation analysis) will be the focus of this chapter.

To compute RMS, just think about each term in reverse order: first,
square all data values (squaring eliminates the need to worry about negative
values); second, average all squared data values; third, take the square root
of the average. The code below shows two ways to compute RMS.

step1 = data.^2;

step2 = mean(step1);

step3 = sqrt(step2);

rmsx = sqrt(mean(data.^2));

Is there a difference between variables step3 and rmsx? (rms is a func-
tion that computes RMS, so I’m using rmsx as a variable name.) RMS is
closely related to variance. The primary difference is that RMS reflects the
“raw” fluctuations, while variance reflects fluctuations around the average
value.

21.2 Fluctuations in Time Series

One of the reasons why RMS is so widely used is that it can be applied to
many different features or dimensions of data. To start with, we will com-
pute RMS from a single channel on each of 99 trials. To make things inter-
esting, I’ve added noise to one trial. The noise is randomly distributed
around zero, making it almost unnoticeable when inspecting the trial

21 Fluctuation Analysis

356 III Analyses of Time Series

average. But the RMS plot clearly reveals the outlier trial. For this reason,
RMS can facilitate the initial stages of data cleaning and quality control.

rmsx = sqrt(mean(eeg.^2, 1));

subplot(211), plot(mean(eeg,2))

subplot(212), bar(rmsx)

Notice that because the variable eeg is a time-by-trials matrix, taking
the mean over the first dimension means computing RMS over time sepa-
rately for each trial. If you compute the mean over the second dimension,
you will be computing the RMS over trials separately for each time point
(figure 21.1).

21.3 Multichannel RMS

RMS can also be computed over many channels at each point in time, pro-
viding a time series of multichannel fluctuations. Increases in RMS can

Figure 21.1

The trial-averaged plot of EEG data (top plot) reveals nothing sinister about the data.

The single-trial RMS, however, reveals the single trial with excessive noise.

Trials
0 10 20 30 40 50 60 70 80 90

10

20

30

Time (ms)
0 500 1000–500

0

10

V
o

lt
ag

e
(μ

V
)

R
M

S
 (

μ
V

2)

21 Fluctuation Analysis 357

indicate more differentiated activity (although the RMS provides no infor-
mation about spatial localization), and they can also indicate the presence
of artifacts.

The code below will compute RMS over 64 EEG electrodes (“topographic
RMS”) for each trial separately, and then for the average over all trials. The
variable data is a 3D channels-time-trials matrix. Therefore, averaging over
the first dimension computes the topographic RMS.

rmsxT = squeeze(sqrt(mean(data.^2, 1)));

rmsxA = squeeze(sqrt(mean(mean(data,3).^2, 1)));

The second line is tricky because it has two embedded mean functions.
Remember when interpreting long lines of code to start from the inner-
most piece of code and work your way outward, one set of parentheses at a
time. The topographic RMS from the trial average produces a vector (one
value per time point, where the value is the RMS over all electrodes at that
time point), whereas the topographic RMS from all trials produces a time-
by-trials matrix (topographic RMS separately per trial). When this matrix is
averaged over trials, the difference with the trial-averaged RMS is striking
(figure 21.2).

Figure 21.2

Topographic RMS, computed individually on each of 99 trials and then averaged

(black line) or computed on the average of all trials (gray line).

Time (ms)
0 500 1000–500

0

4

8

12

16

Trial average

All trials

R
M

S
 (

μ
V

2)

358 III Analyses of Time Series

These two time courses are so different because a lot of dynamics are lost
during trial averaging. The reason why the average of the single-trial RMS
time series dips just before time 0 is that time course at each electrode is
baseline-subtracted. Thus, by definition, the immediate prestimulus period
has a low level of activity.

Among other applications, sudden changes in topographic RMS time
series are interpreted to indicate sudden transitions in the state or configu-
ration of brain networks (Lehmann, Pascual-Marqui, and Michel 2009).

21.4 Detrended Fluctuation Analysis

In section 21.2, we computed RMS in a single electrode over the trial period.
What if we computed RMS over a shorter time period or over a longer time
period? Would the magnitude of the fluctuations change over different
timescales? The answer to that question depends on the system that gener-
ated the data. Systems that produce pure noise, for example, show slight
increases in RMS as the timescales increase. Systems that have autocorre-
lated behavior, in contrast, show larger increases in RMS as timescales
increase. Some systems produce autocorrelated behaviors that look similar
regardless of the timescale (figure 21.3). These are referred to as scale-free
systems.

Scale-free systems have been studied in natural and abstract geometry
(think of fractals) and are garnering increasing interest in neuroscience
with the discovery that processes in the brain and in human behavior
exhibit scale-free-like and fractal-like organization. In turn, scale-free-like
organization is taken as evidence that a system is complex and operating in
a state of criticality, which facilitates computational memory and increased
flexibility to respond to changes in the environment. If you would like to
learn more about the theory and key findings of the study of scale-free
dynamics in neuroscience, consider the special issue on this topic published
in the journal Frontiers (http://journal.frontiersin.org/researchtopic/505/
scale-free-dynamics-and-critical-phenomena-in-cortical-activity).

The two main analysis approaches that are used to identify scale-free
dynamics in time series data are called detrended fluctuation analysis (DFA)
and demeaned fluctuation analysis (DMA). We will compute DFA and DMA
from a data set recorded in a human, in which the volunteer had to use a
mouse trackpad to follow a moving line on the computer screen. Each time
point is given a value of +1 (correctly following the line) or –1 (missed the
line, thus making a mistake) (data are taken from Cohen 2016). The overall
goal of the analysis is to cut the continuous data into epochs of various sizes

21 Fluctuation Analysis 359

and compute the average RMS across the epochs. Thereafter, a line is fit
between the logarithm of the RMS magnitudes and the logarithm of the
window lengths. The slope of this line is called the scaling exponent and is
taken as evidence for a scale-free system if it is higher than the scaling expo-
nent of white noise (0.5). Let’s first define our parameters.

nScales = 20;

ranges = log10([1 400]);

scales=ceil(logspace(ranges(1),ranges(2),nScales));

The above code means that we will create 20 logarithmically spaced
timescales between 1 and 400 seconds. The next step is to prepare the data
for the DFA by making it meander like the gait of a drunken college student
stumbling home at 4 a.m. (the more formal expression would be transform-
ing the time series into its unbounded form). For a purely random time
series, this would be called Brownian motion. It is created by subtracting

Figure 21.3

Scale-free systems exhibit time series behavior that appears self-similar over different

timescales. That is, no matter how much you zoom in or zoom out, the time-varying

fluctuations have similar characteristics.

40 seconds

4 seconds

.4 seconds

.04 seconds

360 III Analyses of Time Series

the global mean and then summing each data point to the previous data
point. This is the discrete version of the integral and is called cumsum for
cumulative sum.

x = cumsum(x-mean(x));

Figure 21.4 shows the data before and after unbounding (cumulative
sum). Qualitatively, it looks like these data have trend fluctuations over
larger time periods that you might not expect from random noise. It is
these fluctuations that we want to characterize. Implemented in MATLAB,
this means we will cut the data into epochs of different sizes (the scales
variable) and compute the average RMS over all epochs within each size.
The following code happens inside a loop over scales.

% epoch data

N = length(x);

n = floor(N/scales(si)); % number of epochs

epochs=reshape(x(1:n*scales(si)), scales(si),n)';

% detrend

depochs = detrend(epochs’)';

Figure 21.4

Binarized accuracy data (top panel; C means correct, and E means error) are con-

verted to an unbounded form by cumulatively summing all successive time points

(bottom panel).

Time (minutes)

0 5 10 15 20 25 30 35 40 45

0

4

–4

A
cc

u
ra

cy

C

E

Fl
u

ct
u

at
io

n
s

x1
04

21 Fluctuation Analysis 361

The epoching code should look familiar from section 18.4 of chapter 18.
Detrending is a procedure in which a linear trend is fit to the data and then
removed (figure 21.5). Fitting the linear trend is done with least squares (see
chapter 28), and removing that trend involves subtracting the best-fit line
from the data (in other words, taking the residual). The detrend function
always works column-wise; hence, we need to transpose the epoch matrix
and then transpose it back to keep the matrix in the same orientation. Now
we are ready to compute RMS for each epoch and then average the RMS
values over epochs.

rmses(si) = mean(sqrt(mean(depochs.^2,1)));

After the code above loops through all timescales, the final step is to
compute a least-squares fit of the timescales to the RMS in those timescales.
The code below should look a bit familiar from chapter 10; chapter 28 will
discuss least-squares fitting in more detail.

A = [ones(length(scales),1) log10(scales)'];

dma = (A'*A) \ (A'*log10(rmses)');

The average RMS values are plotted as a function of the scales in figure
21.6. When transformed into logarithms, a straight line seems to be a good
fit. A scaling exponent between 0.5 and 1 is often taken as evidence for a
scale-free system. A value of 0.8 is in the range of previous studies of scaling

Figure 21.5

Illustration of a time series before and after being detrended.

With trend

Detrended

362 III Analyses of Time Series

exponents in human behavior (e.g., Palva et al. 2013). Keep in mind that
this is a linear fit through logarithmic data; the relationship in the original
scale of the data is nonlinear.

21.5 Demeaned Fluctuation Analysis

Demeaned fluctuation analysis (DMA) is similar to DFA, except that a
mean-smoothing filter is applied to the data instead of detrending. DMA
seems to outperform DFA in some situations and provide equivalent perfor-
mance in other situations (Shao et al. 2012). From the previous chapter, you
know that mean smoothing can be implemented as convolution with a flat
kernel, which in turn can be implemented as frequency-domain multiplica-
tion. The following code would replace the code inside the loop over scales.

% create kernel for this scale

nConv = N+scales(si)-1;

kernel = fft(ones(scales(si),1)/scales(si),nConv);

Figure 21.6

This plot shows the logarithm of epoch-averaged fluctuations (y axis) as a function of

the logarithm of the epoch length in seconds (x axis). A straight line in this log-log

space with a slope greater than 0.5 is often taken as evidence for a scale-free or self-

similar system that exhibits long-range time autocorrelations.

Data (DFA)
Fit (DFA m=0.813)

Data (DMA)
Fit (DMA m=0.806)

0 1 2

2

3

4

lo
g

10
R

M
S

log10scales

21 Fluctuation Analysis 363

hfKrn = floor(scales(si)/2)+1;

% mean-smooth as convolution

convres = ifft(fft(x,nConv) .* kernel);

convres = convres(hfKrn:end-hfKrn+1+mod(nConv,2));

Notice that the time series is mean-smoothed before epoching the data.
This is faster and helps prevent edge effects when smoothing epoched data.
In chapter 12, I mentioned that it’s best to construct convolution kernels
to have an odd number of points. Here you see the reason why. Different
smoothing kernels have an odd or an even number of points, and so the
size of the convolution wings differ on different iterations. To write code
that is robust to this variability, we need to accommodate the parity of the
kernel. One mechanism to accomplish this is to add a mod function when
clipping the wings. Next, the difference between the smoothed time series
and the raw time series (i.e., the residual) is computed.

residX = x—convres;

Finally, the data are epoched, RMS is computed per epoch, and then the
RMSs are averaged over epochs, just like with DFA.

n = floor(N/scales(scalei)); % number of epochs

epochs=reshape(residX(1:n*scales(si)),scales(si),n)';

rmses(scalei) = mean(sqrt(mean(epochs.^2,1)));

As a final thought, it is interesting to compare DFA with the discrete
Fourier transform. Conceptually, they are similar—both are designed to
quantify fluctuations over various timescales. The main conceptual differ-
ence is that DFA measures the magnitude of any fluctuations at different
timescales; Fourier-based analyses measure fluctuations that match a
sinusoidal template. With that in mind, you can appreciate why the 1/f
shape of the Fourier power spectrum is sometimes interpreted as indicating
scale-free activity.

21.6 Local and Global Minima and Maxima

Finding local and global extrema admittedly doesn’t really fit into the
theme of this chapter, but it’s an important topic that didn’t really fit any
better in any other chapter, and I wanted to try to balance the lengths of
different chapters.

Global extreme points can be obtained during the functions min and
max. You are already familiar with these functions, so let’s move on to find-
ing local minima and maxima. If you know the range in which you are

364 III Analyses of Time Series

Box 21.1

Name: Simon-Shlomo Poil

Position: CTO and Co-founder

Affiliation: NBT Analytics BV, Amsterdam, Netherlands (www.nbt-analytics

.com)

Photo credit: Private

When did you start programming in MATLAB, and how long did it take

you to become a “good” programmer (whatever you think “good” means)?

I was introduced to MATLAB during a university course in 2005. At that

time I already had a lot of programming experience from other languages,

so it did not take much time for me to learn MATLAB. MATLAB is a quite

easy language, so I think a beginner with no prior programming experience

will learn MATLAB within a few weeks. It takes a longer time to become

a “good” programmer, and it depends on how diverse your programming

skills are.

What do you think are the main advantages and disadvantages of

MATLAB?

The advantages of MATLAB are the interactive environment, a rich collection

of toolboxes, and the well-written documentation. In the field of neurosci-

ence, the advantage is also the broad selection of toolboxes, such as EEGLAB,

Fieldtrip, SPM, and the Neurophysiological Biomarker Toolbox. The disadvan-

tages of MATLAB are the license costs, and for certain tasks also the speed of

the code.

21 Fluctuation Analysis 365

looking for extreme points, you can simply constrain the data that
you input into min or max. Let’s sharpen our extrema-hunting skills with a
double-sinc function.

x = -40:.01:120;

signal = 3*sin(x)./x + sin(x-20)./(x-20);

Visually (figure 21.7), it is clear that there is one global maximum, a sec-
ond large peak, and many other local maxima and minima. To find that
second large peak, we can input part of the signal into the max function.

ridx = dsearchn(x',[10 40]');

[maxLval,maxLidx] = max(signal(ridx(1):ridx(2)));

plot(x(maxLidx+ridx(1)),maxLval)

plot(x(maxLidx+ridx(1)),signal(maxLidx))

The first point in ridx needed to be added to the index because we
want the index of the subvector, not the index of the entire vector. The
second plot function produces the identical result as the first (why?). A
quick glance at the plot suggests our hunt was successful (figure 21.7). How-
ever, closer inspection reveals that we missed our mark by one point.

Do you think MATLAB will be the main program/language in your field

in the future?

Yes. I think MATLAB will still remain a core language for EEG analysis in the

near future. At NBT Analytics, we explore alternative languages, such as

Python and Julia, mainly to reduce costs and improve performance, but MAT-

LAB will likely remain a core pillar of our analysis of EEGs from clinical trials

for quite some time.

How important are programming skills for scientists?

It is essential for most scientists. If you need to analyze a lot of data, it makes

your life easier if you can write your own scripts and understand other peo-

ple’s scripts. Programming gives you the freedom to perform the analysis you

want to perform.

Any advice for people who are starting to learn MATLAB?

My advice is to find a simple programming task. The only way to learn how to

program is by doing it. As a beginner, you should only worry about how to get

from A to B in your program, do not spend time on making the code fast and

efficient. Just make it work. Start by outlining your program in line-by-line

comments, and then write your code. This will help you see and understand

the steps going from A to B.

366 III Analyses of Time Series

To appreciate why the result is off, think about what the value of
maxLidx+ridx(1) would be if the very first data point in the subvector
were the maximum. When you figure it out, fix it in the online MATLAB
code, and use the zoom tool to make sure your adjustment is correct.

This method of finding local maxima by searching for “global” maxima
within specified subvectors can be useful to identify two maxima (or min-
ima; simply replace max with min in the above code), but it is not a scalable
solution for finding all local maxima. To find all local maxima, use the
following strange-but-effective code.

peeks = find(diff(sign(diff(signal)))<0)+1;

I know, it’s a really weird piece of code, but basically it finds extreme
points in the derivative of the signal. Try plotting each part of the code
(plot(signal), plot(diff(signal)), etc.) step by step to get a feel for
what it does. You can change the less-than sign to a greater-than sign to
get local minima instead of local maxima. This code finds all of the local
peaks in a signal, where a peak is defined as any point that is higher than

Figure 21.7

Hunting for global and local maxima in a double-sinc function (a search for Poké-

mon was unsuccessful, so I had to resort to local extrema). The global maximum

is accurately identified, but the second maximum is one point off. (That’s not my

mistake—it’s a challenge for you to find and fix the bug!) Other local maxima are also

indicated.

21 Fluctuation Analysis 367

both of its neighbors. For this reason, the code works well only for smooth
functions; excessive noise will cause each noise spike to be considered a
peak.

Two questions: (1) Can you figure out why I called the variable peeks
instead of peaks? (2) What if we want to exclude some peaks, for example
the two peaks with the largest values (because those have already been
identified earlier)? The code below provides one possible solution; it’s your
job to figure out what it does and why it works.

[~,idx] = sort(signal(peeks));

peeks(idx(end-1:end)) = [];

21.7 Exercises

1. The variable EEG.data is a 3D matrix (channels by time by trials). Your
friend Frances wants to compute RMS by averaging over time, which is
the second dimension. Why is the following line of code wrong, and
how can you fix it? What is your advice to Frances to avoid confusion
in situations like this?

rmsf = sqrt(mean(squeeze(EEG.data(30,:,:)).^2,2));

2. Frances is back. She’s made her life easier by measuring only one elec-
trode and only one trial. But she still has MATLAB troubles. She tried
to compute RMS with this line of code, but the result was a complex
number. What is her programming bug, and why did it produce a com-
plex RMS?

rmsf = sqrt(mean(data));

3. Creating fixed-sized epochs means some data are lost at the end of the
continuous time series. A mitigating strategy sometimes used in DFA is
to run the DFA twice: once forward-epoching (data at the end are lost),
and then again backward-epoching (data at the beginning are lost).
The two scaling coefficients are then averaged together. Implement
this. Are the two scaling exponents very different from each other?

4. The theoretical scaling exponent of random white noise is 0.5. Can you
empirically confirm this, and does it depend on how much data you
have and how many scales you use? Run simulations for N data points
ranging from 1,000 to 1,000,000 and S scales ranging from 1% to 20%
of the length of the signal. Do you get a result close to 0.5? How about
if the data are not random noise, but a random series of +1 and –1
(what’s a good way to create a random series of +1 and –1)?

368 III Analyses of Time Series

5. Frances again. She’s offered to treat you to dinner if you can write code
to implement the following problem in the double-sinc function. She
wants code to find the local maximum that follows the first minimum
that follows the global maximum. Can you earn your free dinner?

6. It would be nice if the triangles indicating the two maxima in figure
21.7 would be automatically positioned above the data rather than
overlaying the data. What’s the best way to implement this? Make sure
your solution would still work when the function is scaled up or down
(e.g., if the sinc function were multiplied by 1,000 or by 0.001).

7. Let’s revisit the FWHM of the Gaussian in section 20.4 of chapter 20.
Can you compute this width more efficiently using some new tricks
you learned in this chapter?

8. In the double-sinc function, find all local maxima, and then remove
from the list any peaks with an amplitude greater than 1 or smaller
than 0.1. And then remove peaks after x = 40. Make a plot like figure
21.7 to confirm that your filter works.

9. I mentioned earlier that local extrema detection is not robust to noise.
Add some random noise to the double-sinc and find the local minima.
Plot the function with all of the minima on top. How does the plot
look? What could be a strategy to find local minima in the presence of
noise?

10. It’s a bit annoying to modify the convolution code for even-length
versus odd-length kernels. Instead, modify the DMA code to force all
scales to have odd lengths.

11. The variable hello is a 5-by-1 vector. What are the sizes of the outputs
of the following lines of code? Figure out the answer first, then confirm
in MATLAB.

mean(hello)

mean(hello,1)

mean(hello,2)

12. The initial step of computing DFA or DMA is to integrate the signal to
create an unbounded form. How can you go from the unbounded form
back to the original bounded form? (Hint: What’s the opposite of inte-
gration, and how do you implement this in MATLAB?)

IV Analyses of Action Potentials

The brain contains many neurons. No one really knows exactly how many,
but an adult human brain contains somewhere around 100 billion. A sig-
nificant amount of research in neuroscience over the past century has
involved sticking small wires (electrodes) into the brain, locating one or a
few neurons, and then recording how their activity changes in response to
different sensory or cognitive variables, medications, and so on.

The action potentials of individual neurons are fast events, lasting a few
milliseconds. They are so fast and so stereotyped that researchers often treat
them as binary events. That is, you can imagine a Boolean or logical time
series that contains mostly zeros (false—no spike at that time point) and
some ones (true—a spike occurred at that time point) (figure 22.1). In this
and the next chapter, we will treat action potentials as Boolean events. In
chapter 24, we will see how the shape of the time course of the action
potential can be used to isolate action potentials from different neurons
that are measured by the same electrode.

The term “spike” is colloquially used to refer to action potentials. Most
people use those terms interchangeably.

22.1 Spike Times as Full Matrices and as Sparse Vectors

The focus of the analyses in this chapter is on data recorded during tasks
with repeated discrete trials; for example, when data were recorded while
experimental animals viewed images, experienced somatosensory stimula-
tion, or initiated motor responses. The data we’ll use in this chapter
were downloaded from crcns.org (https://crcns.org/data-sets/motor-cortex/
alm-1/). In the first data set (Li et al. 2015), a mouse was instructed to stick
his tongue out repeatedly (perhaps at the experimenters).

Our first goal will be to import the data into MATLAB from the data files
provided online. We will put the data into two matrices, one full and one

22 Spikes in Full and Sparse Matrices

372 IV Analyses of Action Potentials

sparse (see figure 10.8 for review). Viewing this file with a text editor reveals
that the file contains some meta-data followed by spike times, and then
more meta-data, and so on. Each section of meta-data is indicated by hash
marks (#) and separates different trials of data. We don’t know a priori how
much data there will be, so a while-loop seems appropriate.

fid = fopen('03–04–11-aa_sig1_spikes.dat');

spikenum = 1;

trialnum = 0;

APsS = zeros(100,2);

APsM = zeros(1,1001);

The spike times will be stored in two matrices: APsS is for “action poten-
tials sparse” and APsM is for “action potentials matrix.” APsS will be a sparse
matrix that stores the trial number and time stamp of each spike; APsM will
be a full trials-by-time matrix in which each element of the matrix is 0 (no
spike) or 1 (spike).

Full matrices are larger and take up more space in MATLAB’s buffer and
when saved to disk, but are a convenient representation of the data and
allow for easy access. Among other advantages, full matrices make it easy to
(1) compute the trial-averaged time course of spiking activity, (2) extract

Figure 22.1

A single action potential is a continuous event that unfolds over several milliseconds

(upper plot). In neuroscience data analyses, however, spikes are often treated as

binary events (lower plot).

Time (a.u.)
2 4 6 8 10 12

S
p

ik
e?

no

yes

Vo
lt

ag
e

(m
V

)
0

40

80

–40

22 Spikes in Full and Sparse Matrices 373

the average number of spikes in some time window (e.g., 100–300 millisec-
onds after stimulus onset), and (3) perform matrix-based computations
such as least-squares fitting or principal components analysis. The main
advantage of sparse matrices is that they take up less space in the MATLAB
buffer. For small amounts of data like what we have here, the matrix repre-
sentation might be preferable. In practice, however, with very large record-
ings of dozens or hundreds of neurons over long periods of time, sparse
matrices might be preferable. For storing data on your hard disk, sparse
matrices are almost always preferable.

We are ready to read in the data from the file. The while-loop will
continue until the end of the file; in other words, while ~feof(fid). The
code inside the while-loop is separated into four sections. The first two
sections are fairly straightforward: read in a line of code, and skip to the
next line of code if the current line is empty.

d=fgetl(fid);

if isempty(d), continue; end

The goal of the next section of the code is to skip through the trial infor-
mation section. If the line starts with a hash, we can skip forward. But we
want special treatment for the last line of the comments, because that is our
cue to increment the trial count variable.

if d(1)=='#'

 if strcmpi(d(1:5),'# int')

 trialnum = trialnum+1;

 end

 continue;

If you use a text editor to look into the data file, you will see that each
trial contains information about the stimulus intensity. The full line of text
is “intensity (dB): 97.3333” but there is no other line that starts with “int,”
which means we need to match only the first few characters. If there is no
match, the if-then statement is false, trialnum is not updated, and the
script skips forward to the next line of the file.

The fourth section of the while-loop extracts the spike time and enters it
into the matrices. Notice the difference between how the data are entered
in the sparse versus the full action potential matrices.

else

 spiketime = ceil(sscanf(d,'%g')/1000);

 APsS(spikenum,:) = [trialnum spiketime];

 APsM(trialnum,spiketime) = 1;

 spikenum = spikenum+1;

374 IV Analyses of Action Potentials

Figure 22.2 shows image representations of the matrices. Typing whos
reveals that the sparse representation is about 20% of the size of the full
representation. As the matrices get larger, this difference becomes more
extreme.

>> whos AP*

 Name Size Bytes Class

 APsM 90x1008 725760 double

 APsS 8959x2 143344 double

Before moving on, I’d like to share a little MATLAB plotting trick. The
top bar of figure 22.2 shows trial count and time stamp, but trial count has

Figure 22.2

Spike times shown in different representations. The top plot shows the trial and peri-

stimulus spike times as a 2-by-N matrix. This is the sparse matrix. The middle plot

shows those same data in a different format, with each dot indicating that an action

potential was measured at each time-trial point. The lower plot shows an image of

the full time-by-trials matrix. The point here is that both the sparse and the full ma-

trices contain the same information; they are just stored in different ways.

Time (ms)

100 200 300 400 500 600 700 800 900 1000

T
ri

al

20

60

T
ri

al

20

60

Spike count (x1000)

1 2 3 4 5 6 7 8

Trial

Time
stamp

22 Spikes in Full and Sparse Matrices 375

a range of 1–90 while time stamp has a range of 0–1,008. If you type
imagesc(APsS'), the top bar will be solid black. This happens because
MATLAB scales the image to the color range of the entire matrix, which
means that the maximum trial number is less than 10% of the range of the
image. A simple solution is to scale the trial count by a factor of 10 (this
should be done only for illustration; you don’t want to permanently change
the trial numbers). There are two ways to accomplish this; I’ll let you guess
which is the method of choice among savvy and stylish programmers.

% method 1

APsS2 = APsS; % don’t overwrite original data

APsS2(:,1) = APsS2(:,1)*10;

imagesc(APsS2')

% method 2

imagesc(bsxfun(@times,APsS',[10 1]'))

22.2 Mean Spike Count in Spikes per Second

How many action potentials occurred between 0 and 1 second? This can
be answered regardless of whether the data are stored as a matrix or as
a vector. I will show how to do it with matrix format here, and you will
have the opportunity to repeat the analysis using the sparse format in the
exercises.

tidx = dsearchn(timevec',[0 1000]');

spikeRates = sum(APsM(:,tidx(1):tidx(2)),2);

So far we’ve computed the number of spikes in each trial between 0 and
1,000 milliseconds. To make this finding more comparable across different
studies, stimuli, and so forth, the number should be converted to units of
spikes per second (often written sp/s). You might be tempted to use the unit
hertz instead of spikes per second. Although this seems to be the same as
spikes per second, hertz generally connotes rhythmicity. Without checking
the temporal pattern of spikes, using hertz might give the wrong impres-
sion. That is, although 10 Hz and 10 sp/s both mean that the neuron emit-
ted 10 action potentials within a period of 1 second, “10 Hz” implies that
there was one spike roughly each 100 milliseconds, whereas “10 sp/s” sim-
ply indicates that a total of 10 spikes were observed somewhere in the time
frame of 1 second.

To convert from spike count to spikes per second, simply divide by the
total amount of time in seconds (figure 22.3).

376 IV Analyses of Action Potentials

windowTime = timevec(tidx(2)-tidx(1))/1000;

spikeRates = spikeRates / windowTime;

Here, I divided by 1,000 because the time vector was in milliseconds. If
you have the time vector already specified in seconds, don’t divide. Because
our goal here was to compute the number of spikes within one second, the
divisor is mostly unnecessary (it is 0.9990). But it’s good to keep in the prac-
tice of making sure the units are computed accurately. Watch what happens
to the y axis when you change the code to compute the number of spikes in
the first 500 milliseconds, with and without the appropriate division (it’s
not actually in the figure; you’re supposed to do this on your own).

22.3 Peri-event Time Spike Histogram

Extracting the average spike count within a time window is useful but pro-
vides coarse temporal information. You might want to know how the aver-
age spike rate changes over time. The standard way to examine the time
course of spiking activity is to make the time windows shorter, and then
have many windows over time. The results produce a histogram-like plot of
averaged spike rates over time. If we have our time windows be very short

Figure 22.3

This plot shows the spikes per second on each trial, in a time window of 0–1,000 mil-

liseconds.

Trial
10 20 30 40 50 60 70 80 90

S
p

ik
e

ra
te

 (
sp

/s
)

100

110

90

22 Spikes in Full and Sparse Matrices 377

(i.e., a single time point), then our task is very easy when the spikes are
stored in full matrix form.

plot(timevec,sum(APsM))

Repeating this analysis with the sparse format data is a bit trickier, which
is why I’m leaving it up to you to complete in the exercises. Careful inspec-
tion of this simple line of plotting code reveals the same problem identified
earlier: The result shows spikes, but not spikes per second. This sum should
be divided by the time width of each bin.

dt = mean(diff(timevec));

plot(timevec,sum(APsM)./dt)

Okay, so in this particular data set, dt is 1, meaning the first plot com-
mand was accurate. But we just got lucky in that case, because the data
happened to have been stored using units of milliseconds. In practice, you
should always divide by the time bin width. In fact, we can simulate a dif-
ferent time window length by down-sampling the spike time series by a
factor of 5. We start by defining new bins by using a similar procedure as we
used to discretize reaction time data into bins (chapter 14).

bins = ceil(timevec/5);

You can see that the vector bins comprises 1,1,1,1,1,2,2,2,2,2,3… We
will use these numbers to average spike counts across time points with each
unique bin number. Results of the fine- and coarse-sampled time courses
are shown in figure 22.4.

for i=1:length(spikesbins)

 spPerbin(i) = mean(mean(APsM(:,bins==i),2),1);

 timevecBin(i) = mean(timevec(bins==i));

end

% plot

dt = mean(diff(timevecBin))/1000;

plot(timevecBin,spPerbin./dt)

You should keep in mind that these are estimates of instantaneous firing
rates; we cannot accurately measure spikes per second in a window of 5
milliseconds.

22.4 Exercises

1. Smooth the spike time course by convolving it with a Gaussian. Repeat
using different widths of the Gaussian. What is the approximate

378 IV Analyses of Action Potentials

minimum FWHM (in milliseconds) to have a noticeable effect? What
is the FWHM at which the data seem too smooth? When you have
these two boundaries, take the FFT of the two Gaussians and plot their
power spectra in the same plot. Does this tell you something about the
temporal precision of spike time courses? (Keep in mind that your find-
ings from this data set do not necessarily generalize to all spike timing
data sets.)

2. Sort the trials in the spiking data set to be in order of the average firing
rate from the entire trial. Would you expect figures 22.3 and 22.4 to
change with the new sorting?

3. What is the difference between the following two lines of code? Is there
one? When would there be a difference?

dt = mean(diff(timevec)) / 1000;

dt = mean(timevec(2)-timevec(1)) / 1000;

4. Reproduce figure 22.3 using the sparse representation of the spike
times.

5. Reproduce figure 22.4 using the sparse representation of the spike
times.

Time (ms)

100 300 500 700 900

S
p

ik
e

ra
te

 (
sp

/s
)

50

150

250

200

400

600

800
dt = 1 ms

dt = 5 ms

Figure 22.4

Spike time histograms using different window widths.

A single neuron cannot produce cognition on its own. It is the complex
interactions across huge numbers of neurons that—neuroscientists gener-
ally believe—give rise to cognition and behavior. This idea motivates inves-
tigations of spiking activity beyond how the average spike rate is related to
an external stimulus. In this chapter, you will learn about three aspects of
action potential timing:

1. Rhythmicity of action potentials within a single neuron (spike
rhythmicity)

2. Timing of action potentials relative to action potentials of another
neuron (spike-time correlations)

3. Timing of action potentials relative to the local field potential (spike-
field coherence)

23.1 Spike Rhythmicity

The goal of spike rhythmicity analyses is to determine whether a neuron
emits action potentials with temporal regularity; for example, if the neuron
tends to spike every 100 milliseconds. This could occur if the neuron is a
pacemaker cell or if it receives strong rhythmic input. To obtain evidence
for spike rhythmicity, we want to create a line plot that shows the probabil-
ity of a neuron emitting an action potential at various points in time rela-
tive to other action potentials from that same neuron.

This analysis can be done in one of two ways, depending on whether the
spikes are stored in full or sparse matrix format (see the previous chapter).
Both methods are fairly straightforward, and both provide great opportuni-
ties to sharpen your MATLAB skills.

23 Spike Timing

380 IV Analyses of Action Potentials

Spikes as Full Matrices
Here the idea is to loop through spikes and build a new vector that sums the
data forward and backward in time around each spike. Our data are struc-
tured in a trials-by-time matrix, so we’ll also use a loop over trials.

win = 50; % in ms

spRhy = zeros(1,win*2+1);

n = 0;

for triali=1:trialnum

 % find spikes on this trial

 sps = find(APsM(triali,:));

 for si=1:length(sps)

 newspikes = APsM(triali,sps(si)-win:sps(si)+win);

 spRhy = spRhy + newspikes;

 n = n+1;

 end % end spike loop

end % end trial loop

spRhy = spRhy./n;

Let’s work through this code. The first few lines specify a time window of
50 milliseconds. This will be the window in which we collect spike times
(forward and backward in time, thus the actual window will be 101 milli-
seconds). In this case, the data are stored at 1,000 Hz, which means that
each time step corresponds to a millisecond. The variable win would need
to be adjusted for any other sampling rate.

Next is the loop over trials. In each trial, we identify the spike times in
that trial (variable sps), and then loop through those spike times. The data
from a window surrounding each spike onset is added to the vector spRhy.
Finally, after the loops are finished, spRhy is normalized by dividing by the
total number of spikes. This normalization transforms spRhy from count to
probability, which is convenient because different neurons have different
total spike counts. Obviously, the probability of this neuron spiking at time
= 0 is 1 (because time = 0 is defined as the presence of a spike).

If you run the online code for this section, MATLAB will give an error.
This happens because ... well, it’s up to you to figure out why this is and
what the solution is.

Spikes as Sparse Matrices
The general idea is the same as with full matrices, but the programming
implementation is slightly different. The following three lines would go in
a loop over spikes (si is the looping variable).

23 Spike Timing 381

tempsps = spikes-spikes(si);

tempsps(tempsps<-win | tempsps>win) = [];

spRhy(tempsps+win+1) = spRhy(tempsps+win+1)+1;

To understand the first line of code, recall the min-abs construction (e.g.,
figure 18.5). We are shifting the vector of spike onsets such that the current
spike gets a time of zero, and all other spike times become relatively nega-
tive (before the spike) or positive (after the spike). In the next line, all rela-
tive spike times outside our requested window are obliterated from the
tempsps vector. And finally, the remaining indices in the spRhy vector are
incremented by one.

If you look carefully at figure 23.1, you might see that the results of this
analysis differed very slightly between the full and sparse matrix represen-
tations (you might have to look at the figure in MATLAB to see the differ-
ence). Any ideas what might be causing this discrepancy?

23.2 Spike Rhythmicity via the Frequency Domain

As you learned in chapter 12, some time-domain analyses can be done
faster and more efficiently in the frequency domain. It turns out that
computing spike rhythmicity, like convolution and filtering, is a linear
operation and can also be computed via the frequency domain.

More precisely, we can compute spike rhythmicity as an autocorrelation.
The procedure is fairly simple and also fairly similar to convolution. Recall

Figure 23.1

This figure shows the probability of action potentials occurring within 10 millisec-

onds of each action potential.

From full matrix
From sparse matrix

Time (ms)
0–2–4–6–8 2 4 6 8

0

.2

.4

.6

.8

S
p

ik
e

p
ro

b
ab

ili
ty

1

382 IV Analyses of Action Potentials

that in convolution, the power spectra of the data and of the kernel (in
chapter 12, this was a Morlet wavelet) are point-wise multiplied, and the
inverse Fourier transform is then applied. What’s the kernel in an autocor-
relation computation?

The answer is the signal. The signal is both the “signal” and the
“kernel.” Autocorrelation can therefore be performed by multiplying the
Fourier transform of the data with itself, and then taking the inverse Fou-
rier transform. In other words, the autocorrelation is the inverse Fourier
transform of the power spectrum. Let’s see this in action; results are shown
in figure 23.2.

APsM = bsxfun(@minus,APsM,mean(APsM,2));

spikespow = abs(fft(APsM,[],2)).^2;

spikesifft = ifft(spikespow,[],2);

spRhy = mean(spikesifft) / trialnum;

spRhy = spRhy([end-win+1:end 1:win+1]);

There are a few noteworthy differences from convolution as imple-
mented in chapter 12. The length of the FFT here is the length of the signal,
meaning we are performing a circular instead of a linear convolution.
Second, the inverse time-domain signal is spliced such that the final win+1
points are wrapped around before the first win+1 points. This makes it eas-
ier to see the autocorrelation function both forward in time (positive val-
ues) and backward in time (negative values). You can also use the
function fftshift.

Figure 23.2

Spike autocorrelation function using the same data as plotted in figure 23.1.

Time (ms)
0–2–4–6–8 2 4 6 8

0

.2

.4

.6

.8

A
u

to
co

rr
el

at
io

n
 c

o
ef

.

1

–.2

23 Spike Timing 383

If the input time series is real-valued—which is generally always the case
when analyzing spiking data—then the result of the inverse Fourier trans-
form will also be real-valued. In digital computers, there are occasional
rounding errors, particularly if the values are very small. This can lead to
small non-zero imaginary components in the inverse Fourier transform. If
you get a complex result from this procedure, you can ignore the imaginary
part by using real(ifft(…)).

Spike timing analyses must be interpreted cautiously when the data are
taken from time windows in which an external stimulus is being presented.
Temporal regularities in the stimulus may impose an autocorrelation struc-
ture on the data. For example, imagine that you recorded spiking activity
from visual cortex while a light flashed every 100 milliseconds. Many neu-
rons will show strong spike rhythmicity at 10 Hz, but this does not neces-
sarily mean that the neurons have intrinsic temporal regularities at 10 Hz;
it might simply mean that they spiked with each new sensory input. A simi-
lar concern arises when using monitors that redraw the display with each
refresh or otherwise have some refresh-related flicker. In this case, an appar-
ent 60 Hz (or whatever is the monitor refresh rate) rhythm in the visual
cortex might reflect entrainment to the external stimulus.

23.3 Cross-Neuron Spike-Time Correlations

So far, we’ve been dealing only with spike times from individual neurons.
The next step is to expand this to dealing with pairs of neurons. Now we
want to know whether there is a relationship between the timing of action
potentials from one neuron and the timing of action potentials from
another neuron. This kind of analysis is often used to make inferences
about monosynaptic connections among neurons. For example, one neu-
ron reliably spiking 4 milliseconds before another neuron can be taken as
evidence for a monosynaptic connection.

As you might imagine, this analysis is fairly similar to the spike rhyth-
micity analyses shown earlier. The main difference is that we want to iden-
tify spikes in neuron A while populating the variable spRhy with spikes
from neuron B. Figure 23.3 shows results of a pair of neurons.

This analysis can be implemented in the time domain or via frequency-
domain multiplication. The main difference from what was shown in the
previous section is that we don’t want the power spectrum from only one
time series; we want the cross-spectral density of two time series. This can
be implemented as f1.*conj(f2), where f1 and f2 are the Fourier coef-
ficients of each time series. This should sound familiar from spectral

384 IV Analyses of Action Potentials

coherence, where the Fourier coefficients of one signal are scaled by the
Fourier coefficients of another signal.

23.4 Spike-Field Coherence

The brain operates on multiple spatiotemporal scales. Cross-scale interac-
tions are becoming increasingly studied, in part because it is believed that
cross-scale interactions are an important aspect of higher cognitive pro-
cesses including consciousness (Le Van Quyen 2011). The action potentials
of individual neurons reflect one of the smaller spatial scales of brain func-
tion (even smaller scales include synapses and ion channels); local field
potential (LFP) and EEG reflect larger spatial scales of brain functional
organization.

There are only a few methods for quantifying multiscale interactions in
the brain that can be linked back to neurophysiology (any data analysis
method used in neuroscience should have a neurophysiologic interpreta-
tion). One of these cross-scale interaction methods is to test whether the
spiking of individual neurons is synchronized to the phase of LFP oscilla-
tions. This spike-field coherence has been observed in many regions of the
brain, perhaps most famously in the rat hippocampus, where the timing of
action potentials relative to the ongoing theta oscillation can be used to
determine the position of the rat in a maze or a field, and is thought to be

Figure 23.3

A cross-correlation function between a pair of neurons recorded simultaneously. The

plot indicates that one neuron was more likely to fire 3 milliseconds after action

potentials of the other neuron.

Time (ms)
0–2–4–6–8 2 4 6 8

C
ro

ss
-c

o
rr

el
at

io
n

 c
o

ef
.

0

.01

.02

.03

.04

.05

23 Spike Timing 385

an important aspect of the temporal organization of information process-
ing (Buzsáki and Moser 2013).

There are a few ways to quantify spike-field coherence. Let’s start by cre-
ating a plot similar to the spike-time correlation plot, except that instead of
averaging together spike time series, we will average together LFP time
series. In fact, this is basically the same thing as an event-related potential
(ERP), one of the classical methods for analyzing EEG data. The difference
is that instead of defining the time = 0 event to be an external stimulus, we
will define time = 0 to be an internal event: the action potential. This
method is therefore sometimes called a spike-triggered average.

The first step is to identify the time indices of the spikes. The data set
we’ll work with in this section contains two vectors, one with an LFP
recorded from the rat hippocampus (variable lfp) (Mizuseki et al. 2009;
data downloaded from https://crcns.org/data-sets/hc/hc-2/), and one with
all zeros and ones when an action potential was detected in a single neuron
in the hippocampus (variable spikeTimes). In this format, finding spike
times is easy:

sidx = find(spikeTimes);

Next, we compute the average LFP surrounding each spike. If the win-
dow size is 200 time points, why will the matrix sLFP have win*2+1 time
points? A second question: What is the purpose of the second line of code
below, and what might happen if that line is omitted?

win = 200; % indices, not ms!

sidx(sidx<win | sidx>length(lfp)-win) = [];

sLFP = zeros(length(sidx),win*2+1);

for si=1:length(sidx)

 sLFP(si,:) = lfp(sidx(si)-win:sidx(si)+win);

end

Figure 23.4 shows the average of LFP traces surrounding 44,906 spikes.
There seems to be a relationship with the LFP (the null hypothesis, that
there is no relationship between action potential timing and field potential
fluctuations, would produce a flat line plus noise). Is this really reflective of
the data or might this effect be driven by a small number of large outliers
trials (“trials” here refers to spikes)? It is difficult to determine when seeing
only the averaged data. Being able to inspect the single-trial data is the rea-
son why I saved each LFP trace here, in contrast to the code to produce the
spike rhythmicity, in which the vector spRhy was repeatedly added to itself,
thus losing the single-trial data.

386 IV Analyses of Action Potentials

One way to look at these data more closely is to compare the magnitude
of the average response with the magnitude of the non-averaged (“single-
trial”) data. Inspecting the non-averaged LFP data shows that the maxi-
mum y-axis fluctuations tend to be around 1,500 μV, and the peaks of the
spike-triggered average are around 200 μV (figure 23.5). In other words, the
average response is about 13% of the total response (that’s an informal eye-
ball-based estimate). I would consider this to be a decent effect size. A very
small effect would be if the average response magnitude were less than a
percentage point of the non-averaged response magnitude. Of course, the
importance and theoretical relevance of an effect does not depend entirely
on its effect size, but it is informative to have an idea of how robust differ-
ent neural phenomena are.

An additional method of inspecting the data is to view all single traces in
a 2D (spikes by time) matrix. Figure 23.5 shows this image. It is clear that
spikes occurring on the rising slope of the theta oscillation are observed
throughout this data set. This picture becomes even clearer after applying a
2D Gaussian smoothing kernel to denoise the image. But you’ll have to
wait until chapter 27 to learn how to do that.

Figure 23.4

A spike-triggered average LFP trace. Each action potential was identified, and the LFP

time series was averaged around these spike times.

Time (ms)
0–200 –100 200100

0

–100

–200

100

200

A
m

p
lit

u
d

e
(μ

V
)

23 Spike Timing 387

23.5 Frequency-Specific Spike-Field Coherence

Spike-field coherence is usually specific to a frequency range. In fact, com-
puting spike-field coherence using the broadband LFP data as we did above
will often yield mixed results. It happened to work well in this example
because the rat hippocampus is dominated by very large-amplitude, low-
frequency oscillations.

Instead, it is often a good idea to band-pass filter the LFP data before
computing spike-field coherence. Let’s start by filtering at 8 Hz using Morlet
wavelet convolution. The result in figure 23.6 looks quite similar to the
nonfiltered result in figure 23.6 but slightly larger (not surprising consider-
ing the dominance of theta in this example LFP). For example, the trial-
averaged response peak now appears to be over 25% of the magnitude of
the single-trial peaks.

Another advantage of having narrow-band data is that the analytic
phase is defined and interpretable, and this in turn allows us to use phase-
based analyses to quantify the magnitude of spike-field coherence. We’ll do

Figure 23.5

Examining all single-trial spike-field data reveals that the averaged effect shown in

figure 23.4 is highly reproducible over individual action potentials.

Time (ms)
0–200 –100 200100

0

–1000

–2000

1000

2000

Time (ms)
0–200 –100 200100

S
p

ik
e

n
u

m
b

er

A
m

p
lit

u
d

e
(μ

V
)

388 IV Analyses of Action Potentials

this by identifying the LFP phase at which each spike occurs, and comput-
ing the non-uniformity of the distribution of phase angles. This is the same
procedure as you learned about in chapter 19 for computing phase cluster-
ing over trials. Phase clustering–based spike-field coherence involves two
steps: First, identify the phase values of the LFP at which the spikes occurred;
second, use Euler’s formula to find the length of the average vector. In
the code below, variable as is the analytic signal—the result of convolution
between the LFP and a complex Morlet wavelet at 8 Hz.

sidx = find(spikeTimes);

angels = angle(as(sidx));

sfc = abs(mean(exp(1i*angels))));

This procedure can be repeated for many frequencies to produce a
line plot of spike-field coherence magnitude over frequencies, as shown in
figure 23.7.

Figure 23.6

Similar to figure 23.5 except the LFP data were filtered around 8 Hz using complex

Morlet wavelet convolution.

Time (ms)
0–200 –100 200100

Time (ms)
0–200 –100 200100

S
p

ik
e

n
u

m
b

er

A
m

p
lit

u
d

e
(μ

V
)

0

–200

–400

200

400

23 Spike Timing 389

23.6 Exercises

1. Adapt the spike rhythmicity code by expanding the trials-by-time
matrix into one long time-trials vector. Why is it a good idea to remove
spikes within N milliseconds (where N is the window for the analysis)
of the edges of each epoch, even though the new time series has no
“epochs?”

2. To see whether spike rhythmicity changes over time, you could com-
pute rhythmicity in two different time windows. Try this using the data
shown in figure 23.1. Which two time windows would you use, and
what considerations should you keep in mind (e.g., having a similar
number of spikes in each condition to minimize biases)?

3. The results in section 23.1 can be interpreted in milliseconds only
because the sampling rate was 1,000 Hz. Modify the code so the win-
dow is specified in milliseconds and is then converted into indices.

4. The following line of code is efficient but dense. Imagine that you are
writing the Methods section of a paper and need to explain what this
line does. Write instructions in full English sentences so that someone
else could reproduce this line of code. This exercise practices two skills:
(1) explaining code in human language; (2) breaking down a complex

Figure 23.7

This figure shows the frequency specificity of spike-field coherence in the data set

used for the previous two figures. Higher values on the y axis indicate stronger spike-

field coherence at that frequency.

Frequency (Hz)

0 10 20 30 40 50 60 70 80 90 100

S
p

ik
e-

�
el

d
 c

o
h

er
en

ce

.05

.10

.20

.30

.15

.25

.35

390 IV Analyses of Action Potentials

line of code to individual constituent parts. Here’s a hint: Try separat-
ing the line of code into 3–5 separate lines of code.

spikerhyth=mean(ifft(abs(fft(bsxfun(@minus,spikesfull ...

 ,mean(spikesfull,2)),[],2)).^2,[],2),1)/trialnum;

5. Write code to reproduce figure 23.7.
6. Reproduce the left panel of figure 23.6 for other frequencies, ranging

from 2 Hz to 50 Hz. At each iteration of this loop over frequencies,
compute the FFT of this spike-triggered average, and extract power
from the Fourier coefficient closest to the frequency of the wavelet
used to filter the LFP data. Finally, plot the power spectrum as a func-
tion of wavelet frequency. How do these results compare to figure 23.7,
and are you surprised?

7. Here is another way to compute spike-field coherence: discretize the
LFP phase-angle time series into N bins (e.g., 10 bins), and compute
the average number of spikes per bin. Then plot the results as a bar
plot of spike count (y axis) as a function of LFP phase (x axis). Try this
for a few frequencies and confirm that the results are consistent with
figure 23.7.

8. The spike-field coherence value at 8 Hz is around 0.32 (the exact value
will depend on parameters). Can this be considered statistically signifi-
cant? Generate a null hypothesis distribution by randomizing spike
times and recomputing phase clustering. Perform 1,000 iterations, plot
the null hypothesis distribution and the observed value, and compute
a p-value. This method is actually too liberal, because the temporal
characteristics of the shuffled action potentials are no longer physio-
logically plausible. Therefore, also try the “cut-and-shift” procedure, in
which the phase-angle time series is cut in a random location on each
iteration, and the second half is placed before the first half. How do the
two null-hypothesis distributions compare?

9. Instead of the following line of code when computing spike rhythmic-
ity, use the function fftshift to obtain the same result.

spRhy = spRhy([end-win+1:end 1:win+1]);

10. Louis is trying to be meticulous and inspect his single-trial data over-
laid on the same plot. But MATLAB takes a really long time to render
the figure, in part because he is using an old laptop (from 2014!). He
asks you for help. On the basis of his code below, what are (at least) two
separate pieces of advice you can give him? (The variable alldata con-
tains 60,000 trials and 1,200 time points.)

23 Spike Timing 391

for i=1:size(alldata,1)

 figure(1), hold on

 plot(i+alldata(i,:))

end

11. The following line of code was presented in this chapter. Rewrite this
line without the “or” operator. (Hint: How can you equate negative
and positive values?)

tempsps(tempsps<-win | tempsps>win) = [];

If you lower a microelectrode into the brain, that electrode is likely to mea-
sure activity from several neurons. Putative action potentials are marked in
the data by threshold-crossings, when the voltage exceeds some threshold
value (often, the threshold is some number of standard deviation units
above the mean voltage value). Some data acquisition systems identify
these threshold-crossings online and store only data surrounding these
exceedances; other data acquisition systems store the continuous data, and
threshold-crossings are identified during off-line analyses.

The action potentials from each neuron are fairly homogeneous, which
is to say that the waveform shape of all action potentials of a single neuron
is very similar. But different neurons have differently shaped action poten-
tials. Furthermore, neurons with different geometric orientations and dis-
tances to the electrode tip will have different waveform shapes in the data.
This is illustrated in figure 24.1.

The idea of spike sorting is to isolate different neurons in the data accord-
ing to differentiable statistical characteristics of the action potentials. Spike
sorting algorithms have become increasingly sophisticated; for example, by
taking advantage of voltage projections onto multiple neighboring elec-
trodes (Rey, Pedreira, and Quian Quiroga 2015). We’ll work here with sim-
pler methods that will help you understand the concept of spike sorting
and, of course, improve your MATLAB skills.

24.1 Spike Amplitude and Width

What are the statistical characteristics of the action potentials that allow
differentiability? Let’s start with some simple characteristics to find out.
Two basic properties of an action potential are its amplitude and its width.
Can we distinguish multiple neurons recorded from the same electrode
using these two properties? In theory, yes, if one neuron was fast and high

24 Spike Sorting

394 IV Analyses of Action Potentials

while another neuron was slow and low. Let’s see whether reality is consis-
tent with theory (it rarely is, but we scientists are supposed to be ever-
hopeful that it will be).

We will define spike amplitude as the distance between the peak of the
spike waveform and the preceding dip. And we will define spike width as
the distance in time between the pre-peak dip and the post-peak dip. These
measures must be computed individually for each spike, so we need a loop.
The following code goes inside a loop around spikes. We start by finding
the time indices of the peak, the pre-peak minimum, and the post-peak
minimum. (Variable spikes is a matrix of spikes by time, and variable si
is the looping index.) The data used in this chapter were downloaded from
https://crcns.org/data-sets/vc/pvc-5 (Chu, Chien, and Hung 2014).

% find peak

[~,peakidx] = max(spikes(si,:));

% minimum before peak

[~,min1idx] = min(spikes(si,1:peakidx));

Figure 24.1

Depending on geometry and distance to a microelectrode, the waveform shapes

of action potentials of different neurons can sometimes be dissociated from single-

electrode recordings. Components analyses and clustering techniques are used to

attribute each action potential to one of several different putative sources.

A

Microelectrode

A

B

B

24 Spike Sorting 395

% minimum after peak

[~,min2idx] = min(spikes(si,peakidx:end));

min2idx = min2idx+peakidx-1;

% get premin-peak difference

spikefeat(si,1) = diff(spikes(si,[min1idx peakidx]));

% get min2min

spikefeat(si,2) = min2idx-min1idx;

Notice how I used the diff function instead of writing out the subtrac-
tion. It’s a convenient shorthand, but you should always sanity-check it
first. The most common mistake to make is having the order backward,
which means the difference could be negative when you expected it to be
positive.

Now let’s see if these two features can differentiate different neurons. We
will make a plot of one feature versus the other feature (spike amplitude vs.
spike width), with each dot reflecting one action potential. If all action
potentials come from one neuron, there will be little spatial structure in the
plot. However, if the action potentials recorded by this electrode come from
two different neurons, there will be separable clouds of dots, with each
cloud corresponding to each neuron.

plot(spikefeat(:,1),spikefeat(:,2),'.')

The results in figure 24.2 do not look very cloud-like (at least, not like
any cloud I’ve ever seen, not even Arizona desert sunset clouds, which are
quite remarkable). Why is it so layered? The problem here is that with only
12 time points, the information is too coarse, and so there is too little vari-
ability. This leads to two possible interpretations. One possibility is that all
of the spikes in this data set come from one neuron. An alternative possibil-
ity is that these two features are simply terrible at differentiating multiple
neurons. I have seen the future, and I’m going to place my bet on the sec-
ond interpretation. In fact, spike amplitude and width are generally not
good features to use for spike sorting. We tried them here mainly as an
exercise.

24.2 Spike Features via Principal Components Analysis

Amplitude and width alone are insufficient to isolate the two neurons. Per-
haps the features that differentiate these neurons are more complex and are
related to the waveform shape. Instead of defining a priori what features to
focus on, perhaps we should try a data-driven approach that allows blind
discovery of the important features of the spike waveforms. We will do this

396 IV Analyses of Action Potentials

by applying principal components analysis (PCA) to the waveforms and
inspecting whether the projection of each spike onto principal component
(PC) space can differentiate two neurons recorded by this electrode (spoiler
alert: the answer is yes!).

Recall from chapter 17 that a PCA involves an eigendecomposition of a
covariance matrix. And that a covariance matrix can be produced by multi-
plying a demeaned data matrix by its transform. Before mucking around in
MATLAB, let’s first think about matrix multiplication and sizes. If we want
a time-by-time covariance matrix, how should the spikes matrix be trans-
posed and multiplied? The matrix is natively organized as spikes by time. If
we put the matrix transpose on the right (AAT), we’ll end up with a spikes-
by-spikes covariance matrix, which is not what we want. Instead, the matrix
transpose needs to be on the left (ATA). If you don’t understand why this
produces the correctly sized covariance matrix, you might want to review
the rules for matrix multiplication in chapter 10.

spikescovar = spikes’*spikes;

Check the size of spikescovar, and also make an image of it. This data
set has 12 time points, so the matrix should be 12 by 12. A covariance
matrix is symmetric, which appears to be the case from the image

Figure 24.2

Spike width (y axis; in arbitrary time steps) and spike amplitude (x axis) fail to pro-

vide evidence for multiple independent neurons contributing action potentials in

this data set.

Spike amplitude

0 50 100 150 250200 300

S
p

ik
e

w
id

th

3

4

5

6

7

8

9

10

11

24 Spike Sorting 397

(figure 24.3). Did I forget something in the code above? You betcha. In fact,
I forgot two important details. First, the spikes matrix needs to be mean-
subtracted, and second, the covariance matrix should be divided by the
number of spikes minus 1. (Readers with a linear algebra background might
realize that because MATLAB normalizes the eigenvectors when the input
matrix is symmetric, and because we do not use the eigenvalues in compu-
tations, the division by N – 1 is technically unnecessary; nonetheless, it’s
good to keep in the habit of doing things correctly.)

Now that we have the correct covariance matrix, we use the MATLAB
function eig to compute the eigendecomposition and obtain the eigenval-
ues and eigenvectors. It’s easy to forget which output contains the eigenval-
ues and which contains the eigenvectors, but a quick sanity check via
inspecting images of the outputs will reveal which output is which.

Next, we project each neuron onto the first two components. Here again
is a good opportunity to think about matrix sizes before writing the
code. Per component, we want a single number per spike that encodes how
much that spike reflects the properties of that component. In other words,
the matrix should be spikes-by-1. The matrix spikes has dimensions

Figure 24.3

This figure shows the average time courses from all spikes (top plot), the time-

by-time covariance matrix from which the PCA is performed (inset), and the time

courses of the first two components (bottom plot).

Time (a.u.)
2 4 6 8 10 12

A
m

p
lit

u
d

e
(a

.u
.)

0

–.2

–.4

–.6

.2

.4

.6

0

20

40

60

80

–20

–40

A
m

p
lit

u
d

e
(a

.u
.) Average of all spikes

PC1
PC2

Time points

T
im

e
p

o
in

ts

398 IV Analyses of Action Potentials

spikes-by-time, and the PC weights have dimensions time-by-time
(although the values do not represent “time”; the matrix is weight-by-
component). This time you got off easy—no transposes required.

comp1 = spikes*eigvects(:,end);

comp2 = spikes*eigvects(:,end-1);

Remember that the eigenvectors usually come in ascending order, mean-
ing the final eigenvector is the one with the largest eigenvalue (i.e., the one
that accounts for the most amount of variance orthogonal to all other
directions of variance). But they are not guaranteed to be sorted, so it’s a
good idea to check, or to sort them yourself. Now let’s generate a plot like
figure 24.2, but using the first and second principal components (figure
24.4). And now the story completely changes. It is visually obvious that
there are two clouds of dots. This provides evidence that this electrode mea-
sured action potentials from two different neurons.

Figure 24.4

This plot is similar to figure 24.2, except that instead of plotting features amplitude

and width, we are plotting features PC1 by PC2 (PC, principal component). Separable

clusters in this plot is taken as evidence for multiple neurons in the recording.

PC #1

–250 –200 –150 –100 –50

P
C

 #
2

–100

–50

0

50

100

24 Spike Sorting 399

Box 24.1

Name: Rodrigo Quian Quiroga

Position: Director

Affiliation: Centre for Systems Neuroscience, University of Leicester, Leices-

ter, England

Photo credit: Rodrigo Quian Quiroga

When did you start programming in MATLAB, and how long did it take

you to become a “good” programmer (whatever you think “good” means)?

I started using MATLAB about 15 years ago. Good or bad is relative. As with

any software language, learning to program is a never-ending learning pro-

cess. However, I can highlight that for me, a major step change was when I

learned how to use the GUI developer. In fact, the possibility to embed some

codes within GUIs made a big difference, as these codes were very easy to use

for other users, so it boosted their dissemination.

What do you think are the main advantages and disadvantages of

MATLAB?

I used to program in Fortran and C before. The main advantage of MATLAB is

that you don’t have to define variables, compile the code, and so forth. So, in

this sense MATLAB is much more user-friendly. Another great advantage is the

possibility of developing and using GUIs. The main disadvantage is that it

requires specific knowledge in order to optimize the codes (e.g., avoiding for-

loops, linearizing the operations) and that it is relatively expensive if one

starts adding toolboxes, compared to other options that are free.

400 IV Analyses of Action Potentials

24.3 Spike Features via Independent Components Analysis

Before learning how to identify clusters, let’s first try an alternative tech-
nique to isolating units from this data set of spikes. Instead of principal
components analysis, we’ll try an independent components analysis
(ICA). Recall from chapter 17 that independent and principal components
analyses are similar in that they are both blind source separation (BSS) tech-
niques that estimate components of variance based on multichannel data.
But independent components analysis separates components according to
higher-order statistical criteria and does not require the components to be
orthogonal.

As in chapter 17, we’ll use the Jade algorithm, which takes the entire
time series as input rather than the covariance matrix. If the data matrix is
less than full column rank, the function jader might return complex out-
puts. Reduced-rank matrices occur when one or more columns of data pro-
vide no unique information. This is the case in the sample data set because
the first time point is always set to zero. A column (or a row) of all zeros in
a matrix makes the matrix reduced-rank because the zero column is a linear
combination of any other column (zero times any column is the zero vec-
tor). Thus, we should extract fewer independent components than we have
time points.

Do you think MATLAB will be the main program/language in your field

in the future?

It is for me, but I can’t say it will stay like this in the future. New generations

of scientists may find features of, for example, Java or other programming

languages more attractive than MATLAB.

How important are programming skills for scientists?

In my field, neuroscience, it is crucial. People blindly using codes they do not

fully understand are constrained to use what somebody else developed and

cannot tune the analyses or the development of experiments to their own

scientific questions.

Any advice for people who are starting to learn MATLAB?

Get as soon as possible into a specific problem of your own research. It makes

no point in doing a course without any practical application. Theoretical

knowledge is quickly forgotten if not put into practice. A good way of learning

is also to start modifying other people’s codes.

24 Spike Sorting 401

Figure 24.5

Similar to figure 24.4, except independent components analysis was used instead of

principal components analysis. IC, independent component.

IC #1

–6 –5 –4 –3 –2 –1 0

IC
 #

2

–2

–4

0

2

4

One effective way to determine the maximum number of components
to retrieve is by computing the rank of the data matrix and using the rank
as the second input to the function jader.

r = rank(spikes);

weights = jader(spikes’,r);

icas = weights*spikes’;

plot(icas(1,:),icas(2,:),'k.')

The output of jader is a time-points-by-components-weight matrix,
sorted from the largest component to the smallest (i.e., the opposite order
from the MATLAB eig function—always sanity check!). Similar to PCA, the
weights are then multiplied by the individual spike waveforms to obtain
component scores per spike. And similar to PCA, plotting the scores of the
first independent component by those of the second independent compo-
nent reveals two clusters (figure 24.5). Unlike in figure 17.8, which showed
large differences between PCA and ICA, here these two decomposition
methods provide comparable results. If anything, the PCA seems to have
provided a clearer separation between the two clusters. More generally,

402 IV Analyses of Action Potentials

whether PCA and ICA provide similar results depends on the nature of the
covariance patterns in the data.

24.4 Clustering Spikes into Discrete Groups

The interpretation of results like in figures 24.4 and 24.5 is that there are
two different neurons measured by this one electrode. Visually, it seems
clear that there are two clusters; now it’s time to learn how to separate those
clusters. We will use a procedure called k-means clustering, which tries to
separate multidimensional data into k clusters. More detail and examples of
k-means clustering are presented in chapter 31. To run k-means clustering,
we enter the to-be-clustered data (the component scores), and the number
of components to extract.

cidx = kmeans([comp1 comp2],2);

The variable cidx (cluster index) is a vector that contains a numerical
label for each spike, categorizing each spike as belonging to group “1” or to
group “2.” Then we can re-plot the results using different colors for differ-
ent groups (figure 24.6).

plot(comp1(1,cidx==1),comp1(2,cidx==1),'r.'), hold on

plot(comp1(1,cidx==2),comp1(2,cidx==2),'b.')

legend({'unit 1';'unit 2'})

You can clearly see the line that divides the two groups. It is a straight
line. It’s not a perfect separation, but it’s also not so bad considering the
simplicity of the analysis. In practice, spike-sorting procedures use more
dimensions for the classifier and more sophisticated classification algo-
rithms. Nonetheless, professional-grade spike-sorting procedures follow the
same basic concepts that you learned here.

Regardless of the fanciness of the analysis, you should always be cautious
when interpreting results of spike sorting. The groupings are statistical,
imperfect, and probabilistic, and they are open to some amount of subjec-
tivity. It is difficult to demonstrate conclusively that two different spike
clusters are produced by two different neurons. For example, if the elec-
trode moves slightly in the brain, the same neuron might have a different
geometric orientation relative to the electrode, and therefore might appear
to be a different neuron. For this and other reasons, people refer to clus-
tered spikes as “single units” rather than “isolated neurons.”

24 Spike Sorting 403

Figure 24.6

The two clusters from the principal components analysis were separated using k-

means clustering.

PC #1

–250 –200 –150 –100 –50

P
C

 #
2

–100

–50

0

50

100 Cluster 1
Cluster 2

24.5 Exercises

1. The following line of code subtracts the mean of the spike time series
in the wrong way. How can you tell? (Hint: Sanity check!)

spikes = bsxfun(@minus,spikes,mean(spikes,1));

2. Re-run the k-means clustering that produced figure 24.6 several times.
Do the cluster numbers stay the same? Do the boundaries stay the
same?

3. Adjust the k-means clustering to extract and plot three clusters. Do you
agree with the results? What does this tell you about k-means cluster-
ing and a priori knowledge of the number of clusters?

4. Are PCA-based and ICA-based clusters the same? What is the propor-
tion of spikes that overlap? Remember that labeling groups as “1” or
“2” is arbitrary; you’ll need to devise a method to see if they match
even if PCA-derived unit “1” corresponds to ICA-derived unit “2.” For
the two clusters, plot the average waveform shape for the overlapping
PCA and ICA clusters, and, in a separate plot, show the difference

404 IV Analyses of Action Potentials

between PCA and ICA component time courses. Next, compare these
to the clusters that were already formed in the downloaded data set
(look for the variable called cluster_class).

5. Neurons have a refractory period and cannot emit an action potential
too closely after the preceding action potential. If a spike cluster is
really from a single neuron, there should be no double-spikes within a
few milliseconds of each other. In large data sets, there will be a small
number of such fast double-spikes, which may reflect noise or simulta-
neous spikes from multiple neighboring neurons. In the two clusters
here, compute the interspike-interval histograms and show in a plot.
Write code to count the number of spikes that occur within 1 millisec-
ond, 2 milliseconds, and so on, up to 20 milliseconds, after each spike,
separately for the two clusters.

6. Perform another “soft proof” that principal components are orthogo-
nal by computing the dot product among all possible pairs of eigenvec-
tors of the spike PCA matrix. Note that due to computer numerical
rounding errors, the dot produces won’t be exactly zero, but you can
consider any number smaller than 10–10 to be zero. Do you expect the
ICA components to be zero? Confirm your hypothesis in MATLAB.

7. Now that you have two spike clusters, test whether those units interact.
Identify action potentials in cluster no. 2 that spike either 3 millisec-
onds before or 3 milliseconds after spikes in cluster no. 1. Plot their
waveform shapes. For comparison, also plot the average waveform
shapes of randomly selected spikes.

8. We discovered in section 24.3 that the covariance matrix (variable
spikecov) has rank 11, although is has dimension 12 by 12. This is the
covariance matrix that was computed from data matrix spikes. What
is the rank of spikes? On the basis of this result, can you guess the
linear algebra law about the relationship between the rank of A and the
rank of ATA?

V Analyses of Images

Magnetic resonance imaging (MRI) has revolutionized medical diagnoses
since the 1970s and swept in a tide of cognitive neuroscience research start-
ing in the late 1990s. Interesting historical note: It used to be called nuclear
magnetic resonance imaging, but too many people were concerned about
sticking their head into what they thought might be a small nuclear reactor.
It’s a good example of smart marketing.

Most scientists who work with MRI data do not program the pre-process-
ing and analyses themselves. The dominant MATLAB toolbox for analyzing
MRI-based data is SPM (www.fil.ion.ucl.ac.uk/spm/). Nonetheless, familiar-
ity with importing and working with MRI data in MATLAB is important.
This chapter will provide an introduction to importing, plotting, and some
basic analyses of MRI data.

25.1 Importing and Plotting MRI Data

Recall from earlier chapters that an image is represented in MATLAB as a
2D matrix of numbers, where the value at each coordinate encodes the
brightness of that pixel. MRI data are volumes and therefore stored as 3D
matrices. Although 2D color images are also stored as 3D matrices, 3D MRI
volumes are colorless, so each dimension in the matrix corresponds to a
dimension in physical space (color would therefore require a fourth dimen-
sion). Each point in the 3D image is called a voxel (a volumed pixel).

There are several file formats for MRI data; the two most commonly used
formats are NIFTI and ANALYZE (NIFTI is becoming the standard). NIFTI-
format data (file extension .nii) include “headers” that have basic informa-
tion about the image (e.g., voxel sizes, 3D rotations, patient information,
etc.) and the data matrix. ANALYZE-format data separate the header and
the image data into two files (filename.hdr and filename.img). There are
several functions that can import NIFTI files into MATLAB. Some functions

25 Magnetic Resonance Images

408 V Analyses of Images

rely on toolboxes such as SPM. Included in the online MATLAB code is an
import function that does not require any additional toolboxes (down-
loaded from www.neuro.mcw.edu/~chumphri/matlab/readnifti.m).

strMRI = readnifti('MNI152_T1_1mm.nii');

The variable strMRI (“structural MRI”) is a 3D brain scan and is repre-
sented as a 3D matrix (confirm this by typing size(strMRI)). The image
comes with the FSL program (a free, non-MATLAB analysis program for MRI
analyses) (Smith et al. 2004), and each voxel measures 1 mm3 of the brain.
Let’s see what part of the matrix looks like:

strMRI(20:30, 50:60, 90)

It’s just a bunch of numbers, as you’ve seen before with images. Those
numbers will be more interpretable when converted into grayscale values
in an image.

imagesc(squeeze(strMRI(60,:,:))')

If you are not used to looking at magnetic resonance images, you might
think this is some kind of H.R. Giger picture that was colored by a blissfully
optimistic 8-year-old girl. Perhaps we can tone it down a bit and flip the
image to make it look more recognizable.

axis image, axis xy

colormap gray

This shows only one slice through a 3D image. I chose to plot the 60th
slice of the first dimension more-or-less at random. Notice what we did
here—we selected one element in the first dimension and all elements in
the second and third dimensions. This gives us a 2D plane, which we then
displayed as an image. The MRI slice was transposed to rotate it 90°. This is
not necessary but is consistent with the convention of displaying magnetic
resonance images (figure 25.1).

Take a few minutes to plot different slices from the same orientation (i.e.,
picking a different element from the first dimension), and also plot some
random slices from different orientations. You can also try changing the
colormaps for fun.

25.2 fMRI Data as a Four-Dimensional Volume

The “f” is for functional and often is lowercase (fMRI) and sometimes even
italicized (fMRI), but all four words are equally abbreviated and it seems
unfair to “MRI” to make the “f” stand out. But this has become standard

25 Magnetic Resonance Images 409

nomenclature in the literature, and you have to pick your battles (or follow
the rule that sentences start with capital letters).

fMRI measures hemodynamic activity, which correlates, albeit in com-
plex ways, with neural spiking and local field potential fluctuations (Singh
2012). fMRI is therefore taken as an indirect measure of brain activity.
Each image of the brain is acquired every 1–2 seconds, and the hemody-
namic response itself is fairly sluggish—it peaks after 6–8 seconds and
decays over the next 8–14 seconds. Standard fMRI measurements have
spatial resolutions of around 2–5 mm3, and innovations in acquisition algo-
rithms and MRI technology are allowing smaller voxel sizes and faster
acquisitions, down to the sub-millimeter and sub-second scales (the spatial
extent of coverage must typically be sacrificed for smaller voxels or faster
acquisitions).

fMRI data can be conveniently stored in MATLAB as four-dimensional
(4D) matrices, where the fourth dimension is time. The sample fMRI data
used in this chapter come with the SPM analysis toolbox (www.fil.ion.ucl

Figure 25.1

MRI data are stored as a 3D volume. This figure illustrates one slice from each dimen-

sion of this structural scan.

410 V Analyses of Images

.ac.uk/spm/data/auditory/). In the experiment, a subject heard spoken sen-
tences for blocks of around 40 seconds, alternating with an equal number
of blocks with no stimulus. These data are in ANALYZE format, so each of
96 separate acquisitions (96 time points) are stored in 96 × 2 files. Fortu-
nately, the files are numbered in order, so they can be imported using a
for-loop.

filz = dir('*img');

for imgi=1:length(filz)

 vol = readnifti(filz(imgi).name);

 % initialize

 if imgi==1

 fmridat = zeros([size(vol) length(filz)]);

 end

 fmridat(:,:,:,imgi) = vol;

end

Much of this code you’ve encountered in previous chapters. It might
initially seem strange to initialize the matrix inside the loop, but this
allows us to initialize the matrix properly without knowing a priori the size
of the MRI volumes. Reinitializing the matrix to zeros at each iteration
would be a mistake, because it would overwrite all the previous data.
Hence the if-then statement that ensures this initialization is run only at
the first iteration of the loop. The only assumption we make about the
data a priori is that each image has the same number of elements in three
dimensions.

But wait—how do we know that the files were imported in the correct
order? Accurate ordering is crucial because we are reconstructing a time
series one file at a time, and all subsequent analyses are based on the
assumption that the volumes are in the right order. One potential source
of error, for example, would be if the files are named as 1, 2, 3 …, 9, 10,
11; instead of 01, 02, 03 …, 09, 10, 11. The former sequence is often reor-
dered by computers as 1, 10, 11 …, 19, 2, 20, 21, and so on. This is useful
to know when you are naming sequential data files: if there will be more
than nine sequential files, start counting at “01” instead of at “1” (starting
at “001” allows for more than 99 sequential files, plus cool things happen
after 006).

Rather than blithely trusting that these files are in the correct order, we
should check them. One way to do this is by examining the file names
by typing {filz.name}' (the transpose prints a column vector, which
facilitates visual inspection).

25 Magnetic Resonance Images 411

Let’s try another, more quantitative method. We’ll extract the volume
numbers from the file name and store those as a numerical vector. The first
step is to figure out how to extract the numbers from the file names. You
can see that the volume numbers are always between the underscore and
the period (e.g., “fM0023_007.img”), so the goal now is to find the position
of the underscore and the period, and take the characters between them.
You might be tempted to hard-code this by extracting the 8th to the 10th
characters, but we want our method to be more general and work for any
files where the volume number is the end of the file name just before the
extension.

uscore = strfind(filz(1).name,'_');

dotloc = strfind(filz(1).name,'.');

volnum = filz(1).name(uscore+1:dotloc-1);

The variable volnum is a string, and we can use sscanf(volnum,'%g')
to convert the string to a number. The three lines above should be placed in
the loop over file names, although this doesn’t completely solve our prob-
lem. The variable volnum is a string that contains the image number, but
(1) we want this to be numeric, and (2) this variable is overwritten on each
iteration of the loop. Adding the following line of code will complete our
solution.

volnums(imgi) = sscanf(volnum,'%g');

After running the loop, you can inspect the vector volnums. If the
images are imported in order, the volume numbers should always increase
by one. To check this, I would inspect the output of unique(diff(volnums)).
Why would I do this, and what would you expect the output to be if the
files were in the incorrect order?

It may seem tedious to spend time checking the file order. But it’s better
to invest this time early on, rather than reach your final analyses and realize
that an innocent but horrible mistake meant the data were imported incor-
rectly, and all other work needs to be redone.

Anyway, let’s get back to the data. Using the same plotting code as we
used for the structural MRI image, you’ll notice that the fMRI images have
a poor spatial resolution compared to the structural image. Because these
data were recorded over time, we can plot a time course of activity from a
single voxel (figure 25.2).

subplot(221)

imagesc(squeeze(fmridat(20,:,:,10))')

subplot(212)

plot(squeeze(fmridat(20,40,40,:)))

412 V Analyses of Images

25.3 fMRI Statistics and Thresholding

When analyzing fMRI data, the time course of activity at each voxel is
treated as the dependent variable with which to perform statistical analy-
ses. We will do a simple t-test on time periods when the subject heard
speech versus time periods when there was no speech. The SPM manual
states that the design had 6 volumes with auditory stimulation, 6 volumes
without, and so on. The code below will generate a vector over volumes
that indicates whether each volume had (“1”) or did not have (“0”) audi-
tory stimulation. The first 12 images are discarded for early saturation
effects, and so we begin with 18 (12 + 6).

onsets = 18:12:96;

timeline = zeros(length(filz),1);

for i=0:5

 timeline(onsets+i) = 1;

end

Figure 25.2

The images at the top show two slices of the fMRI volume taken at two different time

points; the plot at the bottom shows the time course of the signal changes from

one voxel.

Volume 20 Volume 86

Time course of voxel i,j,k = 20,40,40

Time (volume)

10 20 30 40 50 60 70 80 90

S
ig

n
al

 in
te

n
si

ty
 (

a.
u

.)

5400

5800

25 Magnetic Resonance Images 413

This code works by simultaneously accessing multiple indices into the
timeline vector. You can inspect the values of onsets+i at each iteration.
Note that this is accurate only because the timing of the experiment was
exactly and repeatedly 6 volumes with and 6 volumes without auditory
stimulation. This is often called a block experiment design. Nowadays, most
researchers use an event-related design, meaning that the experiment
events are faster and more frequent, and that deconvolution techniques
must be used to isolate overlapping hemodynamic responses. You’ll learn
in chapter 28 about better data analysis techniques that involve modeling
the hemodynamic response and fitting least-squares equations to data.
We’ll keep it simple here by computing a t-test on the average of volumes
with versus without stimulation.

m0 = mean(fmridat(:,:,:,timeline==0),4);

m1 = mean(fmridat(:,:,:,timeline==1),4);

numerator = m1-m0;

The variable numerator is the numerator of the t-test. The denominator
is the variance, and the t-test is the ratio between them.

v0 = var(fmridat(:,:,:,timeline==0),[],4);

v1 = var(fmridat(:,:,:,timeline==1),[],4);

denominator = sqrt((v0/sum(timeline==0)) ...

 + (v1/sum(timeline==1)));

tmap = numerator ./ denominator;

The next step in fMRI analyses is to “threshold” the t-statistics map by
setting nonsignificant values to zero or to NaN (“not a number”). Plotting
the thresholded map on top of the MRI facilitates anatomic localization
and interpretability. As a quick-and-dirty threshold, let’s reject any voxels
with a t-value smaller than 2.5 (one-tailed, because we are looking for brain
regions that show increased activity during auditory stimulation).

tthresh = tmap;

tthresh(tthresh<2.5) = 0;

In addition to the pixel-level threshold, it is common to apply a cluster-
based threshold. The idea is that because fMRI volumes have some spatial
smoothing (particularly after pre-processing), and because many cognitive
and perceptual processes recruit distributed neural networks, it is unlikely
to observe meaningful activations in only one isolated voxel. Instead, acti-
vations are considered interpretable if they are found in clusters of contigu-
ously significant voxels. There are several ways to implement cluster-based

414 V Analyses of Images

thresholding. The simplest way is to remove any clusters that have fewer
than k contiguous voxels. This can be done using the MATLAB functions
bwconncomp or bwlabeln (both in the image processing toolbox), which
will be discussed in more detail in the next chapter. The code below will use
bwconncomp to extract all clusters (islands) in the volume, and will set any
clusters with fewer than three contiguous voxels to zero. Three voxels is an
arbitrary choice (as is t < 2.5 above); in practice, more sophisticated tech-
niques are used to determine statistically appropriate thresholds.

islands = bwconncomp(tthresh);

islandsizes = cellfun(@length,islands.PixelIdxList);

for ii=1:islands.NumObjects

 if islandsizes(ii)<3

 tthresh(islands.PixelIdxList{ii}) = 0;

 end

end

Now we’re ready to plot the results. An image of the thresholded statisti-
cal result is difficult to interpret on its own (figure 25.3). It would be better
to overlay this thresholded map on top of an unthresholded map to

Figure 25.3

A slice of the time-average fMRI volume and, in white, the voxels that survived

statistical thresholding in the contrast of auditory stimuli versus quiet rest.

25 Magnetic Resonance Images 415

facilitate anatomic localization. The code below will plot a thresholded
map on top of an unthresholded map and apply a concatenated colormap
to have the unthresholded map in grayscale and the thresholded map in
the “hot” colormap. The code is more advanced than the material you
learned in chapter 9, but by going through and plotting each line, I hope
you’ll agree that the complexity is built from simple parts.

cdiscr = 64;

% unthresholded image and normalize to [0 64]

img2plot = squeeze(m1(:,:,35))';

img2plot = img2plot—min(img2plot(:));

img2plot = cdiscr * img2plot./max(img2plot(:));

% same for stats map…

stat2plot = squeeze(tthresh(:,:,35))';

stat2plot(stat2plot==0) = NaN; % make invisible

% … but normalize to [64 128]

stat2plot = stat2plot—min(stat2plot(:));

stat2plot = stat2plot./max(stat2plot(::);

stat2plot = cdiscr+cdiscr*.5 + cdiscr*.5*stat2plot;

% plot and set colormap

h(1) = pcolor(img2plot); hold on

h(2) = pcolor(stat2plot);

colormap([gray(cdiscr); hot(cdiscr)]);

set(h,'linestyle','none')

As discussed in chapter 1, the analysis here is oversimplified compared
to what you would do with real fMRI data. For example, fMRI data are typi-
cally smoothed and temporally high-pass filtered, and possibly corrected
for head motion. The statistical analysis should include regressors that have
been convolved with a hemodynamic response (you’ll implement this in
exercise 16 of chapter 28), and statistical thresholds should incorporate
some correction for multiple comparisons over ~100,000 voxels. All fMRI
data analysis packages implement these and other steps.

25.4 Exercises

1. Write code to produce figure 25.1.
2. Write additional viewing code to show the structural MRI scan in 12

linearly spaced slices between the first and the last, in a 3-by-4 subplot
matrix. Produce three figures corresponding to the three dimensions.

3. The edges of the structural MRI scan contain no information. Modify
the previous exercise to show 12 linearly spaced slices from the slice at

416 V Analyses of Images

20% and 80% of the way through the volume. Is 20%/80% a good cut-
off? Perhaps you can think of better cutoffs based on, for example, the
proportion of non-zero pixels in the slices.

4. The structural scan is high resolution. Try down-sampling the image by
creating new images that contain skipped voxels (e.g., take every sec-
ond voxel, or every third voxel, and so on). Compute the percentage of
the size of each down-sampled version relative to the original version.
Plot the slice closest to 50% on the z-plane for the different down-
sampled images with the proportion of decreased size in the title of the
image.

5. Using the fMRI data, compute the mean and standard deviation of the
signal intensity values over time at each voxel. Then show a few slices
from these two maps in a figure. For bonus points, complete this exer-
cise without using the functions mean and std (or var, that would be
too easy).

6. Figure 25.2 showed the time course of a single voxel. But one voxel
can be noisy, so it is better to average the data together from several
neighboring voxels. Write a function that takes three inputs: a 4D fMRI
volume, an ijk coordinate (note about nomenclature: xyz coordinates
usually refer to millimeters relative to the anterior commissure; ijk
coordinates refer to voxel indices along each dimension), and N voxels
around the coordinate for averaging. The function should generate two
plots, one that shows all three slices of the MRI (averaged signal activ-
ity across all time points) at the specified ijk coordinates, and the time
course of activity from that coordinate and the surrounding N voxels in
all space dimensions. Make sure to include an exception in case one of
the coordinates is on the edge of the image. The group of averaged
voxels is called a region of interest (ROI). For bonus points, make the
ROI be a sphere instead of a cube. To do this, you can specify the radius
of a circle along each dimension.

The purpose of image segmentation is to isolate features of a picture. For
example, if you want to share with the Internet a nice picture of your vaca-
tion, you might want to segment the picture to cut out your ex-boyfriend
standing next to you. This would be an example of manual segmentation.
For image analysis, and particularly for images in neuroscience, manual
segmentation is often undesirable because it is tedious, time-consuming,
and can be too subjective.

Automatic segmentation can be based on low-level image statistics, such
as contrast or edges, or based on high-level features like pattern recogni-
tion. The sophistication of image segmentation algorithms is steadily
increasing because of its role in computer vision and information extrac-
tion. Fortunately, most neuroscience applications of image segmentation
require only basic segmentation procedures, some of which you will learn
in this chapter. Much of the code in this chapter relies on the image pro-
cessing toolbox in MATLAB.

26.1 Threshold-Based Segmentation

Threshold-based segmentation is often used to identify supra-threshold
results in maps of statistical test values. Our first example will be a time-
frequency power map, like what we created in chapter 19. The file tfmat.
mat includes a time-frequency power matrix (variable tf) and associated
p-values from a map-wise statistical test (variable p). There is a p-value for
each time-frequency pixel, and the goal of thresholding here is to find
regions in this map that have power values associated with p-values smaller
than 0.05 (we won’t worry about correcting for multiple comparisons).

Our task will be easier if we have a binarized map of the thresholded
image. A binarized map is a matrix of the same size as the time-frequency
map, but that comprises only zeros and ones to indicate subthreshold (0)

26 Image Segmentation

418 V Analyses of Images

and suprathreshold (1) pixels. We can then use this binarized map to draw
contours on the unthresholded map that indicate the suprathreshold
regions (figure 26.1), as well as to extract important information from those
regions (e.g., effect size).

threshmap = p<.05;

contourf(timevec,frex,tf,40,'linecolor','none')

hold on

contour(timevec,frex,threshmap,1,'k')

The line of code that calls contourf produces the contour plot with the
colors filled in and with the lines turned off. The line that calls contour
draws a single contour line. Notice the subtle difference in function names:
contourf versus contour. This picture (bottom left panel of figure 26.1)

Figure 26.1

The top left panel shows a time-frequency power map in decibel scale. Based on the

map of p-values, a binarized map (top right panel) was created to indicate significant

(black) and nonsignificant (white) pixels. This map can then be used to outline sig-

nificant regions in the power plot (bottom left panel) or to mask out nonsignificant

pixels in the power plot (bottom right panel).

Time (a.u.)
100 200 300

10

20

30

Fr
eq

u
en

cy
 (

a.
u

.)

“Raw” image Binary threshold

Image with threshold Thresholded image

10

20

30

Fr
eq

u
en

cy
 (

a.
u

.)

Time (a.u.)
100 200 300

26 Image Segmentation 419

provides only qualitative information for visual inspection. What if you
want to quantify these segmented blobs: How many are there? What are
their sizes? What are the mean and maximum pixel values inside each
blob?

We will use the MATLAB function bwconncomp to obtain quantitative
information about the segmentation. The same results could be obtained
with the function bwlabel; you’ll learn about that in the next section.

islands = bwconncomp(threshmap);

The MATLAB function bwconncomp identifies contiguous clusters of pix-
els in an N-dimensional matrix. A contiguous cluster means that there is at
least one pixel with a non-zero value (“true” in Boolean lingo), surrounded
on all sides by pixels with zero values (“false”). Multiple pixels are consid-
ered a single cluster if they share a side or a corner (figure 26.2). You can
think of clusters as islands in a sea. An optional second input to bwconncomp
will provide a definition of “neighbor.” This input is a number correspond-
ing to the maximum number of possible neighbors. For example, for a 2D
image, an input of 4 means that only pixels touching the four sides of a
pixel are considered neighbors, while an input of 8 means that pixels touch-
ing a corner can be considered neighbors (figure 26.2).

The ouput of bwconncomp is a structure that contains several pieces
of information about the number and locations of all the clusters. Take a

Figure 26.2

Illustration of clusters identified in a 5-by-5 matrix by the function bwconncomp.

Each cluster is identified by increasing integers.

2

1

1

1 3

3

420 V Analyses of Images

minute to inspect the variable islands and see if you can guess what infor-
mation is contained in each field.

The output field that is probably the most useful is called PixelIdx-
List. This is a cell array of linear indices into the matrix, where the indices
in each cell tell you which pixels are part of each cluster. For example, if you
want to know how many pixels are contained in each cluster, you simply
count the number of indices in each cell. You could—if you wanted to—do
this in a loop. But your friends might make fun of you. Therefore, in the
interest of maintaining your social status, I recommend using the function
cellfun, which works similarly to the function bsxfun.

pixelcnts = cellfun(@length,islands.PixelIdxList);

The function cellfun applies a function (in this example, the function
length) to each cell contained in the cell array and returns those outputs
in the variable pixelcnts.

To get an intuitive feel for the output of bwconncomp, let’s make an
image of the clusters. The code below creates a matrix of zeros and sets the
value of the pixels in each cluster to a unique integer. We can then view the
map as an image to see how bwconncomp selects and identifies clusters
(figure 26.3).

stepmap = zeros(islands.ImageSize);

for i=1:islands.NumObjects

 stepmap(islands.PixelIdxList{i}) = i;

end

imagesc(stepmap)

Figure 26.3

This image shows how the output of bwconncomp can be used to identify each is-

land, indicated by integers.

#3

#1

#4

#2

26 Image Segmentation 421

26.2 Intensity-Based Segmentation

Let’s do another example of image segmentation. Instead of picking a
threshold based on a statistical significance value, here we will pick a
threshold based on the distribution of pixel value intensities. Our example
image will be the structural MRI scan used in the previous chapter. Inten-
sity-based segmentation is often used in MRI and medical image processing
more generally.

We start by examining the distribution of pixel intensity values in the
image.

hist(mri)

Oh, that doesn’t look very nice. When the function hist is given a mul-
tidimensional input, it computes and displays histograms for each dimen-
sion separately (figure 26.4). We want the distribution of all pixels in the
image, regardless of which slice they happen to be in. In other words, we
need to vectorize the matrix. Of course you know exactly how to do this,
but just in case you need a gentle refresher, there are two ways to vectorize
a matrix:

hist(mri(:))

hist(reshape(mri,1,[]))

Now we get a single histogram, but the features of the histogram are
small and difficult to observe because they are dominated by a huge num-
ber of zeros (figure 26.4). Voxels outside the head have a value of zero, and
we can safely exclude these voxels: We brain scientists are generally inter-
ested in things that happen inside the head.

hist(nonzeros(mri))

The function nonzeros returns the values of the input without the
zeros. This function also vectorizes the output if the input is a matrix, so
including “(:)” or the reshape function is unnecessary. This is important to
remember: the function nonzeros will always return a vector regardless of
the shape of the input.

The distribution of signal intensity values shows one large peak and a
smaller bump to its right. Changing the x axis to a logarithmic scale (using
the set command or by computing the logarithm of the values inside the
hist function) helps make the positive bump more prominent (bottom
panel of figure 26.4). The large peak in the middle of the distribution cor-
responds to voxels measuring gray matter, and the peak to its right corre-
sponds to voxels measuring white matter (higher intensity).

422 V Analyses of Images

The goal now is to separate the gray matter from the white matter. We
will pick a threshold value based on visual inspection. This threshold will
be used to discretize the original image into two separate binarized images,
one for the subthreshold voxels (excluding zero) and one for the supra-
threshold voxels.

% based on visual inspection of the log10 histogram

thresh1 = 10.^[3.0 3.5];

thresh2 = 10.^[3.6 3.8];

smriTh1 = smri>thresh1(1) & smri<thresh1(2);

smriTh2 = smri>thresh2(1) & smri<thresh2(2);

Figure 26.4

Three histograms of the same structural MRI scan; the codes that produced the re-

spective histograms are shown. I’m sure you agree that the bottom panel best shows

the features of the pixel intensity distribution.

Values (log)
1 2 3 4

0 2000 4000 6000 8000

0 2000 4000 6000 8000

hist(smri)

hist(nonzeros(smri),10000)

hist(log10(nonzeros(smri)),10000)

C
o

u
n

t
C

o
u

n
t

C
o

u
n

t

5,000

10,000

5000

10,000

50

100

150

200

26 Image Segmentation 423

Inspecting slices of the resulting thresholded images (figure 26.5) reveals
that we have separated gray matter and cerebrospinal fluid (subthreshold)
from white matter and bone (suprathreshold) to a reasonable first approxi-
mation. Professional-grade MRI analysis toolboxes provide more sophisti-
cated and accurate algorithms that are free from arbitrary user-specified
thresholds and that can segment an MRI scan into gray matter, white
matter, bone, cerebrospinal fluid, skin, and air cavities. But although the
industry-standard algorithms are more complicated, they follow the same
conceptual principles that you know now.

26.3 Once More, with Calcium

I’m having fun doing this, so let’s do one more example with data from
two-photon calcium imaging. This is a technique that allows simultaneous
measurement of many neurons from the brain. The data come as a series of
pictures captured over time in a mouse. Figure 26.6 shows one image (one

Figure 26.5

Two thresholded images from the structural MRI scan.

Threshold region 1

Threshold region 2

424 V Analyses of Images

time point) taken from sample data that accompanies the Focustack
MATLAB toolbox (Muir and Kampa 2014).

In the image, each white spot is the soma of an active neuron. There are
around six neurons that are clearly visible, and perhaps another dozen that
can be visually identified but are dim (these neurons were inactive at the
time or were farther away from the camera’s field-of-view).

To quantify the neural activity in these images, the individual neurons
must be isolated, which means we need to know which pixels correspond
to which neurons. You guessed it—this is an image segmentation problem.
Actually, it’s a pretty difficult problem because the image can move slightly
from frame to frame (due to animal movement, blood pressure changes and
breathing, etc.); because different neurons can be superimposed in the
image if they are close together in the z-plane; because neurons are more
difficult to identify when they are not active; and because variations in
local image brightness can mean that a single image-wide threshold may be
inappropriate.

But we’ll ignore these challenges. Instead, we’ll eyeball a threshold and
see if it’s good enough to get us started. Based on visual inspection of the
colorbar, I’ll start with a threshold of 120. Any pixels with a value greater

Figure 26.6

One frame of calcium imaging. The bright white spots are active neurons.

150

50

100

250

200

150

150

50

50

100

100

250

250

200

200

26 Image Segmentation 425

than 120 can be considered pixels of interest. I’ll use the function bwlabel
here so you can see that although the format of the output is slightly differ-
ent from that of bwconncomp, we can achieve the same end result.

[islands,numblobs] = bwlabel(im>120);

Note the difference between the output of bwconncomp and bwlabel
(also note that there is a function bwlabeln for segmenting images with
more than two dimensions). The main output of bwlabel is a map of the
same size as the original image, but with distinct islands given by different
numerical labels. In fact, this is the same as the matrix stepmap we created
earlier in this chapter. We also get the variable numblobs, which is the
number of islands (how could you get this number from the output of
bwconncomp?). Either way you do it, there are 82 blobs in this image. That’s
an important number: 82, the number of clusters in this image. You’ll need
to remember this number for later.

At first glance, it looks like we’re missing the neurons on the left side of
the image (figure 26.7). But actually, this is just a color-scaling issue. There
are in fact islands on the left, but they are given small numbers and so are
difficult to see. Any ideas about how better to show this image?

Perhaps your first thought is to compress the values by plotting the loga-
rithm of the image. But I think the Boolean of the image works best; it gives
all blobs equal coloring, and we have no reason to promote certain blobs by
highlighting them with different color values.

imagesc(islands)

imagesc(log(islands))

imagesc(logical(islands))

The segmentation looks okay. One easy way to improve it is by removing
islands that have a very small number of pixels. The idea here is that real
neurons take up more space than a single pixel, so any suprathreshold indi-
vidual pixels (i.e., islands with a pixel count of one) can be considered
noise.

for i=1:numblobs

 if sum(islands(:)==i)<2

 islands(islands==i)=0;

 end

end

This code loops through clusters, tests whether the number of pixels
in each cluster (more precisely, the number of pixels with a value

426 V Analyses of Images

corresponding to the value for each cluster) is less than two, and, if true,
sets those pixels to have a value of zero.

I’m not satisfied with the results. There are still too many small clusters.
Let’s try it again, using 10 contiguous pixels as the cluster. That looks better.
Keep running this code, successively increasing the threshold. After a clus-
ter size of 50, the real neurons get removed. So that’s good, we now know
that 50 is too high. It’s good to test boundary limits. Now set the threshold
back down to 20 and re-run the code. What happened? Nothing, actually.
The pixels were irretrievably deleted from the image, and re-thresholding
won’t bring them back. You need to re-create the variable islands from
the bwlabel function. This is a good opportunity to give some advice that
I learned the hard way many times: If you want to test irreversible changes
to a variable, make a backup of that variable first, particularly if the variable
took a while to create. Here is my strategy:

Figure 26.7

Images of segmented versions of the calcium image.

islands log(islands)

logical(islands) logical(islands)

26 Image Segmentation 427

% make backup

islands_o = islands; % “_o” for original

% <lots of testing here>

islands = islands_o; % recover

The thresholded image looks better now. There are some overestima-
tions near the center of the image because of the lighter background color.
A more sophisticated method would incorporate shape (neural soma tend
to be round) as well as local changes in image contrast.

Now we have our putative identified neurons (a more conservative term
would be regions of interest). Imagine we want to know which regions give
the highest signal. This is fairly straightforward: Loop through all clusters
and get the average pixel intensity from each cluster. Remember that we
want to take the pixel intensity values from the original image, not from
the islands variable (islands contains no pixel intensity values; only
cluster numbers).

for i=1:numblobs

 activity(i) = mean(im(islands==i));

end

bar(activity)

Uh-oh. There should be 82 regions, but there are only 10 bars (figure
26.8). Do you see the error? One possible error when getting empty plots
after computing the mean is that there are NaNs in the data, because the
mean of a vector that includes NaNs is NaN. Try re-running the code using
the function nanmean instead of the function mean. This changes nothing.
Any other ideas?

Actually, there is no error here. It was a trick question. What happened
is that we deleted the smaller islands without updating the numblobs vari-
able or the remaining values in the islands variable. It’s an easy source of
confusion. You should always try to be cognizant of situations when chang-
ing one variable requires changing other variables.

Real two-photon data (and other imaging modalities) comprise many
images recorded over time. By extracting the time course of pixel intensity
values from each identified neuron, neural activity could be linked to
different experimental conditions, medication treatments, and so on.
The principle is similar to fMRI, except that different aspects of neural
activity are measured (e.g., calcium or voltage) instead of hemodynamic
activity.

428 V Analyses of Images

26.4 Defining Grids in Images

Our goal in this section will be to define a grid of boxes on a 2D plane using
differently sized boxes, like in figure 26.9. This procedure can be used
to segment images into blocks. For example, image-compression formats
like JPEG work by cutting an image into equally sized blocks and compress-
ing each block separately (in case you are curious, the within-block com-
pression involves a dimensionality reduction procedure, like a Fourier
transform or components analysis; when the compression is too stringent,
you can see the block boundaries).

Figure 26.8

This figure shows the average intensity values from the 82 original clusters. Clusters

that were removed because they were too small are shown here as zeros.

Island number
10 20 30 40 50 60 70 80

M
ea

n
 a

ct
iv

it
y

le
ve

l

20

180

60

100

140

Figure 26.9

We want to segment an image into a grid of regular-sized boxes, like in these images.

26 Image Segmentation 429

Box 26.1

Name: Dylan Richard Muir

Position: Postdoctoral Researcher

Affiliation: Biozentrum, University of Basel, Basel, Switzerland

Photo credit: Ayumi Isabelle Spühler

When did you start programming in MATLAB, and how long did it take

you to become a “good” programmer (whatever you think “good” means)?

I started programming in MATLAB during my undergraduate studies in elec-

tronic engineering. But at that stage I had been programming in other lan-

guages (C, C++, Assembler, Basic) for quite some years and already had some

training in software engineering and object-oriented programming. So I think

I had a bit of a head start!

What do you think are the main advantages and disadvantages of

MATLAB?

As a language for learning to write code, especially if you’re learning on the

job as many neuroscientists are, MATLAB is pretty ideal because it’s so forgiv-

ing. Because it was designed as a simple scripting language, you don’t need to

worry about the usual housekeeping of most languages—importing libraries,

declaring variables, allocating and freeing memory, and so on. Because all

those things are taken care of for you, most of the code you write has a direct

effect in manipulating your data. But because MATLAB also supports more

430 V Analyses of Images

modern language constructs such as classes and objects, you can learn to write

more structured code as your experience increases.

Personally, I really like the ability of MATLAB to express vectorized opera-

tions so succinctly. It saves a lot of junk overhead code to loop around a

matrix, for example. When you’re working with experimental data, you usu-

ally want to perform an operation on a large chunk of data at once. MATLAB

lets you do that very compactly, which makes your code easier to read and

understand. That’s very valuable when you have to work with someone else’s

code!

As a platform, it’s hard to understate the value of knowing that if someone

has MATLAB installed, they are guaranteed to have a fairly complete set of

toolboxes that are guaranteed to work. That means that code working on one

system will almost surely work identically on another system, even between

Mac, Linux, and Windows.

I think MATLAB’s main disadvantage is its age, and—paradoxically—it’s

large user base! The language comes from the days when Fortran seemed like a

good idea, and so it suffers under the baggage of a lot of old-fashioned con-

structs that probably wouldn’t have been introduced if it was designed from

scratch. But because millions of scientists and engineers rely on MATLAB stay-

ing compatible with itself, the language can’t change very quickly. That has

also left a bunch of small functions laying around with inconsistent calling

conventions that are slowly being cleaned up.

Do you think MATLAB will be the main program/language in your field

in the future?

MATLAB is under a bit of pressure from newer languages like Python, R, and

Julia. But I think MATLAB still has the edge in ease of use and portability of

code. And because neuroscientists usually have a background in biology or

psychology, and not in computer science, they will continue to benefit from a

language with a forgiving learning curve.

How important are programming skills for scientists?

I think it’s crucially important for scientists to know how to write code. There

is an enormous number of statistical techniques, especially the newer “data

science” methods, that are just inaccessible unless you can write your own

analysis functions. Even if you’re using off-the-shelf functions, you still owe it

to yourself—and to your data—to be able to understand how the code works.

On top of that, if you’re using new experimental techniques that aren’t off-

the-shelf, many of the systems need a very hands-on approach to produce

reliable data. That means you need to be able to tweak the code of the system

you’re working with.

On top of that, the world today runs on code. Why not allow yourself to

peek under the hood?

26 Image Segmentation 431

Any advice for people who are starting to learn MATLAB?

Learn to use the online documentation efficiently! There is almost always a

function in MATLAB that will do what you want, but unless you use that func-

tion every day, you probably won’t remember its name.

Learn how to write vectorized code; that’s one of the things MATLAB does

really well.

Start simple, but learn how to write structured code. It will make your life,

and your colleagues’ lives, much easier in the long run. Structured code means

code reuse—it’s much, much better to have a library of code that you can all

use and improve on together, rather than each PhD student reinventing the

wheel!

Use a source code repository, especially for code that you’re sharing with

others. This will keep your code consistent across machines and across the lab,

and let you easily roll your code back to 6 months ago, when you need to work

out why some analysis that worked then is failing now.

Let’s start by creating a 2D grid with N-by-N pixels.

n = 300;

[gridX,gridY] = ndgrid(1:n,1:n);

The columns and rows of this grid are numbered from one to N (here,
300). We want to down-sample the numbering from 1 to k, where k is our
arbitrary discretization parameter.

k = 7;

gridX = ceil(k*gridX./n);

gridY = ceil(k*gridY./n);

If this construction looks vaguely familiar, it’s because we used some-
thing similar when discretizing reaction times into k bins (see chapter 14).
But we don’t quite yet have what we need. We now have two matrices that
are numbered 1 through 7 (one matrix with rows, one matrix with col-
umns), but we want one matrix with 49 boxes that each has a unique num-
ber. See if you can figure out how to get our final matrix before reading the
next paragraph.

By now, you’ve either (1) figured it out and are curious if I solved it the
same way, (2) tried but couldn’t figure it out, or (3) are lazy and didn’t even
try (now is your last chance to stop reading and try it!). A first thought
might be to add the two matrices together, but this will produce a matrix
with many redundant numbers (i.e., multiple boxes will have the same
numerical value). My solution is to scale up one of the matrices, then sum

432 V Analyses of Images

the two, and then renumber the final matrix. The procedure is graphically
illustrated in figure 26.10.

tempG = gridX + gridY*(k*1000);

u = unique(tempG);

grids = zeros(n);

for ui=1:length(u)

 grids(tempG==u(ui)) = ui;

end

Notice that when gridY is multiplied by k*1000, it will have non-over-
lapping values with gridX. These two matrices can then be summed with
no risk of redundant number values. Technically, that’s all we need to do.
But it would be nice to have the numeric identifiers be increasing integers.
Hence, the rest of the code relabels the elements in the final grid. You
should take a few minutes to confirm that this procedure works for a variety
of N and k parameters.

Figure 26.10

A solution to discretizing an image into a regular grid. An extra scaling-and-summing

step was necessary to provide each box its own unique value.

50

100

150

200

250

300

50

100

150

200

250

300

2

4

6

2

4

6 40

30

20

10

Original X Original Y

Discretized X Discretized Y Discretized grid

26 Image Segmentation 433

26.5 Fractals and Boxes

One of the applications of defining arbitrarily sized grids on images is
to compute fractal dimension. In chapter 21, you learned that fractal-
like processes can be measured in time series data using detrended or
demeaned fluctuation analyses. Conceptually, the idea is to determine
whether the magnitude of fluctuations increases with the size of the time
window used to measure those fluctuations. The analogous procedure with
images is to determine whether the size of an object depends on the size of
the ruler used to measure that object. This was famously characterized by a
paper entitled “How Long Is the Coast of Britain?” by Mandelbrot (1967),
who is the grandfather of fractal geometry. Curiously enough, the length
of the coastline of England appears to get longer as the ruler used to mea-
sure it gets smaller. This inverse relationship—particularly a logarithmic
relationship—between the apparent size of an object and the unit of mea-
surement provides evidence for self-similarity, which in turn provides
evidence for fractal geometry. And this is not just some quirky British thing.
There are myriad examples of fractal geometric objects, ranging from clouds
to ferns to volcano eruptions to the dendritic branching of neurons.

Several methods exist for analyzing images to determine whether they
exhibit fractal-like characteristics. One method is to determine whether the
number of boxes required to cover an image depends on the size of the
boxes. We will compute a classic fractal geometric object, and then we will
use variously sized boxes to show that the object appears to get larger as the
boxes that measure the object get smaller. Our fractal object will be the
Sierpinski triangle. You may not know it by name, but you probably recog-
nize it in figure 26.11. Below is code that will produce an approximation of
a Sierpinski triangle (it’s imperfect, but with enough dots the approxima-
tion is pretty good).

N = 10000;

[sx,sy] = deal(zeros(1,N));

for i = 2:N

 k = ceil(rand*3);

 sx(i) = sx(i-1)/2 + (k-1)*.25;

 sy(i) = sy(i-1)/2 + (k==2)*.5;

end

plot(sx,sy,'.')

The code above produces compact notation using sparse matrices to
indicate the xy coordinates at which to draw dots. This sparse format is fine

434 V Analyses of Images

for making a plot, but for our analysis we want a full 2D image to discretize
into grids. Your initial guess for how to convert the sparse format to a full
matrix format might be to try something like this:

siertri = zeros(N);

siertri(x,y) = 1;

But this won’t work, for two reasons. First, the xy coordinates have deci-
mal points, and we’re only allowed integer indices into a matrix. Second,
the xy coordinates are actually all between 0 and 1, so even if we rounded
the coordinates to the nearest integer, we’d still get only two unique ele-
ments (0 or 1). And zero would give an error because you cannot index the
zeroth index in a matrix. The solution is to scale the xy coordinates from
their initial range of [0 1] to the new range of [1 N], and then round up to
the nearest integer (rounding down could produce zeros).

newX = ceil(sx*N);

newY = ceil(sy*N);

Now we’re getting somewhere. But we’re not quite there yet. The vari-
ables sx and sy contain a few zeros at the beginning due to the initializa-
tion; those zeros need to be removed. Second, it might be easier to convert
these xy coordinates to linear indices. There is also a third change we need
to make, but we’ll get to that later.

Figure 26.11

The Sierpinski triangle made from dots.

26 Image Segmentation 435

wherezeros = newX==0 | newY==0;

newX(wherezeros)=[]; newY(wherezeros)=[];

linind = sub2ind([N,N],newY,newX);

siertri(linind) = 1;

Technically, this works. But that image is huge (a matrix of size 10,000
by 10,000), and the colored pixels are tiny. I won’t show the plot here
because it’s nearly impossible to see the Sierpinski triangle. It will also take
a really long time to run the box-counting analysis. Let’s down-sample the
image as our third processing step.

Nd = 200; % down-sampled N

linind = sub2ind([Nd,Nd],ceil(Nd*sy),ceil(Nd*sx));

siertri(linind) = 1;

The down-sampled version looks much better (figure 26.12). Finally, we
are ready to apply the box-counting analysis. The idea of this analysis is to
create a series of discretized grids like in the previous section and determine

Figure 26.12

The full-matrix version of the Sierpinski triangle. The gray box illustrates one step of

the box-counting method. For each discretization size, we determine how many

boxes are needed to cover the image. The inset shows the linear relationship in log-

log space between the image size and the box size.

log10(box size)

1.2

.8 1.2 1.6

1.6

2.0

2.4

2.8

lo
g

10
(i

m
ag

e
si

ze
)

436 V Analyses of Images

whether each box in the grid overlaps with the image. This process is
repeated over many different discretizations (box sizes). The results are
shown in figure 26.12. I’m sure you are excited to see the code for this, but
alas, you’ll have to write it yourself in the exercises.

26.6 Exercises

1. The thresholded map in figure 26.1 has colors reversed from what’s
written in the code (black is 1, white is 0). Reproduce this inverted map
by modifying the following line of code (do not simply redefine the
color axis). There is one way to do it by adding one character and one
way to do it by adding two characters.

contourf(threshmap)

2. The following line of code does not produce a MATLAB error, but it
probably does not produce the intended result. What is the bug, what
is the effect, and how you can fix it? (dbmap is a 2D matrix of time-
frequency power that is decibel-normalized to a prestimulus baseline.)

imthresh = abs(dbmap>3);

3. Is there a relationship between threshold magnitude and cluster size?
Starting from the code that produced figure 26.1, write a loop that var-
ies the p-value threshold from 0.5 to 0.001. Inside the loop, threshold
the map, get the clusters, and compute (1) the number of clusters, and
(2) the total number of suprathreshold pixels. Then plot these metrics
as a function of the p-value threshold (is the plot more interpretable
with a logarithmic x axis?). Next: Repeat this procedure but compute
and plot the mean cluster sizes separately for clusters with positive and
negative values.

4. In this chapter, we used bwconncomp and bwlabel only with 2D
matrices. But these functions work the same way with 1D or 3D or 9D
matrices. Let’s try 1D vectors. Create a sine wave and use bwconncomp
and bwlabel to identify where the sine wave has values greater than
0.5. Then draw stars on the sine wave at all time points where it is
greater than 0.5. Finally, adapt the code so the stars are drawn on the y
= 0 line.

5. Let’s try increasing the sophistication of the size threshold in the cal-
cium imaging example. We assume that the soma of the neurons in
this image should be about the same size. Extract the sizes of all clus-
ters, and figure out a way to use that cluster size distribution to

26 Image Segmentation 437

determine a data-driven threshold for removing small clusters that are
unlikely to be somas.

6. After eliminating pixels from small clusters, the numbering of the clus-
ters in the calcium image became non-incremental. Write code to
renumber the image so the cleaned version has cluster numbers from
1 to N.

7. Did you like the fractal examples? Many naturally occurring objects in
nature are thought to have fractal geometric qualities, including snow-
flakes, trees, and mountains. Find a few pictures of natural objects and
implement the box-counting algorithm. It is likely that you will need
to threshold the image first.

8. The .PixelIdxList output given by bwconncomp is pretty handy.
Re-create this output using the output of bwlabel.

9. The online materials include a picture of a Nissl-stained brain slice
(part of the amygdala of a rhesus macaque) downloaded from http://
brain-maps.org. The neurons are stained as purple. Import the image
into MATLAB and isolate the neurons.

10. The function nonzeros returns a 1D vector, regardless of the size of the
input matrix. Write code that will leave the matrix in its original size,
but will convert the zeros into NaNs.

11. Write code that can implement the box-counting method, and repro-
duce the inset line plot in figure 26.12. The online code has some hints
to get you started.

12. In section 15.6 of chapter 15, you learned about one method for correc-
tion of multiple comparisons using extreme values. Now that you
know about threshold-based image segmentation, you can learn mul-
tiple comparisons correction based on cluster sizes. Instead of taking
the extreme values at each null hypothesis iteration, threshold the null
hypothesis image based on a statistical criterion (e.g., p < 0.05), and
extract the number of pixels in all suprathreshold clusters. Save the
number of pixels in the largest cluster. After looping through all itera-
tions, the 95% of the maximum-cluster distribution is the cluster
threshold. The original data can be thresholded at p < 0.05, and any
clusters that are larger than the threshold are kept.

13. The function you should use to add folders the MATLAB path (until
MATLAB restarts) is called addpath. There is another function called
path. It is easy but dangerous to confuse the two functions. Read the
help files for these functions to figure out what the difference is. Then
test it (warning: this exercise requires exiting MATLAB, so save any

438 V Analyses of Images

open scripts first). First type path and you will see the entire MATLAB
path. Next, type path('../'). That seems innocent enough, but you
just replaced the entire MATLAB path with whatever happens to be in
the previous folder. Most MATLAB functions are now inaccessible
(don’t worry, it’s only temporary). Try, for example, to compute the
mean of a few numbers. Or try to plot some random numbers. MAT-
LAB is really screwed up now. Type path again, and follow MATLAB’s
sound advice to close the program and restart. The previous path will
be restored with no permanent damage.

27.1 Two-Dimensional Mean Filtering

A 2D mean-smoothing filter is the same concept as—and has a very similar
implementation to—the 1D running-average filter you learned about in
chapter 20. It’s a form of low-pass filtering and thus produces an image that
is smoother (blurrier) than the original image. Mean filtering is an oft-used
denoising method because many sources of noise produce high spatial
frequency artifacts.

Let’s start with that picture of Saturn that we used several times already
(if you are getting bored of this picture, then don’t worry; this is the last
chapter that uses it). It’s not a very noisy image, so let’s add some noise.

saturn = saturn + randn(size(saturn));

Similar to the running-average filter, we will now replace each pixel in
the image with the average of the surrounding k pixels, where k is an inte-
ger parameter that we can select.

k=9;

 for i=k+1:size(saturn,1)

 for j=k+1:size(saturn,2)

 temp = saturn(i-k:i+k,j-k:j+k);

 saturn(i,j) = mean(temp(:));

 end

end

The code loops through all rows and columns, extracts a submatrix of
data that corresponds to a box around each i,j coordinate, and then com-
putes the average of that submatrix (why do we need the “(:)”?). Unfortu-
nately, there are three problems with that code. Can you figure out what
they are before reading the answer below?

27 Image Smoothing and Sharpening

440 V Analyses of Images

The first problem is that the code will produce erroneous behavior at the
end of each loop. Consider that the loop ends at index 480, which is the
width of the image in pixels. But the code will try to extract pixels up to
i+k = 480+9 = 489. MATLAB should give an error about “Index exceeds
matrix dimensions.” But it doesn’t because of the next, and more devious,
problem. The solution here is to have the loops stop k units before the end
of the image, or size(saturn,1)-k.

The second problem is that the image of Saturn is a 3D matrix (the third
dimension is color), but we are indexing it like a 2D matrix. That’s not
good. MATLAB won’t produce any errors because it will try to use 2D linear
indexing into the 3D matrix. But it’s definitely going to produce undesir-
able results because pixels from different color dimensions will intermingle.
Remember the important rule about matrix indexing: If there are N dimen-
sions, you must index the matrix using exactly N – 1 commas. Here we have
three dimensions and only one comma (N – 2). The solution to this prob-
lem is either to smooth only one dimension or to add another loop over
elements in the third dimension.

The third problem is more insidious and also more difficult to spot. As
the center of the filter moves around the image, parts of the image get
double-filtered. This happens because each submatrix comprises a combi-
nation of unfiltered and filtered data. The solution to this problem is to
filter the image into a different variable, like saturnfilt(i,j,1) =

mean(temp(:));

Actually, there is a fourth issue with that code that isn’t a problem per se,
but is poor programming. In overwriting the image with a noisier version
of itself, we’ve lost the original data. A better implementation would be to
create a new variable and preserve the original. That would allow us to com-
pare the noisy with the original version or compare the results for different
levels of noise, different types of filters, and so on. The following line of
code is better, although the damage is already done—you’ll need to load in
the image again.

noisySaturn = saturn + randn(size(saturn));

Anyway, after the bugs are cleaned, the result looks pretty good (figure
27.1). The noise is cleaned up, although it came at the expense of losing
some of the sharpness of the image. Depending on the goal of the analysis,
that might not be detrimental. Indeed, neuroscience images are often
intentionally smoothed prior to data analysis. The analysis takes a while to
run, but you’ll see later in this chapter that the frequency-domain imple-
mentation of this convolution provides a significant speed benefit.

27 Image Smoothing and Sharpening 441

Before moving on, I encourage you to take a minute to explore the code
by changing the k parameter to observe the effects on the resulting image.
What is a reasonable amount of smoothing before the image becomes really
blurry, and what happens at the edges of the image as you increase k?

The mean-smoothing filter worked well here because the noise (1) was
roughly randomly distributed and (2) had values that were in a similar
range as those of the signal.

27.2 Two-Dimensional Median Filter

When the noise is not randomly distributed or when its values are extremely
different from those of the image, a mean-based filter will often produce
poor results. This was illustrated in chapter 20 for 1D time series, and now
we return to the issue. Replication is important in science.

Let’s take the Saturn image, but instead of adding random Gaussian-
distributed noise, we’ll add large-amplitude noise spikes. We can randomly
select pixels to replace with noise spikes using the randsample function.
This function takes two inputs: a list of numbers (the “population”) and a
number of samples from that population to take. An optional third input
allows you to specify whether to draw the numbers with replacement or
without replacement (without is the default). Check it out:

randsample([1 3 4],2)

randsample(0:.1:1,4)

Figure 27.1

Noisy Saturn, and the result of applying a simple mean-smoothing filter.

Original Mean-smoothed with k=9

442 V Analyses of Images

We will use randsample to select a specified proportion of random
pixels, and then we will replace those pixels with a large number. The
randsample function is in the statistics toolbox; in the exercises, you’ll be
asked to write a new function that provides the same output.

nPixels = round(.1*numel(saturn));

spikelocs = randsample(1:numel(saturn),nPixels);

noisySaturn = saturn;

noisySaturn(spikelocs) = 123456789;

From here, the median filter proceeds similarly as the mean filter, except
the function median is used instead of the function mean (duh). You can
see in figure 27.2 that the median filter does a great job at eliminating the
speckle noise.

27.3 Gaussian Kernel Smoothing

In chapter 11, you were introduced to the idea of using the Fourier trans-
form to decompose an image into its 2D spectral representation. And in
Chapters 19 and 20, you learned how to use the Fourier transform to high-
light specific frequency characteristics of a 1D time series. Let’s combine
these two concepts to low-pass filter (a.k.a. smooth) an image in the
frequency domain.

Figure 27.2

Sparse high-amplitude noise is successfully removed with a median filter. On the

other hand, the moons are also filtered out, and they are not noise. This is a good

illustration of how denoising strategies must always be checked carefully, because

removing noise can also mean removing signal.

Original Noisy image Median-smoothed, k=9

27 Image Smoothing and Sharpening 443

Remember the spike-field coherence data you saw in chapter 23 (see
figure 23.6)? That image comprised several thousand local field potential
(LFP) traces surrounding each action potential recorded from a neuron in
the rat hippocampus. Single-trial LFP data can be noisy, and our goal in this
section is to attenuate this noise by smoothing the time-by-spikes LFP
image. Unlike the Saturn picture, which is roughly square-shaped, the
spike-field image is asymmetric—it is an order of magnitude taller than it
is wide.

A mean-smoothing filter weights all pixels equally. But pixels are not
people, so we don’t need to treat them as equals. Let’s say that neighboring
pixels are more important than more distant pixels. We can quantify this
weighting-by-distance matrix as a 2D Gaussian. Furthermore, because this
image is asymmetric, and because neighboring time points are naturally
more strongly autocorrelated than neighboring trials, we might want to
smooth more along the y axis (trials) than along the x axis (time). That’s
easily done; we just need to construct a Gaussian with different widths in
each direction. An anisotropic Gaussian is similar to the isotropic Gaussian
that you’ve already seen, except that it decouples the widths along each
dimension (figure 27.3).

gx = -20:20;

gaus2d = zeros(length(gx));

sx = 10;

sy = 30;

for xi=1:length(gx)

 for yi=1:length(gx)

 xval = (gx(xi)^2)/(2*sx^2);

 yval = (gx(yi)^2)/(2*sy^2);

 gaus2d(xi,yi) = exp(-(xval+yval));

 end

end

Now we can perform a 2D convolution between the spike-field image
and the 2D Gaussian. Results are shown in figure 27.4. You will need to
write the code to create this image.

27.4 Image Filtering in the Frequency Domain

We will now generalize the methods in the previous section to define any
arbitrary filter in the frequency domain. Let’s start by taking the 2D fast
Fourier transform (FFT) of the picture of Saturn. Remember that an easy

Figure 27.3

A few different 2D Gaussians.

sx=10
sy=10

sx=10
sy=30

sx=3
sy=10

sx=3
sy=3

Figure 27.4

Spike-field coherence before and after smoothing. The smoothed version looks very

similar to the original, and that’s a good thing—data should be smoothed to improve

visibility and remove some noise, but you don’t want the smoothed result to look

qualitatively different from the original result.

Time (ms)
0–100–200 100 200

Time (ms)
0–100–200 100 200

T
ri

al
s

(x
10

00
)

1

2

3

4

5

6

7

8

9

10

Unsmoothed Smoothed

27 Image Smoothing and Sharpening 445

mistake to make is to use the function fft—that would not produce a
MATLAB error, but would also not produce a 2D FFT. For simplicity, we will
only use the first color dimension.

% get 2D Fourier coefficients

saturnX = fft2(squeeze(saturn(:,:,1)));

Before defining the filter in the frequency domain, remember that with
a 2D FFT, the low frequencies are at the four corners, while the high fre-
quencies are in the center. The MATLAB function fftshift can be used to
swap quadrants to put the low-frequency information in the center. There
is no mathematical reason to prefer either orientation, but most people
find the latter more intuitive. Having low frequencies in the center will
also make our filter a bit easier to construct. We’ll create a low-pass and
a high-pass filter. First, we need to find the indices of the center points of
the image, and then we define how many frequencies to use as a cutoff.
We’ll stick to units of pixels; transforming to a meaningful metric such as
cycles-per-degree requires knowing the distance between your monitor and
your eyeballs—hopefully it’s not too close, otherwise your ophthalmologist
might get upset, although your optician would be happy to have a new
customer (I admit I had to look up both the spelling and the meaning of
those words).

% get sizes of image and midpoints

imgdims = size(saturnX);

midX = round(imgdims(2)/2);

midY = round(imgdims(1)/2);

nPix2use = 100;

Now we are ready to define our filter. It will be a simple block filter
in which frequencies below a threshold (the variable nPix2use) will be
preserved, while frequencies above this threshold will be eliminated.

% create low-pass filter kernel

loPass2d = zeros(imgdims(1:2));

loPass2d(midY-nPix2use:midY+nPix2use, ...

 midX-nPix2use:midX+nPix2use) = 1;

Figure 27.5 shows this filter. Now we need to point-wise multiply the
filter by the FFT of the image and then take the inverse FFT. You might ini-
tially think to have a line of code like this:

filtimg = ifft2(saturnX.*loPass2d);

446 V Analyses of Images

But this is incorrect. Why is it incorrect? Let’s think about how a low-
pass filter works. It preserves the Fourier coefficients corresponding to low
frequencies while stamping out the Fourier coefficients corresponding to
high frequencies. But the low frequencies are at the corners, while our low-
pass filter is zeroing everything out except the very highest frequencies at
the center. A simple solution is to use the fftshift function on the filter
kernel. Try making an image of that to convince yourself it will work. Then
point-wise multiply the filter.

imagesc(fftshift(loPass2d))

filtimg = ifft2(saturnX.*fftshift(loPass2d));

Figure 27.5

Effects of band-pass filtering the Saturn image. The top left plot shows the log-power

spectrum, and the top right plot shows the filter that will be applied. The bottom left

plot shows the result of using the box as a low-pass filter, and the bottom right plot

shows the result of inverting the filter to produce a high-pass filtered image.

Full power spectrum Low-pass �lter

Low-pass image High-pass image

27 Image Smoothing and Sharpening 447

And that’s about it (figure 27.5). You can turn the low-pass into a high-
pass filter by initializing the filter kernel to ones and setting the pixels
around the center to zeros. You should recall from chapter 20 that this
filter kernel has sharp edges, and it will therefore produce ripple artifacts
(you can see these artifacts when inspecting the moons in the high-pass fil-
tered image in figure 27.5). A better filter would have smoother transitions.
This could be accomplished, for example, by defining the filter shape to be
Gaussian instead of rectangular. Take a few minutes to play around with the
code that produces this figure. Try changing the cutoff values for the filter—
how do changes in the filter affect the filtered images? Notice in figure 27.5
that the moons are still visible, meaning the “low-pass” filter cutoff is still
fairly high. What’s the filter cutoff that will get rid of the moons?

27.5 Exercises

1. Adjust the 2D mean filter code to be able to filter the edges, that is,
from 1:k. (This is possible without adding any new lines of code, but it’s
more important to solve a problem accurately than to minimize the
number of lines of code.)

2. Also in the mean-smoothing code, replace the two lines with variable
temp to be one line of code that does not require an intermediate
variable.

3. If you look in the MATLAB code, you’ll see the following line to import
the Saturn picture. Why did I convert to double and then divide by
255? What happens if you remove this?

saturn = double(imread(’saturn.png'))./255;

4. Two-dimensional convolution with loops takes a while to run. Add
some code to that loop so it prints out progress into the command line.
It should report something like

15% completed after 8.23 seconds.

But it shouldn’t print out this message too often, otherwise it’s annoy-
ing and will slow the computation down even more. How can you
adjust the code so it prints a message whenever the progress reaches
another 5%? (When you are considering implementing procedures like
this in your analysis code, remember the adage that a watched pot
never boils.)

5. In the online code for smoothing, I was lazy and used MATLAB’s conv2
function. Replicate the result using convolution via frequency-domain
multiplication. Don’t forget this is a 2D image, so use fft2.

448 V Analyses of Images

6. When you do convolution yourself, dataX.*kernelX is the same as
kernelX.*dataX. With conv2, does order matter? What does this tell
you about using conv2?

7. Redo mean smoothing with frequency-domain multiplication. Most of
the code you need is already in the code for the Gaussian case; you just
need to figure out how to define the kernel of a mean function. For a
challenge, solve this problem from scratch without looking at the other
code.

8. Run the mean-smoothing filter on the noisy version of the Saturn pic-
ture that we used to illustrate the median filter. How does the mean
filter compare? What is the important lesson here about knowing when
to use different kinds of filters, and understanding the nature of the
noise in your data?

9. The median filter can take a while to run. You can speed it up by apply-
ing the filter only to pixels that have some extreme value. From the
spike-noised Saturn picture, run the median filter again but only
applied to pixels exceeding a threshold. Use a data-driven method to
determine an appropriate threshold. Use the tic/toc function pair to
determine how much time was saved.

10. Apply the fft function to an image instead of fft2. What does the
power spectrum look like, and what kinds of sanity checks can you
think of to check that you used the correct FFT function?

11. Write code to create figure 27.4. Take some time to explore this code.
Change the two widths of the Gaussian and see how that affects the
result of convolution. When exploring new methods, don’t only try
reasonable ranges of parameters. Testing extreme or inappropriate
parameters gives you an appreciation of how even good methods can
produce uninterpretable results. This also helps you learn what to look
for when analyses go awry.

12. The randsample function is in the statistics toolbox. Based on the
description of how it works (in this chapter and in the help file, which
you can find online if you don’t have this toolbox), write your own
function that produces the same functionality.

13. The Fourier coefficients contain information about power and phase.
We’ve worked only with power in this chapter, but the phases are
important for images, as you will see in the next few exercises. Write
code to separate the phases from the magnitudes of all Fourier coeffi-
cients, then reassemble them in the same order. Use the inverse Fourier
transform to reconstruct the Saturn image (use only one color dimen-
sion to have a 2D image). It’s not as simple as separating the real and

27 Image Smoothing and Sharpening 449

imaginary parts, because phase and magnitude both use real and imag-
inary information. (Hint: A Fourier coefficient can be represented as
aeip, where a is the magnitude and p is the phase.) Make sure your
reconstruction is identical to the original image.

14. Now that you know how to extract and recombine the phases, it’s time
to scramble them. Replace the phase angles from all coefficients with
random numbers. What is the appropriate range of random numbers
to use? Is the reconstructed image recognizable as Saturn?

15. Now keep all of the original phases, but shift them all by some constant
offset, say, π/3. You will need to write some code to make sure that the
angles remain in an expected range (hint: mod).

16. Finally, randomize only some phases while leaving others intact. Using
the box-shaped filter from the end of this chapter, randomize only the
phases inside that box. Is the reconstructed image recognizable? How
about when you randomize only the phases outside that box?

VI Modeling and Model Fitting

Model fitting is an important part of data analysis. For purposes of this and
the next chapters, a model is a mathematical description of a latent process
that might produce or explain empirically measured data. (If you thought
that “model fitting” was a behind-the-scenes look at Victoria’s Secret maga-
zine, then I’m sorry, you have the wrong book.)

Model fitting can be used as a data-reduction technique (by having a
small number of parameters that characterize a larger data set); as a hypoth-
esis-testing technique; as a way to relate findings across different types of
data, species, and so forth; and as a way to estimate thresholds for percep-
tion, memory, and other cognitive processes. The idea of model fitting is
to construct a mathematical description of the data, and then determine
parameter values that provide the closest match between the model and the
data. This chapter will focus on linear methods for estimating those param-
eters; the next chapter will focus on nonlinear methods.

If you want a good fit between a model and data, you need to have a
good model and you need to have good data. Lousy models or excessively
noisy data can produce uninterpretable results. Before you start throwing
models at your data, think carefully about the data, about the mechanisms
and circumstances that produced those data, and about the kinds of models
that are most appropriate for those data. Better still: Think carefully about
what models you want to fit to your data before you even start collecting
data. That will help ensure that the data are appropriate (e.g., enough data
points to fit the model) and clean.

28.1 Least-Squares Fitting

Least-squares fitting is perhaps the most commonly used data-fitting tech-
nique in science. The idea of least-squares fitting is that the best model
parameters are those that minimize the squared distances between the

28 Linear Methods to Fit Models to Data

454 VI Modeling and Model Fitting

observed data points and the model-predicted data points. Those distances
(or errors) are squared so that the model can be evaluated regardless of the
sign of the errors. Chapter 10 provided an introduction to matrix algebra,
including a discussion of the mechanisms of least-squares fitting. Here the
focus will be more on the implementation. A quick reminder:

y = mx + b (familiar-looking regression formulation)

b = Ax (matrix algebra formulation)

The matrix A is also called the design matrix, and its columns are called
the independent variables. Unfortunately, the notation “Ax = b” is not uni-
versal, although it is the dominant notation in linear algebra. In multiple
regression, for example, you are more likely to see the equation y = Xβ,
where X is the design matrix, β (Greek letter “beta”) is the vector of coeffi-
cients, and y is the observed data. For the sake of internal consistency, I’ll
stick to Ax = b, but the important part is that although different fields use
different notations (a general problem in science and mathematics), the
underlying math and the implementation in MATLAB is identical.

As a gentle start, consider one of the easiest least-squares fitting applica-
tions, which you probably didn’t even realize was a least-squares problem:
computing the average of a set of numbers. The model predicts that all data
points have the same value, and any deviances from that value can be con-
sidered errors. At the implementation level, the model contains a vector of
ones (variable A below), and the parameter is a constant that scales all ele-
ments in that vector (variable x). The goal of least-squares fitting is to find
the best value for x.

n = 10;

b = linspace(1,3,n) + rand(n,1);

A = ones(n,1);

x = (A'*A)\A'*b;

(If that last line of code looks confusing, you might want to reread chapter
10.) Confirm that the variable x is the same as the output of mean(b). In
the parlance of regression, we would say that we are fitting a regression line
with some intercept (a “constant” term) and a slope fixed at zero.

Now for the next step in learning least-squares fitting. We’ll add a slope,
so that we’re fitting both a y-intercept and a change in y. How should we set
up the new design matrix (variable A)? You might initially think to add a
second vector of ones, with the idea that the model should be able to esti-
mate the slope based on the data. But there are two problems with this.
First, let’s think about our model: We want to test for a linear change (the

28 Linear Methods to Fit Models to Data 455

slope), and a vector of all ones cannot capture any changes. Second, MAT-
LAB will give a warning about the matrix being singular, which happens
because the second column of A is linearly dependent on the first column
of A (in fact, it’s the same numbers!). So (A'*A) (in math terms, that would
be ATA) is not invertible, and the model cannot be estimated.

On the basis of our extensive knowledge of the data and our a priori
hypotheses, we can expect a linear increase. This is implemented by
having the second column of A be the numbers 1 through n (in this case,
n = 10).

A = [ones(n,1) (1:n)'];

x = (A'*A)\A'*b;

A quick note about this code. When you type 1:n, MATLAB will pro-
duce a row vector. We want the matrix A to comprise two column vectors,
which is why there is a transpose sign after the n. The parentheses are
necessary because otherwise MATLAB would just transpose the variable
n, which has no effect because the transpose of a 1 × 1 matrix is the same
1 × 1 matrix.

This works better. I got x=[1.06 0.24] (your values will differ due to
the random numbers). These are the parameters that correspond to each
column in matrix A: the intercept and the slope. In other words, the coef-
ficients for each independent variable in our design matrix.

Did you notice that the first element of x above is different from the
parameter x in the previous example? This is a curious thing. The first col-
umn in A hasn’t changed, and the data haven’t changed. Why did the
parameter change? It changed because the parameter for each independent
variable (each column in A) depends on the rest of the model. If we would
add a third column in A, for example to estimate a quadratic effect, then the
parameters of the first two columns would also change, particularly if there
were a strong quadratic effect in the data.

How do we know whether the coefficients in x are reasonable; in other
words, whether our model is any good? Segue to the next section.

28.2 Evaluating Model Fits

Now you know how to fit a basic model to data. Is the model a good
fit to the data? There are two ways to evaluate the fit of a model to data—
qualitative and quantitative. Both methods involve generating model-
predicted data and comparing the predicted data against the real data. In
practice, you should use both methods.

456 VI Modeling and Model Fitting

To generate the model-predicted data, the design matrix is scaled by its
parameters and then by the x-axis values. If you don’t have or are unsure
what the x-axis values are (this is often the case in toy examples), you can
define them as 1 through N. The predicted values are often called ŷ (pro-
nounced “why hat?” [insert witty reply here]). In the code below, you’ll see
that each column of A is scaled (multiplied) by the corresponding element
in the coefficients matrix x. The weighted sum of those columns equals the
predicted data.

yHat = x(1)*A(:,1) + x(2)*A(:,2);

yHat = sum(bsxfun(@times,A,x'),2);

plot(1:n,b,'b-*',A(:,2),yHat,'ro’)

The two yHat lines produce identical results. The first implementation
makes it visually obvious that ŷ is computed by summing columns in the
design matrix weighted by their corresponding regression coefficients, but
this implementation works only when matrix A has exactly two columns.
The second implementation is more elegant because it works regardless of
the number of columns in matrix A.

As an aside, the process of modeling data by “summing columns of a
matrix that are scaled by some coefficient” should sound familiar from
chapter 11—the Fourier transform is nothing more than a model of the
data in which the design matrix contains complex sine waves and the regres-
sion weights are the complex Fourier coefficients. The main difference is that
the Fourier transform is not meant to be a simplified model; it is designed
to be a model with zero degrees of freedom and therefore explain 100% of
the variance of the data.

Anyway, now that you know how to compute the model-predicted data,
you are ready to learn about how to evaluate the goodness of the model.
The qualitative method of model evaluation involves plotting the real data
and the model-predicted data and comparing them visually. You want to
see that the predicted response “looks similar” to the real data. Indeed, if
the model were a perfect fit to the data, the circles (actual data) and stars
(predicted data) would perfectly align (figure 28.1, top panel).

In practice, there is almost never a perfect fit—if there were, the data are
probably boring, and/or the model is too complex. The idea of a model is to
have a simplified representation of the real biological or physical process
that produced the data; if it’s simplified, there should be some leftover
variance.

The importance of this visual inspection cannot be understated. It
is easy to make a mistake that would produce junk results without

28 Linear Methods to Fit Models to Data 457

producing MATLAB errors. The two most common mistakes to make here
are (1) to apply the regression coefficients to the observed y-values of the
data instead of to the x-values of the data (remember, the goal here is to
predict y from x), and (2) to mix the order of coefficients with respect to
their corresponding columns in the design matrix. The bottom panels in
figure 28.1 show the results of these mistakes, and the online MATLAB
code shows how those mistakes were made. Always check the model fit to
the data before doing any further analyses on or interpretation of the
model coefficients.

Now for the quantitative method. There are several quantitative meth-
ods for evaluating the fit of a model to data, and you can consult a statistics

Figure 28.1

Simulated data with a linear trend plus noise (black circles) and the best-fit line gen-

erated from a least-squares solution (stars and gray line in top panel). The two bot-

tom panels show the same data but model fits after easy-to-make MATLAB coding

errors. These errors are legal operations in MATLAB, so plotting is the best way to

ensure accuracy.

1 2 3 4 5 6 7 8 9 10

1 3 5 7 9 1 3 5 7 9

Observed data

Error #1 Error #2

1

2

3

4

2

6

10

14

2

6

10

14

Predicted data

R2 of model to data: 0.80

458 VI Modeling and Model Fitting

textbook for deeper discussions and comparisons. Here we’ll use one
straightforward method that is easy to interpret: R2 (“are squared”). R2 is the
proportion of variance in the data that is explained by the model. Natu-
rally, it has a maximum of one, which would indicate that the model per-
fectly accounts for all of the variance in the data (sometimes people multiply
R2 by 100 to obtain the percent of variance explained). When computing a
correlation coefficient between two variables, R2 is literally the coefficient
squared. For more complex models, R2 is the ratio between model-explained
variance and total variance.

resvar = sum((b-yHat).^2);

totvar = sum((b-mean(b)).^2);

r2 = 1 - (resvar / totvar);

The key part of this equation is the numerator. The name resvar means
residual variance, or the difference between the predicted data and the real
data (each distance is squared to avoid mixing negative and positive num-
bers). This term is also called the sum of squared errors, because the errors
are squared and then summed. The denominator is the total variance in
the real data. For this equation, it merely serves as a normalization factor
to scale the model fit to a maximum of one. You can also think of the
denominator as a “baseline” model that accounts only for the mean value
of the data.

Consider that as the numerator (the difference between the model-pre-
dicted data and the actual data) gets smaller, the ratio goes to zero, and R2
goes to one; conversely, as the difference between the predicted and the
observed data increases, the ratio increases, and R2 goes to zero. If the model
were so horrible that its predictions are worse than just predicting the
mean, then R2 would be negative, and you should seriously reconsider the
model (or check for a programming mistake).

What are good values of R2? That depends largely on the kind of data
you are modeling, and how complex the system is. When trying to under-
stand something as complicated as the role of personality on financial
investments, an R2 of 0.2 or 0.3 might be a fairly large value. If you have an
isolated in vitro cell and are testing the relationship between current input
and spiking output, you have a very simple system with a small number of
biological degrees of freedom, and so an R2 of 0.9 might be expected. In
psychophysics experiments with simple sensory stimuli and analyses based
on averaging together thousands of trials, an R2 of greater than 0.9 might be
achievable. So the range of R2 values that can be considered “good” depends

28 Linear Methods to Fit Models to Data 459

on many factors. You will need to compare the R2 in your data to R2 values
of other findings in the relevant scientific literature.

One drawback of R2 is that it increases by adding new independent vari-
ables (additional columns of matrix A), even if those columns do not actu-
ally improve the model. There are a few ways to ameliorate this concern,
such as computing the adjusted R2 (which scales the R2 according to the
number of degrees of freedom) or by performing formal model compari-
sons. Consult your trusty statistics textbooks for more information.

28.3 Polynomial Fitting Using polyfit and polyval

Polynomial models are a class of models in which the design matrix is a
series of coefficients of the same term with increasing powers, like x0, x1, x2,
and so forth. The first term (x0) captures the mean offset (intercept), the
second term (x1) captures the linear slope, the third term captures the qua-
dratic effect, and so on. The model in the previous section (intercept and
slope) is a first-order polynomial.

You might think that polynomial fitting should be included in the next
chapter—the power functions suggest that the models are nonlinear rather
than linear. But the model coefficients are computed via linear methods, even
if there are nonlinear components in the model. Indeed, polynomial coeffi-
cients are typically estimated via least-squares equations.

Let’s start by reproducing our results from the previous section using the
MATLAB function polyfit, which fits a polynomial model to the input
data and returns the coefficients.

iv = (1:n)'; % iv = independent variable

regcoefs = polyfit(iv,b,1);

Note the organization of the inputs to polyfit: You don’t specify the
entire design matrix; you specify only the base vector. You can think of this
as the parent independent variable (variable iv); each column in the design
matrix is created as iv0 (which is a vector of all ones), iv1 (itself), iv2, and
so on. The third input is the order of the model. A model of order 1 pro-
duces two coefficients, one for the intercept and one for the first (linear)
term. It is a bit confusing to have N + 1 coefficients from an Nth order
model, but that’s just how it works. I think the reasoning is that a zero-
order model must contain at least an intercept (because x0 = 1), and thus a
first-order model would contain an intercept and a slope.

How does the variable regcoefs compare with variable x in the previ-
ous section? Assuming you didn’t recompute the random data, the values

460 VI Modeling and Model Fitting

will be identical, albeit in reverse order. This happened because polyfit
uses descending order of coefficients, whereas we wrote matrix A to be in
ascending order. This is an important detail, and you should always sanity
check your code to make sure you know the order of the coefficients.
Another important aspect of using the polyfit function is that it provided
a sanity check that the manual least-squares fitting was accurate.

Let’s do another example to see how polyfit deals with higher-order
models. This example will also illustrate one method for separating signal
from noise that was mentioned in chapter 20. We’ll create a signal that
fluctuates slowly and add noise with a broad frequency spectrum. Broad-
band noise by definition cannot be easily isolated in the frequency domain,
but here we will assume that the noise fluctuations are smaller in magni-
tude compared to the signal.

srate = 1000;

time = 0:1/srate:6;

F = griddedInterpolant(0:6,100*rand(7,1),’spline');

data = F(time) + randn(size(time));

% polynomial fit

polycoefs = polyfit(time,data,7);

(If the griddedInterpolant line looks confusing, you should review
chapter 13.) Now that we have the polynomial coefficients, we want to
generate the predicted signal based on the coefficients. This we can do
with polyval, which generates model-predicted data in the same way
that we created ŷ in the previous section (scaling the design matrix by
the coefficients and summing the columns). The results are shown in
figure 28.2.

predData = polyval(time,polycoefs);

Now we have our predicted data and our original data. Because the
model captures only relatively slow components in the signal, we can
take this as our time series. Alternatively, if the slow fluctuations are the
noise and the faster fluctuations are the signal, then we can subtract
the polynomial-predicted time series from the original time series and treat
the residual as the signal (figure 28.3).

subplot(211)

plot(time,predData)

subplot(212)

plot(time,data-predData)

Figure 28.2

A time series that comprises slow-moving components and fast-moving components

(black line). A seventh-order polynomial was fit to the data to capture the slow-

moving component (gray line) using the MATLAB polyfit function.

Original data
Predicted data

Time (sec.)

A
m

p
lit

u
d

e
(a

.u
.)

1 2 3 4 5 6

–20

0

20

60

100

Figure 28.3

Polynomial fitting can also be used as a data-processing technique to separate signal

from noise. Note the difference in y-axis values between the two plots.

Isolating the slow part of the signal

–40

–20

0

20

40
Isolating the fast part of the signal

Time (sec.)

A
m

p
lit

u
d

e
(a

.u
.)

Time (sec.)
1 2 3 4 5 6

1 2 3 4 5 6

0

20

40

60

80

A
m

p
lit

u
d

e
(a

.u
.)

462 VI Modeling and Model Fitting

28.4 Example: Reaction Time and EEG Activity

Let’s apply our new model-fitting skills to an example with real data. The
online material includes a data set that was recorded in a human volunteer
who wore an EEG cap while participating in an experiment that involved
pressing buttons to indicate decisions about visual stimuli. The button-
press latency relative to stimulus onset (a.k.a. reaction time) differed on each
trial. Our goal here will be to identify some activity in the EEG data that
correlates with reaction time over trials.

Before starting this analysis, we need to extract time-frequency activity
from the time-domain signal. The online MATLAB code recycles code from
chapter 19, with a few missing lines that you can complete based on your
knowledge from that chapter. The result of this code is a 3D matrix of fre-
quency by time by trials (for convenience we will run the analysis only on
one electrode, but it is easy to expand this analysis to all electrodes). The
design matrix comprises a vector of ones and a vector of reaction times,
with one line per trial. This means we will estimate an intercept (average
activity) and a slope (correlation with reaction time) at each time-frequency
point. The result of this analysis will be a time-frequency map of coeffi-
cients that describe the relationship between EEG activity and reaction
time.

The matrix algebra implementation of least squares requires 1D or 2D
matrices, but our data are in a 3D matrix (frequency by time by trials).
How can we solve this problem? One solution would be to have a double-
loop over time points and over frequencies, and then estimate the brain-
behavior relationship over trials separately at each time-frequency point.
Technically this would work, but it is an inelegant solution (not to be con-
fused with an intelligent solution). As you know, zero loops are preferable
to two loops.

But the fact that it could work with two loops tells us something impor-
tant: It tells us that the important dimension is trials, not time or frequency.
This means that the 3D matrix can be reshaped to a 2D time-frequency by
trials matrix. It doesn’t matter that time points and frequency points get
mushed into the same dimension, as long as we unmush them properly at
the end (LibreOffice tells me that “unmush” is not a real word, but I’m
pretty sure it’s okay here).

A = [ones(EEG.trials,1) rts’];

tf2d = reshape(tf3d,EEG.pnts*nFrex,EEG.trials);

x = (A'*A)\A'*tf2d;

cormat = reshape(x(2,:),EEG.pnts,nFrex); % unmush

28 Linear Methods to Fit Models to Data 463

The variable A is 99 by 2, corresponding to trials by columns in the
design matrix (intercept, slope). The variable tf2d is 99-by-19,200. The
19,200 comes from reshaping 640 time points and 30 frequencies into a
vector per trial. Before moving forward, think about what the size of vari-
able x will be (the key multiplication that defines this size is A'*tf2d).
Figure 28.4 shows images of the design matrix and the data matrix.

By the way, when making this figure, I wanted maximal control over the
sizes and positions of the subplots. Rather than using the subplot function,
I specified precisely where I wanted the axes to be. The code is below; I’ll
leave it up to you to figure out what the four numbers mean. (Hint: Try
searching the Internet for setting axes positions in MATLAB.)

ax1_h = axes;

set(ax1_h,'Position',[.05 .1 .1 .8])

Figure 28.5 shows the result. What are these values? They are not correla-
tion coefficients; they are unstandardized regression coefficients, and they
are mostly uninterpretable on their own. To see why, run the code again

Figure 28.4

Design matrix (left) and data matrix (right) used in the regression of reaction time on

EEG activity. Column “Int” is for intercept, a column of ones. RTs, reaction times;

IVs, independent variables.

Int RTs

10

20

30

40

50

60

70

80

90

Time-frequency (x1000)

Tr
ia

ls

2 4 6 8 10 12 14 16 18

Data matrix (trials x time-frequency)
Design matrix

(trials x IVs)

464 VI Modeling and Model Fitting

to produce this figure but convert reaction times to seconds instead of mil-
liseconds. The relationship between brain activity and reaction time hasn’t
changed, but the results have changed by a few orders of magnitude. That’s
awkward.

There are two ways to normalize these data that will facilitate interpreta-
tion. One way is to Z-transform all the data (the reaction times and the
power values over trials at each time-frequency point), which will give us
Pearson correlation coefficients (converting covariances to Pearson correla-
tion coefficients was discussed in chapter 16). A second way is to evaluate
the results relative to a null hypothesis distribution, which has an addi-
tional advantage of allowing statistical inferences. You’ll have the opportu-
nity to try both of these options in the exercises.

Figure 28.5

Results of the least-squares analysis using the matrices shown in figure 28.4. The

value at each time-frequency point is the cross-trial covariance (non-normalized cor-

relation coefficient) between reaction times and time-frequency power of the EEG

signal. Results indicate that trials with initially smaller (black regions) and then later

larger (white regions) theta-band power were associated with longer reaction times.

The map is more easily visually interpreted on your monitor (assuming you have a

color monitor).

Time (ms)

0 200 400 600 800 1000

Fr
eq

u
en

cy
 (

H
z)

2

4

6

8

10

12

14

16

18

20

0

–.01

.01

28 Linear Methods to Fit Models to Data 465

28.5 Data Transformations Adjust Distributions

Linear methods to model fitting, and linear models more generally,
have several advantages. Compared to nonlinear models, they are easier to
implement and tend to be more robust to noise and to reasonable ranges of
parameters, and the results are more likely to be easily interpretable. Linear
models can be sophisticated and insightful; do not confuse linear with
limited.

One feature of linear models is that they typically work best with data
that have well-behaved distributions, such as Gaussian (a.k.a. normal) or
uniform. Distributions that contain outliers or have extreme values might
result in model parameters that are not representative of the data. Many
types of data used in neuroscience and cognitive neuroscience have distri-
butions that are logarithmic, have long positive tails, are circular, or have
other nonlinear characteristics. Examples include frequency-band-specific
power, spike counts, and reaction times. If you have such data, before rush-
ing off to build complicated nonlinear models, think about whether the
data can be transformed to a distribution that is more amenable to linear
model fitting.

There are three motivations for transforming data to a normal or uni-
form distribution. One is for model-fitting procedures in which parameter
estimates are influenced by extreme values. Second, and related, is to
prepare the data for analyses that assume Gaussian-distributed data, includ-
ing some methods of classification and clustering. Third is to facilitate
direct comparison across variables with otherwise incomparable scales,
such as weight and height, or volts and Teslas (this third motivation is more
about transformations in general, rather than transforming to a specific
distribution).

Figure 28.6 shows two examples of non-normal distributions and the
transforms that help them approach normalcy. The online code shows a
few more transformations. It is generally a good idea to build a habit of
inspecting your data and their distributions using plots and histograms.

Actually, by combining transformations, any distribution can be con-
verted to a normal distribution. Here is the one simple trick you need:
First, rank-transform the data; second, scale the ranked values to a range of
–1 to +1; third, apply the inverse hyperbolic tangent (MATLAB function
atanh), which is also commonly referred to as the Fisher-Z transform. This
method works well except when the data are exactly –1 or +1, because the
inverse hyperbolic tangent of these numbers is minus and plus infinity,

466 VI Modeling and Model Fitting

Figure 28.6

Two examples of non-normal distributions (top and bottom left-most panels) and

possible transformations to a uniform (top middle and right panels) or Gaussian

(bottom middle and right panels) distribution.

C
o

u
n

t
(x

10
0)

0

2

4

6

8

10

12

Values (x1000)
2 4 6 8 10

Original values Transformed values

Values
20 40 60 80 100

0

100

200

Original values (x1000)
2 6 10

T
ra

n
sf

o
rm

ed
 v

al
u

es

0

40

80

120

Original values Transformed values

C
o

u
n

t

C
o

u
n

t
(x

10
0)

0

5

10

15

20

2 6 10 14 0 2 4–2–4

Values Values

100

300

500

700

900

0 5 10 15

0

2

4

–2

–4

T
ra

n
sf

o
rm

ed
 v

al
u

es

Original values

28 Linear Methods to Fit Models to Data 467

respectively. If you use this method to transform data, you’ll need to write
an exception for these values.

If you apply transformations to your data before analyses, remember to
interpret the results correctly. The model parameters reflect the relationship
between the independent variables and the transformed data, not the data
in their original scale.

28.6 Exercises

1. The following line of code does not contain an error, but probably does
not produce the intended result. What is the problem and what is the
solution? Try to figure it out before evaluating the code in MATLAB.

data = 10*round(rand(10,1));

2. Create a 3 × 20 matrix of random integers that range from –10 to +35.
Sort the rows in this matrix according to the second column, and store
the result as a new matrix. Confirm visually that the rows have not
been broken up, just swapped around. Next, modify the code so that
the sorting is done in descending order.

3. In the second example in this chapter (using least squares to fit a linear
slope), the second column of the matrix A was 1:n. Does this column
need to be integers increasing to n? Try re-running the model but
change the second column of A to: (1) integers counting down from n
to 1; (2) n linearly spaced numbers from 0 to 1; (3) steps of 1,000 start-
ing at 17,000; (4) logarithmically spaced numbers between 10 and 100.
Use the same data for all models so the parameters can be directly com-
pared. Inspect the resulting parameters and model-predicted data in
each case. What have you learned about constructing the design matrix
and interpreted the resulting coefficients?

4. The following lines of code were written by a student who means well
but makes a lot of mistakes. Find and fix the errors on each line (if there
are errors …). Imagine the student asks you for advice about how to
sanity check the code so he can debug his own code in the future.
What is your advice (your answer cannot be “ask someone else”)?

x = (A*A')\A'*b;

x = (b'*b)\b'*A;

x = (A*A)\A'*b;

x = (A'*A)\A'*b;

x = inv(A'*A)*(A'*b');

468 VI Modeling and Model Fitting

5. The examples for polynomial fitting involved simulating data that had
only zero-order (mean offset) and first-order (linear) characteristics.
Create data that have a zero-order and a second-order (quadratic) effect
and random noise. Use polyfit to estimate polynomial coefficients
and polyval to obtain the predicted time series. Plot the results to
confirm that the model is a reasonable fit to the data. Check that the
zero- and second-order coefficients are large and the first-order coeffi-
cient is close to zero.

6. There is nothing special about the order of columns in matrix A.
Change the column order to confirm that the results are the same. Of
course, the order of the coefficients is different. By convention in sta-
tistics, the intercept comes first. How do these results compare with the
output of polyval?

7. Reproduce figure 28.2, but replace the following line of code with the
one thereafter. What happens to the result and why?

yHat = polyval(polycoefs,time);

yHat = polyval(polycoefs,1:length(time));

8. The code to compute yHat does only interpolation, which is to say,
there are no predicted values outside the measured x-axis variables.
Repeat the first example in this chapter, but extrapolate yHat to a range
of –5 to +15.

9. The color limits in the contour plot in figure 28.5 were set manually.
Devise a method to set the color limit based on the data (in this case,
variable cormat). Make sure the color limits are symmetric.

10. In the reaction time–EEG correlations, the rts variable in the design
matrix needed to be transposed from a row vector to a column vector.
Adjust the code that creates this variable so it does not need to be trans-
posed when creating the design matrix.

11. Convert the time-frequency map of covariance in figure 28.5 to Pear-
son correlation coefficients. Perform a sanity check on the final result
by using the corr (statistics toolbox) or corrcoef functions to con-
firm the correlation for a few time-frequency points.

12. Run the reaction time–EEG correlations again, but apply permutation
testing to transform the coefficients into statistical z-scores. Consult
chapter 15 if you need a refresher on permutation testing for statistical
inference. What do you shuffle at each iteration during permutation
testing? Generate three plots: one showing the raw coefficients from
the least-squares fit, one showing the statistical z-values, and one in
which all z-values with an absolute value less than 1.96 are turned to

28 Linear Methods to Fit Models to Data 469

zero (z = 1.96 corresponds to p < 0.05, two-tailed and uncorrected for
multiple comparisons).

13. When the data and regressors in a linear model are z-normalized, an
intercept term is not necessary. Why is this the case? Think about how
the intercept accounts for data shifted on the y axis, how we used an
intercept to estimate the mean, and what the average data values are
before versus after z-scoring. Of course, in real analyses it is best prac-
tice always to include an intercept even if the data are normalized.

14. The reaction time–EEG correlations involved a design matrix with two
variables (intercept and reaction time). Redo the analysis using a third
independent variable corresponding to beta-band power. The value of
the third column on each trial should be power from 14 to 20 Hz and
from –600 to –200 milliseconds from that trial. How do the results
look? Of course, the correlation in the “seed” window should not be
interpreted. This is one method of analyzing brain functional interac-
tions (in this specific case, the results suggest that trials with stronger
prestimulus beta-band power also had stronger poststimulus theta-
band power).

15. Generate random data that contain a linear trend. Next, remove the
trend line using the least-squares methods shown here. Check your
results against the output of the function detrend. In general, you
may have noticed that we spend a lot of time in this book replicating
outputs of MATLAB functions. In addition to allowing sanity checks
while learning to program, the point is to realize that most functions
are created to simplify work flow, not because those procedures are
necessarily incredibly long, complex, or difficult.

16. (This question is related to chapter 25.) Hemodynamic activity does
not suddenly increase and decrease, like the boxcar-shaped regressor
we used in the t-test. FMRI analyses involve generating a canonical
hemodynamic response and convolving the design matrix (the inde-
pendent variable) with that canonical hemodynamic response (the ker-
nel). Search the Internet to find a function called spm_hrf.m and use it
to generate a canonical hemodynamic response function. Then con-
volve the regressor (variable timeline in the code in chapter 25) with
the hemodynamic response function kernel using techniques you
learned in chapter 12. Then create a design matrix that includes an
intercept and the regressor, and fit the model to each voxel’s time
course. How do these results compare with the t-test we implemented
in chapter 25?

Linear least-squares model fitting is a powerful approach that is suitable in
many situations. But there comes a time in life when linear models are just
too … linear. Sometimes you need to express yourself in more creative and
nonlinear ways. MATLAB is here for you.

Nonlinear model fitting often falls into the category of optimization,
which is a big and important field in mathematics and engineering. This
chapter does little justice to the rich and highly developed field of optimi-
zation. But hopefully you’ll learn enough in this chapter to be comfortable
fitting basic models to data and can use this as a springboard for getting
deeper into the subject.

There are two steps to nonlinear fitting in MATLAB: Define the model or
function that should be fit to the data, and then use one of many MATLAB
functions to find parameters that optimize the model fit to the data. We’ll
mostly use the functions fminsearch (function minimization search) and
fminbnd (function minimization, bounded). Using other optimization
functions such as fmincon or lsqnonneg is generally a matter of minor
adjustments.

29.1 Nonlinear Model Fitting with fminsearch

Before learning about nonlinear model fitting, you need to learn about
function handles. You need to learn about function handles because the
first input to fminsearch is a function—not the output of a function,
which you’ve seen many times, but a function itself. But MATLAB does
not understand a function being directly inputted to another function.
Therefore, we need to use a little trick: Instead of inputting a function,
we will input something called a function handle. A function handle is a
pointer to a function, similar to h in h=plot(x,y); or to fid in
fid=fopen(’data.dat');.

29 Nonlinear Methods to Fit Models to Data

472 VI Modeling and Model Fitting

To illustrate how function handles work, we’ll create a simple quadratic
function. A quadratic function is defined as ax2 + bx + c, where a, b, and c
are scalar parameters, a ≠ 0, and x is the input number, vector, or matrix. In
the simplified function below, b = c = 0.

funch = @(t) t.^2;

It’s a funny-looking notation, but what we’ve just done is create a func-
tion that takes its input and returns the squared version of that input. The
@ symbol tells MATLAB that we want a function handle (called funch), the
(t) is the input into the function, and the rest of the line after the space is
the function itself. By typing whos funch you’ll learn that the class is
function_handle. Now we can move to the second step, which involves
inputting this function handle into the function fminsearch. The fmin*
functions work by repeatedly calling the pointed function with different
parameters, until some criterion has been reached. The criterion is gener-
ally defined as the objective minimization function not getting any smaller.
I know it’s probably still confusing; an example should help.

[xval,funcval] = fminsearch(funch,-2);

This line of code passes the function (via its handle) into fminsearch
and starts with an x-axis value of –2. That’s obviously not the minimum of
the function, and the point here is for fminsearch to find the value (start-
ing from –2) that minimizes t2. Of course, you know that the answer needs
to be t = 0, and the output xval does not disappoint (figure 29.1). The
second output, funcval, tells you the value of the function; in this case,

Figure 29.1

Results of function minimization. The left plot illustrates the minimum obtained

from fminsearch; the right plot illustrates the bounded minimum between –30 and

–2 using fminbnd.

X
0–2–4 2 4

X
0–2–4 2 4

Y

0

5

10

15

29 Nonlinear Methods to Fit Models to Data 473

both y and t are zero (due to computer rounding errors, you might get
something like 10–25). To differentiate the two outputs, try adding a con-
stant to the function.

Take a minute to play around with this code. Test it with different start-
ing values, and alter the function by changing the quadratic (e.g., add an
offset or a linear term), and so on.

Let’s now adapt the code to learn about fminbnd. This function finds
the minimum within specified boundaries.

[xval,funcval] = fminbnd(funch,-30,-2);

Now the “minimum” is located at t = –2 (funcval = 4). This is not the
minimum of the function—it is the minimum of the function within the
specified boundaries; in other words, between –30 and –2 (figure 29.1). This
would be a good time to remind yourself about the importance of visually
inspecting and sanity checking your results; without any inspection or criti-
cal consideration, you might think that –2 is the minimum of t2.

29.2 Nonlinear Model Fitting: Piece-wise Regression

Now let’s see a better example of the power of nonlinear model fitting using
a model that you might need to apply in real research: a piece-wise linear
regression. A piece-wise regression is used when there is a sudden transition
in the relationship between two variables. The key nonlinearities in piece-
wise regressions are the “breakpoints,” the x-axis positions that define the
boundaries between the linear functions. We will use fminsearch to find
the optimal breakpoint of a piece-wise linear function. For simplicity, we’ll
stick to one breakpoint and two linear pieces.

For this example, we will generate a so-called triangular distribution of
data (you’ll never guess why they call it that). It’s a useful distribution to
illustrate piece-wise regression. You can already have a peak at figure 29.2 to
see where we’re going with this example.

% parameters

a=.2; c=.6; b=.9;

% generate random data and then modulate

x = rand(1,10000);

y(x<c) = a + sqrt(x(x<c).*(b-a).*(c-a));

y(x>c) = b—sqrt((1-x(x>c)).*(b-a).*(b-c));

% plot distribution

hist(y,100)

474 VI Modeling and Model Fitting

A triangular distribution takes three inputs that correspond to the bot-
tom, middle, and top points of the distribution. They must be between zero
and one. The two lines that modulate the variables are a MATLAB imple-
mentation of the mathematical definition of the triangular-distributed ran-
dom numbers. Don’t inspect the code for too long, because you’ll be asked
to reproduce it (without cheating!) in the exercises.

Actually, we don’t care about the variables x and y. What we need for
our model fitting is the shape of the distribution.

[y,x] = hist(y,100);

What are the sizes of x and y? What were the sizes of variables x and y
before running that line of code? That’s right, we overwrote the previous
variables. This is legal behavior but it’s bad programming because (1) we’ve
lost the original data, and (2) it increases the possibility of confusion.

Before we can get to the fun part of using fminsearch, we need to
define a function that we want to minimize (well, this part is also fun, just
not quite as much fun as using fminsearch). This function will be more
complex than that in the previous section, so we should put this new

Figure 29.2

A triangular distribution can be modeled as a piece-wise linear regression. This figure

shows the distribution and the two linear pieces that were each fit using least squares.

The nonlinear fitting procedure was used to find the optimal breakpoint. This figure

is actually the final frame of a movie that shows how fminsearch tries different

breakpoint values in search of the best value.

x-axis
.2 .3 .4 .5 .6 .7 .8 .9

C
o

u
n

t

0

50

100

150

200

29 Nonlinear Methods to Fit Models to Data 475

function into a separate file. The implementation of a piece-wise linear
regression is not so difficult—start with some arbitrary breakpoint (call it
variable bpoint), and use standard linear least-squares fitting on either side
to fit the two pieces. The two variables will be called x and y (this is inside
a function, so we’re not going to overwrite the previous x and y variables).

% first piece

x1 = [ones(bpoint,1) x(1:bpoint)];

y1 = y(1:bpoint);

b1 = (x1'*x1)\(x1'*y1);

% second piece

x2 = [ones(length(x)-bpoint,1) x(bpoint+1:end)];

y2 = y(bpoint+1:end);

b2 = (x2'*x2)\(x2'*y2);

This is basically the same as the least-squares fitting you learned about in
the previous chapter. The only difference is that the data are cut into two
pieces, and linear models are fit to each of them separately.

But we’re not finished yet. Functions like fminsearch search for param-
eters that minimize some error objective. What is the objective that we
want to minimize? What is always the minimization objective in model
fitting? Of course, it’s the fit of the model to the data, which we can quan-
tify as R2. Well, almost. R2 is defined as 1 minus a ratio, and we want R2 to
be as high as possible. But MATLAB wants to minimize something. If we
drop the “1 minus” bit, smaller values indicate a better model fit, and we
can use this as our minimization objective. To compute this ratio, we need
to compare the predicted values against the observed values.

yHat = [b1(1)+b1(2)*x1(:,2); b2(1)+b2(2)*x2(:,2)];

sse = sum((yHat-y).^2) / sum(y.^2);

If you compare the variable sse to how it was defined in the previous
chapter, you’ll notice two differences, one in the numerator and one in the
denominator. The difference in the numerator doesn’t matter (why not?).
The difference in the denominator doesn’t really matter either for our
purposes here. In fact, we don’t even need a denominator at all in this
function, and it’s your job to figure out why.

We’re getting close, but there is one more issue. The breakpoint is mean-
ingful only if the x-axis values are sorted, because the breakpoint is an
index. To understand why this is the case, consider what happens in the
following situations when the breakpoint is the third index.

476 VI Modeling and Model Fitting

x = [1 2 3 4 5];

x = [3 4 1 2 5];

In the first case, 1 and 2 are before the breakpoint, while in the second
case, 3 and 4 are before the breakpoint. The conclusion is that the variables
need to be sorted. The variables x and y cannot be independently sorted,
because the relationship between them needs to be preserved. Instead, we
sort x and then apply the same sorting indices to y.

[~,i]=sort(x);

x=x(i); y=y(i);

Finally, we are ready to move forward. The online MATLAB code has this
entire function in a file called fit2segLinear.m. In the first example of this
chapter, we wrote an in-line function and entered the function handle into
fminsearch; now we have a function file, but the solution is the same: Use
a function handle.

[~,initB] = min(abs(x-.5));

funch = @(initB)fit2segLinear(initB,x,y);

[optBreakPoint,sse,exitflag,fmininfo] = ...

 fminsearch(funch,initB);

There are a few important things to discuss in this code. First, note the
initB variable, which specifies the initial estimate of the breakpoint.
Parameters in optimization procedures always need some starting value,
and you will see later in this chapter that good starting values are impor-
tant. We will initialize the breakpoint to be the center of the data distribu-
tion, and we use the min-abs construction because we want initB to be an
index, not a data value.

The first output of fminsearch is the parameter that provided the best
fit, then the value of the objective function (in this case, the sum of squared
errors), then the “exit flag” (1 if everything was okay; 0 if it exited without
thinking it did a job well done), then some meta-information about how
many iterations it went through, and so on.

The output sse is pretty small (0.0053 when I ran it; random noise will
cause slight differences but it should always be close to zero), which means
the R2 is pretty big. So the model was a good fit to the data. The breakpoint
was 60.2 (again, it will be slightly different each time you run it). We need
to be careful when interpreting this output. It is not the actual breakpoint.
Indeed, the x-axis values range from 0.2 to 0.9. Instead, this is the index
into the variable x at which the breakpoint is optimally placed.

29 Nonlinear Methods to Fit Models to Data 477

“But Mike,” I imagine you interjecting, “indices must be integers. I know
because I’ve gotten 10,000 MATLAB errors about this!” Yes, gentle reader,
you are correct. However, MATLAB doesn’t know that this is supposed to be
an index; it just knows that this is a parameter of a model. MATLAB will
happily try to give it non-integer values, which is why line 10 in the func-
tion fit2segLinear rounds the index.

You might now be thinking that this couldn’t get any more fun. But it
can and will. To get a better idea of what’s going on inside fminsearch, we
can plot the data and the fit to the data each time fminsearch calls the
function fit2segLinear. That function contains a commented line of code
that plots the data. Uncomment this line (and save the file) and re-run
fminsearch. You will watch the function searching the parameter space
for the optimal breakpoint. Don’t feel embarrassed to watch it over and
over again (figure 29.2).

In fact, you should always do this kind of plotting when writing new
functions or when using existing functions for the first time. This is the
same as the qualitative model-fit inspection discussed in the previous chap-
ter, and it is an excellent way to determine whether the parameters of the
model are sensible and interpretable. For example, try running the model
fitting with initB set to the index corresponding to an x value of 0.1. On
the other hand, not all models and data sets can be easily visually depicted
like in this example. You might need to get creative to figure out how to
show the data and the fit to the data.

29.3 Nonlinear Model Fitting: Gaussian Function

Let’s try another example using another function that is often used to fit
neuroscience data: a Gaussian. A Gaussian function has three parameters—
width, peak amplitude, and center (figure 29.3). We will create a noisy
Gaussian and see how well fminsearch can recover the original parame-
ters. The code below constructs the noisy Gaussian.

peak = 4;

fwhm = 1;

cent = 3;

nois = .5;

x = -10:.1:10;

gaus = peak*exp(-(x-cent).^2 / (2*fwhm^2));

gaus = gaus + nois*randn(size(gaus));

478 VI Modeling and Model Fitting

Defining the objective function is fairly simple: It’s the Gaussian with
parameters that are defined by three inputs (for simplicity, the three param-
eters can be inputted as a three-element vector). One important difference
from the piece-wise linear fit example is that here we want to keep the origi-
nal data to evaluate relative to the model-predicted data, rather than input-
ting the distribution of the data (although the code could be adapted to fit
the distribution rather than the raw data). In fact, we’ll input the original
data into a Gaussian-fitting function.

InitParms = [2 2 –2];

funch = @(initParms) fitGaussian(initParms,x,gaus);

[outparams,sse] = fminsearch(funch,initParms);

Otherwise, the code is overall fairly similar to that used in the piece-wise
linear regression example, except of course the piece-wise regression is
replaced with a Gaussian. Figure 29.4 shows the final result. It looks like a
good fit, don’t you think? If you run the code with the plotting line in the
fitGaussian function uncommented, you’ll be able to watch the result of
each iteration as fminsearch tries to find the minimum in the 3D param-
eter space.

Nonlinear search procedures can get tripped up or caught in a local
minimum. In general, you should try to make the models be as simple as
possible, and try to make sure the data are as clean as possible. If there are
many parameters in the model, try to specify some of the parameters a

Figure 29.3

A Gaussian function is defined by three parameters.

0 2 4 6 8–2–4–6–8
0

1

2

3

4

FWHM

Center

Amplitude

29 Nonlinear Methods to Fit Models to Data 479

priori to decrease the total search space of the model. Nonlinear optimiza-
tion functions are powerful when used correctly but can produce mislead-
ing or uninterpretable results when used sloppily. Always check the model
fits to the data, and test your models using a range of different parameter
starting values.

29.4 Nonlinear Model Fitting: Caught in Local Minima

Are you having fun with these models? I am. Let’s squeeze in another
quickie, this time to illustrate how optimization functions can fail because
of local minima. A negative sinc function provides a good illustration,
because it has one global minimum and many local minima.

funch = @(x) -sin(x)./x;

[xval,funcval] = fminsearch(funch,0);

Figure 29.5 shows that we successfully found the global minimum. But
that’s because we gave it a starting value close to the global minimum. Try
running the code again using a starting value of 20. The model gets caught
at the nearest local minimum and then, thinking it has accomplished a job
well done, happily quits. Finding the global minimum in a sea of local
minima is a difficult problem in optimization. This is another illustration of

Figure 29.4

This figure is similar to figure 29.2 except a Gaussian replaced the piece-wise linear

regression.

Observed data
Predicted data

480 VI Modeling and Model Fitting

how fmin* functions should be checked carefully before the results are
trusted.

29.5 Discretizing and Binning Data

Often in model fitting, it is the distribution of values, not the values them-
selves, that you want to model. You already saw this in the piece-wise
regression example—in fact, we destroyed the raw data and replaced those
variables with their discretized distributions.

Another example: If your experiment involves detecting weak sensory
stimuli in the presence of noise, the raw data from each trial are binary
(seen or not seen). This is not what you use for estimating the model, for
example, of a sigmoid function. Instead, the model is fit to the average
accuracy from trials that contain a specific level of noise. In other words, n
trials are binned into r groups, and trials are averaged within each group.
We could also say that the data are discretized into r bins.

Sometimes it’s easy to discretize trials. If your experiment explicitly
manipulates sensory noise in 10 steps, then discretization simply involves
averaging the data within each noise level. This section will show you how
to discretize data when there are no a priori defined bins. This would hap-
pen, for example, if you want to bin trials according to reaction time, spike
rates, or oscillation power.

One way to discretize data is via the outputs of the hist or histogram
functions. You’ve already seen these functions being used to produce a his-
togram plot. But they can also provide outputs that allow you to reproduce
that plot (figure 29.6).

Figure 29.5

This figure illustrates how nonlinear model-fitting procedures can get stuck in local

minima.

29 Nonlinear Methods to Fit Models to Data 481

x = randn(1000,1); hold on

hist(x,40)

[yy,xx] = hist(x,40); % doesn’t plot anything!

plot(xx,yy,'r','linew',3)

MATLAB recently introduced an updated version of the hist function,
called histogram. The idea is the same; the outputs are slightly different.
Actually, there is only one output, which is a structure that contains useful
information about the distribution, including the raw data. One feature of
this output, which is sometimes useful and sometimes a bit annoying, is
that it doesn’t return the bin values themselves; it returns the upper and
lower edges of each bin. That’s why there are N + 1 bin edges for N bins.
Thus, to reconstruct the histogram accurately, you will need to compute the
bin centers, which are the averages of the bin edges.

hdata = histogram(x,40);

xvals = (hdata.BinEdges(1:end-1) + ...

 hdata.BinEdges(2:end))/2;

plot(xvals,hdata.Values)

If you are just getting into MATLAB, I recommend using histogram
over hist. If you are a rigid old dinosaur, stubbornly stuck in your 1990s
habits, then by all means continue using the hist function.

Figure 29.6

The outputs of the hist or histogram functions can be used to discretize the data

according to equally spaced bins on the x axis.

Value

0–1–2–3 1 2

C
o

u
n

t

0

10

20

30

40

50

60

482 VI Modeling and Model Fitting

Either way, there are two limitations of using the output of the hist or
histogram functions. First, we don’t know which values from the original
data go into which bin. That is, from a histogram like in figure 29.6, we
know that four data points had a value between –3.4 and –3.12, but we
don’t know where in the matrix those data points are. One way to solve this
problem is to loop through the bin boundaries and find all data points that
are above the lower boundary and below the upper boundary.

xidx = zeros(size(x));

for bini=1:hdata.NumBins

 ix = hdata.Data > hdata.BinEdges(bini) & ...

 hdata.Data < hdata.BinEdges(bini+1);

 xidx(ix) = bini;

end

The resulting variable xidx tells you which entries in variable x were
placed into which bin in the histogram.

The second limitation of the hist (and histogram) function is that it
discretizes according to equal spacing of the range of the distribution, not
according to an equal number of data points per bin. This is, of course,
the entire purpose of making a histogram, but there are situations in
which equal points per bin is preferred over equal bin spacing. The solu-
tion to discretizing data into N equally sized bins is to use the procedure
described in section 14.5 of chapter 14. As a brief reminder, discretizing
data into some number of equally sized bins can be implemented as
follows.

N = length(data);

nbins = 8;

temp = tiedrank(data)/N;

discr = ceil(temp*nbins);

29.6 Exercises

1. Adding code to the minimization function to plot results is an excel-
lent way to sanity check the process, but it also increases computation
time. Redo the piece-wise and Gaussian examples using tic/toc to
time how long it takes to find the minimum with the plotting line
uncommented. Run each procedure 100 times. Then repeat with the
plotting line commented. Make a bar plot of the average computation
times for the four tests, along with error bars showing the standard
deviations.

29 Nonlinear Methods to Fit Models to Data 483

2. Look on the Internet for the formula for generating random variables
with a triangular distribution (Wikipedia, for example, should have a
relevant entry). Without looking at the code for this chapter, imple-
ment this formula in MATLAB, in two ways. First, loop through ele-
ments in the vector of random numbers; second, do it without a loop.
Do you also get this existential feeling of wholesome goodness by solv-
ing problems without loops?

3. Here is another formula that you should convert into MATLAB code.
A reasonable range of variable t would be –5 to +5. Plot this function.

|(2 mod t) – 0.66|sin(2π10t) – 0.08sin(2π10(t – 1))/(t – 1)

4. Would you have any difficulties using fminsearch to find the global
minimum of the function in the previous exercise? How about
the global maximum? How might you find the maximum without
fminsearch?

5. In section 29.2, you learned how to sort multiple variables according to
the order of a single variable. This task is easier to accomplish if the
variables are columns in a matrix. Go back to that example, put vari-
ables x and y as column vectors in a matrix, and then figure out how
to use the function sortrows to sort both columns according to values
of the first column (variable x). Are you sure the result is correct? Maybe
it’s a good idea to test sortrows using a small matrix where you can
visually confirm the answer.

6. In the triangular-distribution example, perform optimization by “brute
force.” This means you should write a loop over all possible x values,
use each x value as a breakpoint and fit the piece-wise linear regression,
and save the R2 for each breakpoint. The best breakpoint parameter is
the one with the highest R2. Confirm that you get the same (or very
similar) answer as with fminsearch. Then run a time test on your
brute-force code and compare that against using fminsearch. This
brute-force method is okay for functions with one parameter. What
would be involved in applying the brute-force method in the Gaussian
example, which has three parameters?

7. We used the function fminsearch in the piece-wise linear regression.
Get it to work with fmincon and fminbnd. The inputs are slightly dif-
ferent, so you might need to look up the help files or look online. In
which situations would you prefer the different fmin* functions?

8. You saw that proper initialization of initB is important. Knowing that
this is a triangular distribution, devise and implement an algorithm
to make a good initial guess for the breakpoint parameter. Then try

484 VI Modeling and Model Fitting

changing the “c” parameter in the code that produces the triangular
distribution to confirm that your algorithm works well.

9. How robust is the Gaussian parameter search to noise? Re-run the
Gaussian fitting procedure over different noise levels, ranging from 0
to 4 (these are the numbers that scale the output of the randn function
when creating the data). Use at least 10 steps of noise. For each level of
noise, compute the squared differences between the parameters you
specified and the parameters returned by fminsearch. Repeat these
procedures 50 times to be able to take the median over noise levels (you
are likely to get some horrible fits, so median is preferred over mean).
Plot the differences as a function of noise level.

10. Following up on the previous exercise, fix the noise level to 0.5, and
vary the distance of the initialization of the Gaussian center relative to
the real center, from –6 to 3 (assuming the actual center is 3). Again,
compute the squared differences between specified and fitted parame-
ters. What is a good way to plot the results? What have you learned
about the importance of having good starting points?

11. Weibull functions are occasionally used in psychophysics for fitting
behavioral data. Find the formula for the Weibull function online and
implement it in MATLAB. Try different parameters until you find a
curve that you find visually pleasing. Next, come up with six data
points that are near that curve (don’t be too exact—you should be able
to fit the function to the data). Write a function to fit a Weibull func-
tion and return the two parameters based on the six data points that
you simulated.

12. Re-run the Weibull model fitting in the previous exercise, but
first interpolate the data to 100 points. Does up-sampling improve
the fit?

13. Zoom into the sinc-minimization in figure 29.5. There is not a perfect
match. Did something go wrong in the plotting code? (Obviously the
answer is yes.) Find and fix the bug in the code.

14. Sigmoid functions are also common in psychophysics and in neurosci-
ence. A sigmoid is an S-shaped function that, among other things, can
squeeze any arbitrary number to range between –1 and +1. You’ll see
this in practice in the next chapter. The formula is v/(1 + e–s(x – m)), where
e is the natural exponent, m is the x-value of the function midpoint, s
is the steepness of the function (how quickly it goes from the bottom
value to the top value), and v is the maximum value of the sigmoid.
Implement this function in MATLAB in a way that allows you to spec-
ify the m, s, and v parameters and produce a plot of the input x values

29 Nonlinear Methods to Fit Models to Data 485

by the function output. Spend a few minutes changing the parameters
to see the effects on the resulting plot.

15. Here are 6 data points: [0 0.05 0.3 0.7 0.9 1] (these are the y-axis values;
the x-axis values are 1:6); fit these to a sigmoid and determine the
parameters. Then do it again adding +1 to all the data values. Plot the
data and the fitted sigmoid on the same graph. Make sure to select
the starting parameters carefully.

Computational modeling in neuroscience and psychology is used to test
specific hypotheses about theoretical predictions, to control and manipu-
late parameters in simulations that are not possible to control in the real
world, and to help interpret or explore empirical data.

Like the topics covered in every chapter, computational modeling in
neuroscience is a big and fascinating field, and this chapter can provide
only a Lilliputian taste of all the possibilities. Encyclopedic books have
been written about the mathematical details and programming implemen-
tations of computational modeling in neuroscience and cognitive science
(Jaeger and Jung 2015). Still, basic models like the ones introduced here can
be informative and are widely used in the literature.

30.1 Integrate-and-Fire Neurons

Integrate-and-fire (IAF) neurons are the oldest and perhaps most funda-
mental conceptualization of the behavior of a neuron. The idea is simple
(figure 30.1): A neuron receives input, and it emits an action potential
when the sum of those inputs exceeds a threshold. Inputs can be excitatory
(brings the neuron closer to its threshold) or inhibitory (further away from
its threshold). If you would like to learn more about the biology and bio-
physics of IAF neurons, you might start with Burkitt (2006).

We will create a model neuron and give it some input. I think Reza is a
good name for our simulated IAF neuron. We start by initializing Reza’s
parameters. Reza will have his resting, spike threshold, and reset values set
at –70, –50, and –75 millivolts (mV), respectively. The membrane resistance
is 10 megaohms (MΩ), and the decay time constant is 10 milliseconds.

30 Neural and Cognitive Simulations

488 VI Modeling and Model Fitting

volt_rest = -70; % resting potential (mV)

volt_thresh = -50; % action potential thresh. (mV)

volt_reset = -75; % post-spike reset voltage

% membrane parameters

R_m = 10; % neuron membrane resistance (MOhm)

tau = 10; % time constant of decay (ms)

Reza needs stimulation. This can be implemented by defining a time
series vector of inputs comprising zeros (no input) and non-zero values
when we want input. Another possibility would be to define onset/offset
times for stimulation, but defining an entire vector gives us the freedom to
create a time series of arbitrarily time-varying inputs, which you’ll have the
opportunity to do in the exercises. The simulation will last for 1 second,
and we will simulate at 10 kHz.

srate = 10000; % sampling rate in Hz

sim_dur = 1; % stimulus duration in seconds

time = 0:1/srate:sim_dur - 1/srate;

input = zeros(1,length(time));

input(dsearchn(time',.3):dsearchn(time',.7)) = 3;

Next we need to initialize two results vectors: Reza’s membrane voltage
over time, and a list of spike times. You’ll learn later why it’s convenient to
have these two quantities stored separately.

neuronV = volt_rest + zeros(size(timevec));

spiketimes = [];

Figure 30.1

Depiction of the integrate-and-fire neuron model. The model neuron receives excit-

atory and inhibitory inputs; when the weighted sum of those inputs exceeds a

threshold, the neuron emits an action potential, which is used, among other pur-

poses, as an input to other neurons.

Σ

T
h

resh
o

ld

Fire!

Input 1 (+)

Input 2 (+)

Input 3 (–)

Input 4 (+)

w3

w4

w2

w1

30 Neural and Cognitive Simulations 489

The voltage vector is initialized as the resting membrane potential,
whereas spiketimes is initialized as an empty vector. We don’t know
a priori how many spikes there will be, so this is a good initialization
approach.

Next, we loop over time points. The loop goes from 1 to the number of
time points minus 1. You’ll see in the simulation that each time point
involves updating the membrane potential at the subsequent time point;
that’s why the simulation stops one time point before the end. The
first thing to do inside the loop is to check whether Reza has exceeded his
firing threshold. If he has, the membrane potential is reset and the spik-
etimes variable is updated. (Variable ti is the looping variable over time
points.)

if neuronV(ti) > volt_thresh

 neuronV(ti) = volt_reset;

 spiketimes = cat(1,spiketimes,ti);

end

The next step inside the loop over time points is to update the mem-
brane potential, which is separated into two lines for convenience. The first
line describes the total input, which is the existing membrane potential
plus any external input. The second line defines how the membrane poten-
tial is updated based on the decay rate and the current input.

r_i = volt_rest + input(ti)*R_m;

neuronV(ti+1) = r_i + (neuronV(ti) - r_i) ...

 * exp(-1000/srate/tau);

Here you see that the membrane potential is updated into the subse-
quent time point. Try running the code again, looping until the total num-
ber of time points. The simulation will successfully complete, but the script
will crash when plotting. It’s an easy issue to fix.

If you compare this code to other implementations of IAF neurons, you
might see a variable Δt or dt in the exponential, instead of 1000/srate.
Had I used a variable called dt, what would its value be, given the sampling
rate of 10 kHz?

And that’s it for our simulation! It probably wasn’t as complicated as you
thought it would be. Of course, the simulations get much hairier when you
incorporate detailed biophysical mechanisms, ion channels, and realistic
morphology. The last thing to do is to plot Reza’s membrane potential over
time. Here is where we use the spiketimes variable. The standard IAF neu-
ron does not actually model the action potential; instead, it just resets the

490 VI Modeling and Model Fitting

membrane potential. But Reza is a bit of a show-off, so for visualization, we
will set the membrane potential value at the time of the spikes to be more
visible. The following code will change the membrane potential to 40 mV,
and now the results can be seen (figure 30.2).

neuronV(neuronV==volt_reset) = 40;

30.2 From Neuron to Networks

Neurons are social animals. That’s why you never see them in isolation in
the wild. Let’s give Reza some friends before he gets sad. We’ll create a net-
work of 100 IAF neurons, 80 of which will be excitatory and 20 of which
will be inhibitory. An excitatory neuron makes the postsynaptic cell more
likely to spike (depolarization; think of glutamatergic pyramidal cells),
while an inhibitory neuron makes the postsynaptic cell less likely to spike
(hyperpolarization; think of GABAergic interneuron cells).

Before starting with the code, let’s think about how to do this. It’s easy
to create 100 neurons; that just involves making a 100-by-time matrix of
membrane potentials instead of the 1-by-time vector that we made for
Reza. But these would all be independent neurons. They need to talk to
each other. In the brain, this is done through chemical and electrical syn-
apses; in our simulation, we will set the input to each neuron to be the
spikes of other neurons (as in figure 30.1). Spikes from excitatory cells will
bring each neuron closer to its threshold, and spikes from inhibitory cells
will bring each neuron further away from its threshold. For simplicity, we

Figure 30.2

The membrane potential of a simulated integrate-and-fire neuron (top panel) in re-

sponse to DC current input (bottom panel).

Time (s)

00 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Vo
lt

ag
e

(m
V

)
0

–50

–100

50

In
p

u
t

30 Neural and Cognitive Simulations 491

will wire our network to be all-to-all, meaning that each neuron is con-
nected to each other neuron (with 100 neurons, how many total connec-
tions are there?).

Because networks are more complicated than individual neurons, it’s
best to take this one step at a time. The first step will be to simulate 100
identical unconnected neurons. We should then see exactly the same
results 100 times (there is no noise in this simulation). This provides a
sanity check: If something goes wrong with 100 independent neurons, we
definitely cannot interpret any results when those neurons are wired
together.

What needs to be changed from the single-neuron simulation? For start-
ers, we need to initialize the number of neurons we want, and we also need
to track the membrane potentials for all neurons.

N_exc = 80; % excitatory neurons

N_inh = 20; % inhibitory neurons

… a few lines later …

neuronV = v_i + zeros(N_exc+N_inh,length(time));

Inside the loop over time points, we need to modify how threshold
exceedances are computed. This can be done with a loop over all neurons
or it can be done with no loop using logical indexing. You can guess which
implementation is preferred.

spikedNeurons = neuronV(:,ti) > volt_thresh;

neuronV(spikedNeurons,ti) = volt_reset;

The most likely mistake to make here is forgetting that neuronV is a
2D matrix instead of a 1D vector. Indeed, in the lines thereafter, you
will need to change neuronV(timei) from the single-neuron script to
neuronV(:,timei). You should now have 100 identical neurons. Plot the
membrane voltage potentials from a few randomly selected neurons, and
confirm that they are all perfect Reza replicas. If you see any deviations,
check the code for errors.

Assuming your code passed the sanity check, it’s time to connect these
neurons into a network. We can use this network as an opportunity to test
how well activity propagates through the network. We will program the
simulation to apply external input only to half of the neurons. To accom-
plish this, the input needs to change from a scalar that is applied equally to
all neurons to a vector that allows individualized inputs.

492 VI Modeling and Model Fitting

r_i = volt_rest + input(ti)*R_m;

n2stm = round(N_exc+N_inh)/2;

r_i = [r_i*ones(1,n2stm) volt_rest*ones(1,n2stm)]';

Notice what happens in this code. After computing the new input
(variable r_i), we specify that the first half of the neurons get that input,
while the second half of the neurons get rest-level stimulation. You
might initially have thought to provide an input of zero, but zero is actually
not the same as no input. In fact, zero-level stimulation is an excitatory
drive, because the resting potential is negative. Don’t believe me, try it
yourself.

And now we’re ready to connect the neurons. Each neuron receives
input from all spiking neurons, with spiking from excitatory cells being
added and spiking from inhibitory cells being subtracted. The inputs are
scaled to make the model work well; the numbers “25” and “10” have no
direct biological interpretation (although in publications, these numbers
would be justified as simulating synaptic strength).

r_i = r_i + 25*sum(spikedNeurons(1:N_exc)) ...

 - 10*sum(spikedNeurons(N_exc+1:end));

And it works! The neurons that receive no external input are still spik-
ing, because they receive spiking input from neurons that are receiving
external input (figure 30.3). And you can see that you get some interesting
network patterns that were not apparent when Reza was there just by
himself. For example, the nonstimulated neurons spike with the network,
but the timing is delayed because the input is indirect and the membrane
potential must build up to threshold. It’s impressive that even this very
simple network with very simple neurons can produce interesting and
complex behaviors. You can try modifying a few parameters and adding a
bit of noise to gain an appreciation of the complexity of this simple
network.

That’s the end of the integrate-and-fire section. Wave bye-bye to Reza.

30.3 Izhikevich Neurons

If you would like to work more with IAF neurons, you might be interested
in studying and using the Izhikevich neurons (Izhikevich 2003). They are
only slightly more complicated than the basic IAF neuron introduced here,
but they are more flexible because different parameter settings can produce
a large range of neural behaviors. The Izhikevich neurons are controlled by
four parameters (named a, b, c, and d). These are abstracted parameters that

30 Neural and Cognitive Simulations 493

do not individually map onto specific biophysical processes, but interact in
a dynamical model to reproduce behaviors of different classes of neurons
(bursting, fast spiking, adapting, etc.). Let’s have a look at one neuron. We
start with initializations of the four dynamics parameters.

a = .03;

b = .25;

c = -60;

d = 4;

Next, we initialize the timing-related parameters. The simulation will
run for 1 second at a sampling rate of 4,000 Hz (specified in the code as the
duration in milliseconds of each time step). We also need to define the neu-
ron’s input, which is variable T1. Before looking at the output, figure out
when the neuron will receive stimulation based on the fourth line of code
below.

Figure 30.3

Results of a simulation of a network of integrate-and-fire neurons. Only part of the

network was stimulated, but the nonstimulated neurons also participated in network

behavior. The upper plot shows the activity of all neurons (each row is a neuron).

The lower plot illustrates the membrane potential time course of two neurons. The

inset plot shows a zoomed version of one network spike.

Stimulated
Not stimulated

Time (s)
00 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Vo
lt

ag
e

(m
V

)

0

–40

–80

40

N
eu

ro
n

 n
u

m
b

er 20

40

60

80

494 VI Modeling and Model Fitting

tau = .25;

tspan = 0:tau:1000;

T1 = zeros(size(tspan));

T1(dsearchn(tspan',200):dsearchn(tspan',800)) = 1;

Now we’re ready for the loop over time (variable ti is the looping
variable).

% membrane potential

V = V + tau*(.04*V^2 + 5*V + 140 - u + T1(ti));

u = u + tau*a*(b*V-u);

if V > 30% there was a spike

 VV(ti+1)=30;

 V=c; u=u+d;

else % there was no spike

 VV(ti+1)=V;

end

uu(ti+1)=u;

The first two lines control the updating of the membrane potential
and the membrane recovery. Note that the input (T1) is added per time
point to the membrane potential. Thereafter, the membrane potential is
examined. If the voltage is above threshold, the membrane potential and
recovery variables are reset. After the simulation finishes, we plot the results
(figure 30.4).

plot(tspan,VV(1:end-1),tspan,T1–88);

Note that because the membrane potential is updated one time step into
the future, the vector of the neuron’s activity is longer than the time vector.
Hence the 1:end-1. Spend some time comparing the overall features of the
IAF and the Izhikevich neurons. Although there are several differences,
there are also many similarities in how the simulations are implemented in
MATLAB.

30.4 Rescorla-Wagner

Rescorla-Wagner–style models (Rescorla and Wagner 1972) are designed to
help understand the mechanisms that might support how agents (animals,
robots, etc.) can learn to select the best actions on the basis of rewarding or
punishing feedback. For an animal, this might translate to learning which
trees yield more fruit; for a robot, this might mean learning how much pres-
sure to apply when shaking hands with a human. These types of models

30 Neural and Cognitive Simulations 495

have been around for several decades and are still being used because of the
success they have in providing simple but robust descriptions of foraging
and reward-seeking behavior.

The model works by selecting one of several actions on the basis of a
combination of chance probability and learned preferences for each action.
If a selected action produces a reward, the preference for that action
increases. In the famous words of Thorndike (the “law of effect”): “Responses
that produce a satisfying effect in a particular situation become more likely
to occur again in that situation, and responses that produce a discomfort-
ing effect become less likely to occur again in that situation” (Thorndike
1898). Translated into twenty-first century English: We do things that we
like and we avoid things that we don’t like.

In the context of modeling, learned preferences for actions are called
weights or values. I’ll use the term weights here to avoid confusion when
referring to the numerical values of different variables and equations.

Our goal in this section is to learn one basic implementation of a
Rescorla-Wagner–type model. The model will be presented with a few dif-
ferent choices, and, based on trial-and-error feedback, will learn to select

Figure 30.4

Simulation of a single Izhikevich neuron. The membrane potential is drawn in black,

and the DC input to the neuron is drawn in gray (the scaling of the input is arbitrary

to facilitate visual inspection).

Time (ms)
0 200 400 600 800 1000

–80

–60

–40

–20

0

20

M
em

b
ra

n
e

p
o

te
n

ti
al

496 VI Modeling and Model Fitting

Box 30.1

Name: Eugene M. Izhikevich

Position: President, Chairman, and CEO

Affiliation: Brain Corporation, San Diego, California

Photo credit: Brain Corporation

When did you start programming in MATLAB, and how long did it take

you to become a “good” programmer (whatever you think “good” means)?

I started using MATLAB at the end of the past century, right after getting my

PhD, and switched completely to MATLAB and C around the year 2000.

What do you think are the main advantages and disadvantages of

MATLAB?

The main advantage of MATLAB is the simplicity of use, the ability of imple-

menting parallel programming, and the support by MathWorks. I found the

help pages of MATLAB the most useful and intuitive. In fact, I have never seen

anything done better than MATLAB help.

The main disadvantage of MATLAB is the awkwardness with which objects

are implemented. In my view, this is why it is losing to Python in popularity.

Do you think MATLAB will be the main program/language in your field

in the future?

MATLAB was the main language for more than 10 years, starting in the mid-

nineties of the past century. Unfortunately for MATLAB, Python became the

fast follower, borrowing the best mathematical concepts from MATLAB and

replacing it as the main programming language in scientific computing.

30 Neural and Cognitive Simulations 497

How important are programming skills for scientists?

Programming skills are more important than math skills. One can always sim-

ulate an equation that one cannot solve analytically. More and more scientific

disciplines rely on simulations and data analysis, and if a scientist cannot

implement his or her own simulations, nobody would help, especially in the

early career.

Any advice for people who are starting to learn MATLAB?

Read more of the code that is presented on MATLAB help pages—this will

teach you good programming skills, and your code will look beautiful.

the best option. First, some initializations. We’ll have 100 trials, a learning
rate of 0.3, and two actions that reward at 70% and 20% (i.e., whenever
option “A” is selected, there is a 70% chance of getting rewarding feedback).
The learning rate refers to how strongly the model uses feedback to adjust
the weights; after the model is implemented, you’ll have the opportunity to
see the effects of different learning rates on learning behavior. Finally, we
initialize the weights for the two actions to be 50% (no preference).

nTrials = 100;

lrate = .3;

rewProbs = [.7 .2];

w = .5+zeros(nTrials+1,2);

The weights are held in the variable w. The vector is nTrials+1 long in
order to save the weights separately for each trial. Saving the weights for
each trial is not necessary for the modeling, but it allows us to watch the
model learn over time. Weights get updated into the following trial, similar
to the membrane voltage of the IAF neuron. Here, I decided to loop through
all trials and compute an extra set of weights at the end.

Inside the loop over trials (variable ti is the looping variable), we first
compute the probability of choosing action 1 over action 2. Do you think
I’m missing something by not explicitly computing the probability of
action 2?

pPickAct1(ti) = exp(w(ti,1)) / sum(exp(w(ti,:)));

The exponentials in the function (exp) are used to convert arbitrarily
valued numbers into probabilities. This is called the softmax rule. If the two
weights are equal, the probability is 0.5; relatively larger versus smaller
weights cause the probabilities to go toward 1 and 0, respectively.

498 VI Modeling and Model Fitting

Let’s take a minute to explore this code snippet to understand the soft-
max rule better. The code below will create a 2D space of probabilities
resulting from applying the softmax rule to the numbers –3 to +3 (imagine
these numbers are weights for two actions).

[v1,v2] = deal(-3:.1:3);

for vi=1:length(v2)

 p(:,vi) = exp(v1) ./ (exp(v1)+exp(v2(vi)));

end

imagesc(p)

You can see in the plot (on your screen; it’s not shown here) that action
1 is most likely to be picked when its weight is high and the weight of
action 2 is low. Vice versa for action 2. When the weights of both actions
are equal, the model has no preference; it simply picks by chance. Notice
also how the image values changed: v1 and v2 range from –3 to +3, while
the probability map ranges from 0 to 1.

Getting back to the model, we now have the probability of picking an
action on the basis of the relative weights between the two actions. To pick
the action, that probability value is compared against a random number
drawn from a uniform distribution. If the random number is less than the
action probability, action 1 is chosen; otherwise, action 2 is chosen. To
make sense out of this implementation, consider the extremes: What hap-
pens when the probability value is 0, 0.5, and 1?

action(ti) = 1 + (pPickAct1(ti)<rand);

That line of code does two operations at once. First, the probability of
action 1 is compared against a random number drawn from a uniform dis-
tribution; second, the outcome of that comparison, which is a Boolean true
or false result, is added to one, and that is the action our model takes. Take
a minute to understand this line. Again, consider what happens when the
probability of picking action 1 is 0, 0.5, and 1.

After picking an action, we see whether the model gets rewarded. The
reward is given according to a similar algorithm as the action choice: A
random number is compared against the reward probability for the selected
action, and if the random number is less than the indicated probability, a
reward is given. As a human, you probably consider a reward to be choco-
late, sex, a scientific publication, or something else equivalent. For comput-
ers, the number “1” is a reward and the number “0” is a punishment. And
that’s why humans and computers will never understand each other.

reward = rand < rewProbs(action(ti));

30 Neural and Cognitive Simulations 499

Next up is the prediction error. The prediction error is what the model
uses to learn its action preferences; in other words, to adjust the weights.
The prediction error is defined as the difference between the reward and the
weight (remember that the weight is the model’s expectation of the reward).
When the reward is larger than the weight, this is a positive prediction error
(the outcome was better than expected); when the reward is smaller than
the weight, this is a negative prediction error (the outcome was worse than
expected). When the weight and the reward are equal, there is no predic-
tion error because the model has predicted the state of the world perfectly;
hence, no learning is required.

rewpred(ti) = reward—w(ti,action(ti));

This prediction error is also called a delta (inspired by it being a differ-
ence variable) and is often indicated in equations by its Greek character (δ).
Rescorla-Wagner–style models became popular in neuroscience in the mid-
1990s with the discovery that dopamine-producing neurons in the mid-
brain produce patterns of activity that closely resemble this delta function
(Schultz, Dayan, and Montague 1997). These kinds of models continue to
be widely used in neuroscience studies of reinforcement learning.

Finally, we update the weights according to the prediction error, scaled
by the learning rate.

w(ti+1,action(ti)) = w(ti,action(ti)) + ...

 lrate*rewpred(ti);

You can see that we’re updating the weight for the selected action in the
following trial. But what about the weight for the nonselected action? We
don’t want to forget that one, otherwise the nonselected weight will default
to zero (or whatever value was used during initialization). One method is
simply to carry over the weight without changing it (this is implemented
below); another option would be to discount the weight of the nonselected
action.

How can we efficiently implement this weight carryover? Consider that
the value of action is either 1 or 2. We can access the other action by sub-
tracting 3 from that value: 3 – 1 = 2 and 3 – 2 = 1. (This is a good trick to
know; you’ll probably use it fairly often.)

w(ti+1,3-action(ti)) = w(ti,3-action(ti));

Figure 30.5 shows the results of this model. Clearly, it learns to prefer the
action that rewarded more often.

500 VI Modeling and Model Fitting

30.5 Exercises

1. Reza was given DC input. Adjust the code that creates figure 30.2 to
provide oscillatory input. Test several different frequencies. Given the
amount of time that is simulated, what is the slowest frequency that is
sensible to use?

2. Imagine that instead of neuronV(neuronV==volt_reset)=40; I
wrote neuronV(spiketimes)=40; Would that have produced a dif-
ferent plot? Why or why not? First answer the question, and then test
it in MATLAB.

3. Let’s pretend that the Rescorla-Wagner–style model (call it “Seymour”)
will need to learn which of two trees has more rubber (they’re rubber
trees and Seymour is some kind of weird animal or maybe an alien that
eats rubber). Both trees provide nourishing rubber, but neither provides
food all the time. Tree 1 has rubber 65% of the time, while tree 2 has
rubber 45% of the time. Modify the code from section 30.3 as little as
possible to get this simulation to work. Figure out a decent criteria for

Figure 30.5

Results of the reinforcement learning model. The top plot shows the weights (action

preferences) for the two actions over 100 trials, the middle plot shows the prediction

error, and the bottom plot shows the probability of selecting action “1,” which is

computed on the basis of the difference in the weights. Note that as the weights for

the two actions diverge, the probability increases.

w1 w2

Trials

10 20 30 40 50 60 70 80 90 100

p
(a

ct
1)

0

.5

1
–1

1

0

p
re

d
. e

rr
.

1

0

.5
W

ei
g

h
ts

30 Neural and Cognitive Simulations 501

learning (e.g., greater than 60% tree 1 choices over a sliding window of
the preceding 10 trials). How many trials does it take Seymour to learn
to select the better action? Randomness might make a single simula-
tion nonrepresentative, so you should average the results over many
simulations.

4. Continuing from the previous exercise, modify the learning rate
(parameter lrate) to determine the impact on Seymour’s behavior.
Notice that both extremes are bad: At low learning rates, Seymour
learns too slowly to have any practical use, whereas at high learning
rates, Seymour’s behavior is erratic and overly sensitive to every minor
outcome (like a teenager on whatever social-network website is popular
when you are reading this).

5. Also from exercise 3: Plot Seymour’s tree selection on each trial as a
function of time. It’s a choppy plot, because the choice is binary. Run
the simulation 100 times and average the choices across trials. Is the
plot smoother? Make the plot even smoother by applying a mean-
smoothing filter with a kernel of five trials. Do you get different results
if the filter is applied on each trial before averaging, or after the trials
have been averaged together?

6. The softmax function is sometimes endowed with a beta parameter,
sometimes called a “temperature” parameter: ew/β / Σew/β. In other words,
the weights are divided by a parameter β. What is the value of this
parameter in the code? (Hint: It’s hard-coded.) Modify the code to
include and soft-code this parameter. Then run the code again trying
different values. Reasonable values range from 1 to 2. Try ridiculous
values as well, just to see what happens.

7. The formulas for creating Izhikevich neurons are not very complicated.
Look them up online (e.g., in Izhikevich 2003) and try to translate the
formulas into MATLAB code without looking back at the code in this
chapter.

8. Using the Izhikevich code for a single neuron, test how the neuron
responds to oscillatory inputs of different amplitudes. Using two loops
(three including the loop over simulation time), stimulate the neuron
using sine waves that vary from 1 Hz to 60 Hz and amplitudes that vary
from 1 to 30. You’ll need to add an offset to the sine wave input to
avoid negative values. For each 1-second simulation, count the number
of action potentials and show the results in a 2D plot of stimulation
frequency by amplitude. Do the results look different when using dif-
ferent neuron parameters?

Data can often be grouped together into clusters. You might, for example,
try to use multivariate data to determine whether a heterogeneous group of
patients can be classified into smaller, more homogeneous groups. Or per-
haps you want to determine a statistical effect size by classifying the experi-
mental condition based on characteristics of the data. Classification is a
major topic in image processing and other computer science applications,
where it is also called machine learning. In the fMRI literature, researchers
often use classification techniques to map spatial patterns of variance across
voxels to conditions, a technique commonly referred to as multivariate (or
multivoxel) pattern analysis, or MVPA. In this chapter, you will be intro-
duced to three methods for classification: backpropagation learning,
k-means clustering, and support vector machines (SVMs).

31.1 Neural Networks with Backpropagation Learning

Backpropagation is an important algorithm in neural network modeling of
learning. It was popularized in the 1980s and has regained support recently
with the realization that backpropagation-based algorithms can be used to
train large neural networks to recognize features of images (now called
“deep learning” because of the myriad hidden layers). The purpose of back-
propagation learning is to form mappings between a set of input patterns
(e.g., neural spiking patterns, or pictures of animals) and a set of output
categories (e.g., experimental conditions, or cat vs. dog), where the set of
input patterns is much larger than the number of output categories. With
backpropagation learning, we know the ground truth and can tell the
model when it is correct and incorrect. This is how the model learns. There-
fore, this form of learning is called supervised learning. Unsupervised
learning would mean that the model doesn’t know what the correct answer

31 Classification and Clustering

504 VI Modeling and Model Fitting

is. Blind source separation methods (PCA, ICA, etc.) are examples of unsu-
pervised learning.

In this section, we will implement a simple three-layer network that can
learn a nonlinear input-output mapping. The basic structure is illustrated in
figure 31.1.

According to figure 31.1 (and many other more reputable sources), back-
propagation learning involves two steps: the forward sweep, in which the
inputs are processed and sent through the hidden layer to the output layer;
and the backward sweep, in which the outputs are compared against the
true result, and the error is sent backward to modify the weights.

Let’s start by setting up the model and the input patterns. We’ll have our
model solve the famous “exclusive or” (XOR) problem: Given two inputs
that can independently be on or off, respond TRUE when both are on or
off, and respond FALSE when only one is on (figure 31.1). It’s a simple but
nonlinear problem (nonlinear because there is no linear mapping between
the input pattern and the correct answer).

inputs = [1 0 1; 0 1 1; 1 1 1; 0 0 1];

output = [0; 0; 1; 1];

Figure 31.1

This figure illustrates the basic architecture of a three-layer model with backpropaga-

tion (left side) and a visual representation of the nonlinear “exclusive or” (XOR)

problem (right side). The two white dots are in the same category, and the two dark-

gray dots are in a different category. There is no single line that defines category

boundaries, which is why this problem is nonlinear.

1

1

0Input

Hidden

Output

Fo
rw

ar
d

 p
ro

p
.

B
ackp

ro
p

.

31 Classification and Clustering 505

The inputs are listed in a 4-by-3 matrix. The first two elements of each
row specify the patterns—think of 1 being “on” and 0 being “off.” Back-
propagation models often have an additional “bias” term in the input layer,
which can provide an offset or shift of the mapping between the input and
the hidden layer, analogous to how an intercept term in a linear model
allows the best-fit line to cross the y axis at a non-zero value. This is the
third column of all ones. The output vector will act as the teacher to give
the model feedback about its accuracy.

Next, we initialize some variables and other housekeeping items.

nInputsNodes = size(inputs,2);

nHiddenNodes = 3;

nOutputNodes = 1;

% random initial weights

weights_i2h = randn(nInputsNodes,nHiddenNodes);

weights_h2o = randn(nHiddenNodes,nOutputNodes);

l_rate = .2;

The learning rate parameter (variable l_rate) controls how fast the
weights are adjusted: too low and the model never learns; too high and the
model becomes unstable. It is similar to the learning rate of the Rescorla-
Wagner–like model you saw in the previous chapter. I found, through trial-
and-error testing, that a learning rate of 0.2 is pretty good for this model
and for this problem. More sophisticated backpropagation models adjust
their learning rate over time.

Now for the important stuff. We need two nested loops: one while-loop
in which the model keeps adjusting its weights until it learns or it runs out
of time, and one loop over the four input patterns within each iteration of
the while-loop. Remember from chapter 7 that while-loops are generally
preferred when you don’t know the number of iterations (in this case, we
stop when learning is finished), and for-loops are preferred when you do
know the number of iterations (in this case, four input patterns). As a pre-
caution to avoid getting stuck in an infinite loop, we program in a toggle
that breaks out of the while-loop if the model never learns the correct
input-output mapping. That’s why we have a variable called max_iter,
and exceeding this number of iterations will flip the toggle. Then we can
run a new simulation. If at first you don’t succeed, try again.

Now let’s check out what happens inside the for-loop. The forward
sweep of the model involves computing the model’s response to the input
pattern. This is computed in two mini-steps: multiply the input pattern by

506 VI Modeling and Model Fitting

the weights from the input layer to the hidden layer, and then multiply
that result by the weights from the input layer to the output layer.

In between, the response is passed through an activation function, which
converts any arbitrary number to a value between –1 and +1 (or sometimes
between 0 and 1). Here we use a sigmoid as the activation function. The
sigmoid function was introduced in exercise 14 of chapter 29.

hdLayerResp = inputs(ini,:) * weights_i2h;

hdLayerResp = 2./(1+exp(-hdLayerResp'*2))-1;

The variable ini is the looping index around the four input patterns.
The variable weights_h2o contains the weights from the hidden layer to
the output layer (the reference to the molecular structure of water is incon-
sequential). And weights_i2h contains the weights from the input layer
to the hidden layer. Those weights get adjusted later.

otLayerResp = hdLayerResp' * weights_h2o;

otLayerResp = 2./(1+exp(-otLayerResp'*2))-1;

This completes the forward sweep: the inputs are multiplied by one set
of weights and passed into the hidden layer, and then the hidden layer
activations are multiplied by another set of weights and passed into the
output layer. The next step is to compute the prediction error as the differ-
ence between the model’s output pattern (which in turn reflects how the
model transformed the input pattern) and the correct output for that
pattern.

predError(ini) = otLayerResp—output(ini);

The concept and implementation of this prediction error should remind
you of the prediction error used in the Rescorla-Wagner–style model in the
previous chapter. In fact, prediction errors have been the backbone of learn-
ing algorithms and theories across many domains of science (computer sci-
ence, ecology, economics, neuroscience, etc.) since at least the mid-twentieth
century.

Now for the second part of the backpropagation algorithm: sending the
error back from the output layer to the hidden layer to the input layer. As
the errors are backpropagated, the weights are adjusted. For each set of
weights, we compute a “delta”—the amount that the weights should be
changed—and then simply subtract that delta from the weights. This is
where the learning rate comes into play, just like with Rescorla-Wagner
models. Below is the code that uses the prediction error to adjust the
weights from the hidden layer to the output layer.

31 Classification and Clustering 507

delta = l_rate * predError(ini) * hdLayerResp;

weights_h2o = weights_h2o—delta;

The delta to adjust the weights from the input layer to the hidden layer
are slightly more involved, because the error at both the output layer and
the hidden layer are incorporated.

bp = weights_h2o .* (1-hdLayerResp.^2)*inputs(ini,:);

delta = l_rate * predError(ini) * bp;

weights_i2h = weights_i2h—delta';

And that’s about all there is to the model. Finally, we need to check
whether to go through another iteration or to break out of the loop.
Remember that we break out of the loop either when learning is successful
or when we’ve exceeded the maximum number of iterations. I set both of
these thresholds arbitrarily based on trial-and-error guessing.

iteration = iteration+1;

totalError(iteration) = sum(predError.^2);

if totalError(iteration)<.01 || iteration>max_iter

 toggle=false;

end

Run the model a bunch of times and watch the output. First of all, it’s
fun to watch, isn’t it? (If you don’t know what I’m talking about, run it on
your computer rather than just looking at figure 31.2.) Second, notice that
the model doesn’t always solve the problem. It depends on the random
initial weights. It can get stuck in one configuration that is sort-of good (it
gets two outputs correct) but not optimal (two outputs incorrect). This is
called a local minimum, which you also saw in the previous chapter.
Advanced backpropagation algorithms have methods to bump out of local
minima, but this is an opportunity to reiterate a point made in previous
chapters: Never blindly trust model fits (particularly from nonlinear mod-
els), even with fancy algorithms. Always carefully and critically inspect
the results.

Third, notice how the weights matrices—particularly those related to the
hidden layer—change each time you run the simulation. There are many
correct solutions to the same problem, and it is difficult or perhaps impos-
sible to interpret the exact pattern of weights. This is not a limitation when
the goal is to find solutions to nonlinear problems, but it can be an impor-
tant consideration when trying to apply these kinds of models to under-
stand how the brain works.

508 VI Modeling and Model Fitting

Fourth, notice that the plotting really slows down the computations. Try
moving all the plotting code from inside the loop to outside the loop. It will
plot only the final result, but the code will run much faster, from many
seconds to a few tens of milliseconds. Chapter 33 will show you a few tricks
to speed up the plotting, although in general, plotting inside a loop will
always slow things down.

31.2 K-means Clustering

The idea of k-means clustering is to separate multivariate data into k groups.
An example problem is shown in figure 31.3. Visually, it is clear that the
data are organized into three groups. Quantitatively, however, separating
the data into three groups is a nonlinear problem, because you cannot draw

Figure 31.2

Results of backpropagation learning. The stars (model output unit activations) are in

the circles (the correct answers), and the error goes to zero after around 40 iterations.

The bottom panels show the layer-to-layer weights. This is the final frame of a movie

that updates as the model learns to solve the task.

E
rr

o
r2

input -> hidden weights hidden -> output weights

1 2 3

1

2

3

1 2 3

o1 o2 o3 o4

0

1
A

ct
iv

at
io

n

0 100 200 300
Trials

0

1

2

31 Classification and Clustering 509

a single line on the plane that will separate these groups. K-means cluster-
ing is one solution to this separation problem. We can use MATLAB’s
kmeans function.

[gidx,cents,sumdist,distances] = kmeans(d,3);

The variable d is a 75-by-2 matrix that contains the x and y values of
each of 75 data points, and the input “3” instructs MATLAB to extract three
clusters. The number of clusters is a parameter and—no big surprise here—
it’s typically called the k parameter.

The first output variable gidx associates each member of d with a group
category (1, 2, or 3; more generally, integers from 1 to k). Let’s replot the
data using different colors for the different groups.

lineCol = 'rbk';

hold on

for i=1:3

 plot(d(gidx==i,1),d(gidx==i,2),[lineCol(i) 'o’])

end

Notice how I used the variable lineCol to assign a different color to
each group. The second output of the kmeans function (cents) identifies
the x and y coordinates of the center of each group.

plot(cents(:,1),cents(:,2),'ko’)

Figure 31.3

Clearly, there are three groups of dots here. K-means clustering is one algorithm to

label each dot as being part of one group.

510 VI Modeling and Model Fitting

The function kmeans uses distances to determine group membership.
Let’s plot lines from each member to its group center to get a better sense of
how group membership is defined.

for i=1:length(d)

 plot([d(i,1) cents(gidx(i),1)], ...

 [d(i,2) cents(gidx(i),2)],lineCol(gidx(i)))

end

If this plot command looks confusing, refer back to chapter 9 for instruc-
tion on how to draw lines in MATLAB. (Hint: Specify the start and end
coordinates for the x and for the y directions.)

So far, k-means clustering seems to work well. How do we know that
there should be three groups? In this case, it was visually obvious. But it’s
not always so clear, particularly for multidimensional data sets that might
be difficult to visualize.

Let’s see what happens when we extract four clusters. Change the k
parameter in the kmeans function to 4, and re-run the k-means clustering
and plotting. What happens? Well, first of all, you get an error in MATLAB.
Before reading the next paragraph, try to find and fix the error.

The source of the error was that the lineCol variable contained exactly
three letters and the code asked MATLAB to plot the color corresponding
to the fourth element. Adding a few extra letters into that variable solves
the problem. After fixing this bug, did you get a plot with groups that look
like figure 31.4? Possibly, or possibly not. If you re-run the code multiple
times, you’ll get different groupings. That’s not a good thing. The groups
should be stable each time you re-run the function (kmeans clustering
starts with random weights, which is why the results can differ each time).
If you run kmeans on the same data and get different results, it suggests
that you have the wrong number of groups. The exercises will explore this
in more detail.

How does k-means clustering work? There are different k-means cluster-
ing algorithms, but generally, data centroids are initially placed randomly
in the space of the data. Then, each data point is assigned to the closest
centroid, and the distances between all data points and all centroids is com-
puted. Centroid locations are then moved in a direction proportional to the
average distances of the data points. This process continues until some
stopping criteria, for example when the centroids take only insignificant
steps at each iteration.

K-means clustering works well in simple situations like what was shown
here. However, there are situations—such as noisy data, multivariate data,

31 Classification and Clustering 511

or unclear separations between clusters—when k-means clustering will pro-
vide disappointing results, for example when repeated calls to the function
produce qualitatively different clusters. Expectation-maximization and
support vector machines are among the more flexible clustering algorithms
(there are many more). This is not to say that you should avoid using
k-means; just be aware that k-means clustering might not produce optimal
results for complicated datasets.

31.3 Support Vector Machines

SVMs are a class of algorithms used for categorization in machine learning
and artificial intelligence. The idea of an SVM is to define boundary lines or
planes through a feature space. These boundaries are defined by distances
away from features grouped into different categories (the support vectors).
Linear SVM algorithms are often used in neuroscience, particularly in the
MVPA approach that is increasingly being applied in the fMRI and M/EEG
literatures. Shall we do an SVM analysis? I’m glad you agree. In this analy-
sis, we will use EEG data to predict whether a human volunteer subject
pressed a button with his right hand or with his left hand.

The general approach of SVMs is to determine model parameters based
on a training set, and then apply that model with those parameters to new
test data that the model has not seen. Ideally, the training and testing data

Figure 31.4

K-means clustering successfully grouped the data points into three different catego-

ries. This is a fairly easy problem, and k-means clustering is very likely to produce a

sensible and replicable result in situations like this.

Group 1

Group 2

Group 3

512 VI Modeling and Model Fitting

are taken from independent sources (e.g., different tasks), but they should
at least be taken from different trials within the same task. That said, our
first exploration of SVMs will be to train and test on the same data. This is
an important first-pass examination: If an algorithm cannot accurately clas-
sify data using in-sample testing and training, then it cannot be trusted to
perform out-of-sample testing. After establishing that in-sample accuracy is
high, out-of-sample analyses are performed, and those are the results that
can be interpreted and reported. In other words, in-sample testing is our
sanity check.

We will use MATLAB’s SVM algorithms, which are included in the statis-
tics toolbox. There exist freely available third-party SVM toolboxes; for
example, libsvm (Chang and Lin 2011; see www.csie.ntu.edu.tw/~cjlin/
libsvm/). The function names and usage procedures may differ slightly, but
the overall operation is the same.

The code is fairly straightforward, because MATLAB does most of the
hard work. We compute the SVM model using the function fitcsvm,
which takes a minimum of two inputs: the data and the category labels.
The data must be a matrix of observations (in our case, trials) by features
(sometimes called predictors; in our case, these are EEG channels), and the
category labels are in a vector, one per exemplar (trial). Our data come in
two 3D matrices, one for left-hand presses and one for right-hand presses.
Each matrix is channels by time by trials. To get a feel for the code, let’s start
by fitting one time point.

t = 200;

data = squeeze(cat(3,l_eeg(:,t,:),r_eeg(:,t,:)))';

trueLabels = [ones(size(l_eeg,3),1); ...

 2*ones(size(r_eeg,3),1)];

svmModel = fitcsvm(data,trueLabels);

The first line concatenates the EEG data from both matrices, all trials, at
the 200th time point. The first input into the cat function is “3” because
we want to concatenate on the third dimension, which is trials. The fitc-
svm function expects the data to be a 2D observations-by-features matrix,
so we need to squeeze out the singleton dimension and then transpose the
matrix. We have 64 channels and 200 trials; if the data were not transposed,
MATLAB would think we have 64 independent observations of 200 fea-
tures, when we actually have 200 independent observations of 64 features.
Matrix orientation is a major source of confusion and errors, and you
should always double-check that your matrices are in the order that a given

31 Classification and Clustering 513

function expects. Part of why this gets confusing is that different functions
have different preferences for data organization.

The MATLAB function fitcsvm can take several additional inputs that
allow you to specify additional constraints and algorithms of fitting. The
standard configuration works fairly well in this example, so we’ll keep it
simple. If you want to use an SVM for real data analysis, it’s a good idea to
spend some time optimizing the procedure beyond the default settings.

Now that the model has been computed, the next step is to feed in the
test data and determine whether the model can accurately predict the
category.

catlabel = predict(svmModel,data);

accu = mean(catlabel==trueLabels);

The MATLAB function predict takes the model and test data as inputs,
and it outputs the predicted category labels for each trial. Those predictions
will be 1 or 2, because that’s what I specified in the function fitcsvm. You
can also use strings or Booleans as labels.

For the model to be accurate, the labels should be “1” for the first 100
trials and “2” for the second 100 trials. Unlike kmeans clustering, with an
SVM we need to know which observations (trials) came from which cate-
gory. SVMs are another example of supervised learning.

These lines of code are embedded in a loop that tests each time point
separately and stores the accuracy in a vector. Figure 31.5 shows the result-
ing accuracy over time. There are two conditions, so 50% is chance level.
We hit 100% accuracy. That might initially seem really amazing, but keep
in mind that this is in-sample testing. Because the same data were used for
training and testing, there is a bias from overfitting. Still, this result tells us
three important things: (1) the conditions are definitely separable and cat-
egorizable; (2) the accuracy is just above chance level up to around 300
milliseconds (we would expect chance-level performance, and the slight
increase here is likely due to overfitting); and (3) peak condition differentia-
tion occurs at around 400–500 milliseconds, so we should expect a similar
time course in the real analysis. These findings help guide our expectations
about the real test with out-of-sample testing. For example, if we found
high prediction accuracy before 100 milliseconds and chance-level accu-
racy around 400–600 milliseconds, then something would be very strange.
Most likely a mistake somewhere.

Now that we have established that the conditions are categorizable in
the overfitting situation, we can do the analysis in a more appropriate way.
This means using different trials for training and for testing. There are

514 VI Modeling and Model Fitting

several ways to approach such cross-validations; we’ll use a leave-one-out
procedure, in which the model is trained on N – 1 trials and then tries to
predict the remaining trial. This is repeated for all trials, and we take the
overall accuracy to be the average accuracy from all tests (all trials).

The code needs some adjustments, one of which is an additional loop
over trials. This is a good opportunity to think about what code can go
inside versus outside a loop. In general, you should always think about
whether code can be moved outside a loop for speed and clarity. In each
iteration, we want to separate the trial-N data from the data from all other
trials. One solution is to make a copy of all the data and then delete the
data from one trial:

traindata = data;

traindata(triali,:) = [];

The variable traindata now has 199 trials instead of 200. We use the
same approach to remove the label from one trial in the trueLabels
variable.

templabels = trueLabels;

templabels(triali) = [];

Figure 31.5

Results of in-sample SVM classification, with the dashed line indicating chance-level

performance. Although these results should not be interpreted on their own (because

in-sample classification is biased by overfitting), they provide an important sanity

check that the code works and that the data are categorizable.

Time (ms)

–200 0 200 400 600

A
cc

u
ra

cy

.4

.5

.6

.7

.8

.9

1

31 Classification and Clustering 515

Testing the model now looks slightly different. We provide to the pre-
dict function the missing trial, and our accuracy vector is now a matrix in
which we store the accuracy separately for each time point and each trial.
In the plotting, we can then average over trials (each trial will have a value
of 0 or 1—false or true).

svmModel = fitcsvm(traindata,templabels);

catLabel = predict(svmModel,data(triali,:));

accu(ti,triali) = catLabel==trueLabels(triali);

The results of this test are shown in figure 31.6. Not surprisingly,
the performance is lower than the in-sample test, but it appears to be
above chance level from around 350–600 milliseconds (that’s a qualitative
interpretation—no statistics were performed). If you would like to learn
more about using MVPA in neuroscience data, you can start with the papers
by Norman et al. (2006) and King and Dehaene (2014).

31.4 Exercises

1. Run k-means clustering on the 2D data many times using k = 3. Does
the grouping change? How about which group is given which integer

Figure 31.6

Here you see the difference between in-sample testing and out-of-sample testing. In-

sample testing provides an important sanity check, but only out-of-sample testing

can be interpreted.

In-sample testing
Out-of-sample testing

Time (ms)

0 100 200 300 400 500 600 700–100

A
cc

u
ra

cy

.4

.5

.6

.7

.8

.9

1

516 VI Modeling and Model Fitting

label? What does this tell you about the stability of groups versus the
stability of group labels?

2. Run k-means clustering on the 2D data for 2–8 groups, 100 times per k.
Devise a method to determine whether the groupings are stable (e.g.,
you might compute the average distances to the nearest vs. all other
centroids). Plot this stability measure as a function of k. This exercise
shows that k-means clustering can be a powerful technique but can
also go awry when suboptimal parameters are used.

3. Can you replace these two lines with one line? You should do this by
extracting N – 1 trials from data, rather than deleting one trial in
traindata. Make sure your code works for any trial, not only the first
or last trial (that would be too easy).

traindata = data;

traindata(triali,:) = [];

4. One interesting use of an SVM is to train the model on data from one
time point, and then use that model to predict data from other time
points. This could be done as a full time-by-time matrix, but that can
be time-consuming. Here, train the model using the average data from
400 to 550 milliseconds, and then apply that model to predict each
other time point. Plot the results and compare against the same-time-
point training. Try using different time windows as well.

5. Another approach often taken in an SVM with many trials is to average
blocks of trials together. That speeds up the analysis and also increases
signal-to-noise characteristics. Try this by adjusting the code to average
100 trials per condition into 10 trial-averages per condition. The N – 1
cross-validation will now be done by training on 9 trial-averages and
testing the remaining trial-average. What is the best way to average tri-
als together—by temporal order or randomly?

6. In the backpropagation model, you saw that producing a plot on each
iteration was very time-consuming. One solution is to plot only every
5th or 10th step. How could you implement this?

7. When XOR is represented as zeros and ones, it can be solved without a
fancy nonlinear backpropagation model, using only one line of code.
Figure out how to reproduce the correct output based on the first two
columns of the input. Of course, this happens to work for this particu-
lar instantiation of XOR; you shouldn’t think that all problems solv-
able with backpropagation can be solved with a single line of code.

8. Another option for an activation function is the hyperbolic tangent
(MATLAB function tanh). Your mission here is to use a sigmoid

31 Classification and Clustering 517

function (see the formulation in exercise 14 of chapter 29) to obtain
the exact results as the following code. You’ll need to figure out how to
set the sigmoid parameters; depending on your level of math back-
ground, you can try this either analytically or empirically.

x = -3:.1:3;

af = tanh(x);

9. In the backpropagation model, I guess you played around a bit with the
learning rate. Let’s make this more quantitative. Put the model into a
function that takes a learning rate as input and outputs whether the
model successfully learned or stopped because it exceeded its maxi-
mum iteration limit (you might want to turn off plotting). Then run
the model 50 times using 30 different learning rate parameters between
0 and 1 (thus, 1,500 simulations). Plot average successes as a function
of learning rate.

10. In the backpropagation model, the value for max_iter (300) was
selected arbitrarily. Is it possible that the model would have learned the
solution if it had more iterations? Run an experiment in which you
determine the number of successful learning solutions as a function of
the maximum number of iterations. Run 100 simulations (don’t forget
to reinitialize the weights for each simulation!) for each of many differ-
ent iterations. You can select the range and number of iterations to
use. Make a plot of the proportion of successes (you’ll need to define
“success” in this model) as a function of the number of iterations.

VII User Interfaces and Movies

A graphical user interface (GUI; pronounced “gooey”) is a useful tool
for interacting with and viewing data. GUIs are particularly useful for
visualizing multidimensional data sets. Thanks to MATLAB’s GUI-creating
utility (cleverly called GUIDE), GUIs are fairly simple to design. The con-
struction and use of simple GUIs is underutilized in neuroscience data
analysis.

32.1 Basic GUIs

Let’s start with a few simple GUIs that involve very little programming.
The first will be a dialog box that informs the user of some event
(figure 32.1).

h=msgbox('Press if you like chocolate','ChocTitle');

Obviously, you should press the OK button in the message box. These
kinds of dialog boxes are useful for providing important information; for
example, if an existing file is about to be overwritten or if there is an error
or a warning. However, MATLAB will not pause when a message box
opens—when called in a script or function, the message box will open, and

32 Graphical User Interfaces

Figure 32.1

Press OK!

522 VII User Interfaces and Movies

then MATLAB will continue to the next line of code (see exercise 1). The
variable h is a handle that allows you to control visual and functional fea-
tures of the message box. It works the same way as handles for axes and
figures, as you learned in chapter 9.

Other simple interfaces allow the user to provide input. This is often use-
ful when you want to specify a parameter or input a file name, but it is not
a scalable method for providing large amounts of information.

s=inputdlg('How much do you like chocolate (0–9)?');

The output of this function will be a cell that contains the text the user
entered. The text is given as a string, so you might need to convert it
to a number. Another function will allow you to select a file from the
computer.

[fname,fdir] = uigetfile('*.txt','Pick a file');

The '*.txt' is the search filter (MATLAB always additionally provides
an option for all files), and the 'Pick a file' is printed in the top bar of
the dialog box. Note that this function does not import any data into MAT-
LAB, nor does it open any files; it simply provides string outputs of the file
that was selected and the full path to that file.

There are several other small user interfaces similar to these three. And
they are all just as easy to use. You can type help msgbox to see a list of
other similar functions.

32.2 Getting to Know GUIDE

Cute little interfaces like msgbox can be useful. But real MATLAB program-
mers use GUIDE to make their own GUIs. And that is what you will do—
because this is chapter 32 and you are now a real MATLAB programmer.

GUIDE is the MATLAB GUI that helps you build and customize your
own GUIs. You use GUIDE to create and adjust the layout of your GUI, and
GUIDE then creates a figure and an m-file for you to flesh out the GUI. The
GUI we will create here will generate a set of correlated data based on some
user-specified parameters, plot the data and a model fit to the data, com-
pute a principal components analysis on the data and plot the results in a
separate axis, and create an output file that contains the data. The purpose
of this GUI (other than teaching you how to create GUIs) is to help you
gain a more intuitive feel for how PCA works.

Type guide in the MATLAB command, and then create a new blank
GUI. You’ll see a window like figure 32.2. In our GUI we will need two axes

32 Graphical User Interfaces 523

for viewing data, an input region for specifying five parameters (the num-
ber of data pairs, the correlation between them, x-axis and y-axis offsets,
and an option to remove the mean of the signal), and an output region for
specifying options for saving data. A nearly completed GUI is available in
the online code, but I recommend creating your own GUI from scratch as a
learning experience.

You can see in figure 32.3 how I laid out the GUI. Set up yours to be
similar, including the names of the components. When creating this lay-
out, I used the following buttons on the left side of GUIDE: Axes, Panel,
Edit Text, Static Text, Push Button. Note that you can use the solid panel
to group similar objects. You can also set the background color to purple
if you want.

After creating and placing an object inside the GUI, double-click on it to
see a list of properties of that object. Some properties are purely aesthetic,
like font size and color, while others are important for programming. The
“Title” or “String” properties define the text that you see in the GUI. You
may need to click outside the just-edited field for MATLAB to recognize and
update the changes.

Don’t forget to save! I called my GUI “PCA_GUI.” The first time you
save, you’ll notice that MATLAB automatically generates an m-file with the
same name and opens it in the Editor window. This file will contain all of

Figure 32.2

This is what you see when you start GUIDE (by typing guide) and create a new GUI.

524 VII User Interfaces and Movies

the actual code you need to breathe life into the GUI. We’ll get to this part
soon. The GUI window is called PCA_GUI.fig.

One very important object property that you should always customize is
called “Tag.” These are the names of handles that identify objects and their
properties and are important for programming. You should give these tags
meaningful names, particularly if you have multiple similar objects. For
example, “origdata_axis” and “PC_axis” are much more meaningful than
“axis1” and “axis2.” Similarly, input boxes should be called “dataCorr” or
something similar, rather than, for example, “input3.”

When your new GUI looks something like figure 32.3, move on to the
next section.

32.3 Writing Code in GUI Functions

GUIDE produces a skeleton; it’s up to you to add muscle and skin. That’s
what we’ll do in this section. First, take a minute to look through the m-file

Figure 32.3

After adding axes, buttons, dialog boxes, and other features, your GUI skeleton might

look something like this.

32 Graphical User Interfaces 525

that GUIDE created when you saved the GUI. You will notice a repeating
structure: Each object that you created in the GUI has two associated func-
tions, one called <objectname>_Callback and one called <object-
name>_CreateFcn (recall from chapter 6 that multiple functions can be
embedded into a single file). They contain a few lines of comments, and the
<objectname>_CreateFcn may contain a few lines of code that sets the
background color if you are using a Windows computer and if the GUI and
default figure color is set to white. Those lines are purely decoration, and
you can delete them if they bother you.

The _CreateFcn function is called when you first open the GUI,
and the _Callback function is called when you take action on the corre-
sponding object, such as clicking or entering data. Let’s see how this works.
Find the tag name associated with the button at the top of the GUI that is
called “Run it with new parameters!” in figure 32.3. I named the tag
“update_data.” Now find the function called update_data_Callback (or
whatever_Callback). Inside that function—that is, anywhere before the
next function is defined—type msgbox('You pressed the button!').
Save the m-file.

Open the GUI. You can do this either by typing PCA_GUI in the MATLAB
command or by pressing the green right-arrow button in GUIDE. You
should see the figure open. Now press the “Run it!” button, and the mes-
sage box should appear. You can keep pressing the button, and more and
more message boxes will pop up. Now you see how the GUI and the script
work together—when the user interacts with the GUI, MATLAB finds the
corresponding function (<tagname>_Callback) in the m-file and runs all
the code in that function. This is the first important concept of MATLAB
GUI programming.

The second important concept in GUI programming is that each object
in the GUI has a set of states that can be queried and changed using the
handles to those objects. You can see from the m-file that MATLAB defines
each function with three input variables, of which handles is the most
important, and probably the only input variable you will use in practice.
This variable is a structure that contains handles to all objects in the GUI.
For example, handles.nDataPairs is the handle for the input box with
the tag name “nDataPairs.” The input variable hObject is the handle to the
current object and is therefore redundant because it is the same thing as
one of the fields in the handles structure. I recommend against using hOb-
ject because of the potential for confusion—this same variable name
points to different objects depending on where it is in the file, whereas the
variable handles is exactly the same in every subfunction. Finally, the

526 VII User Interfaces and Movies

Box 32.1

Name: Vladimir Litvak

Position: Senior Lecturer

Affiliation: Wellcome Trust Centre for Neuroimaging, UCL Institute of

Neurology, London, England

Photo credit: Ashwani Jha

When did you start programming in MATLAB, and how long did it take

you to become a “good” programmer (whatever you think “good” means)?

I studied computer science as an undergraduate and had to learn MATLAB

during my second year as it was used for several courses I took at the time. As

I was intensively doing all kinds of programming at the time, I had to get good

quite quickly, probably within weeks, but on the other hand MATLAB is really

vast, and even now after 20 years of continually using it, I think I am only

familiar with a tiny fraction of all the functions.

32 Graphical User Interfaces 527

What do you think are the main advantages and disadvantages of

MATLAB?

The main advantage is that there is a lot of functionality already implemented

in the built-in functions, MathWorks toolboxes, and also other toolboxes

available online. So only rarely does one need to implement something low-

level, and then it’s mostly about combining existing building blocks in the

right way, which for me is appealing as I don’t like low-level stuff. Also the fact

that most of the code is not compiled, so when an error happens it’s easy to

get to the bottom of it quickly. The main disadvantage is that MATLAB is not

free, which for some people creates difficulties (e.g., they don’t have a particu-

lar toolbox or don’t have enough licenses to run a distributed computation).

Also, we are all at the mercy of MathWorks, which is now at the point where

they make changes in the software just for the sake of making changes and

not necessarily improving things.

Do you think MATLAB will be the main program/language in your field

in the future?

Yes, if only because years have already been spent on creating the code

base that we have now, and no one in the world has the manpower to

re-implement it all on a different platform. It might be that other platforms

(e.g., Python) will gain popularity in parallel, which I see as a good thing.

How important are programming skills for scientists?

Basic programming skills are probably important for just about everybody in

the modern world. Even people who don’t program would benefit from being

able to better understand the logic of people who created the software they are

using. As a child I was always interested in biology, but when I took an intern-

ship in a neuroscience lab after high school, the colleagues I worked with told

me in very strong terms that with a biology background alone I won’t get very

far and convinced me to also take computer science as a second major.

Although this transition was not easy, I am very grateful for this advice that

really changed my life and career and made it possible for me to be involved

in research that I find very exciting also as a biologist.

Any advice for people who are starting to learn MATLAB?

Try to find a piece of code written by someone else that is similar to what you

need and modify it using your basic knowledge. Don’t be afraid of the red

error messages. You won’t break anything by making mistakes, and with time

you’ll get better in figuring out what these messages mean as they can be quite

cryptic.

528 VII User Interfaces and Movies

variable eventdata mostly contains information that is available through
the handles variable, and also changes its values depending on where in
the file it is.

The best way to edit these functions is to step into them. Put a little red
ball to the left of the line that contains the msgbox (see figure 6.1), and
click the “Run it!” button on the GUI. Now you are inside the update_
data_Callback function (see section 6.10 of chapter 6 if you need a
reminder about stepping into functions). You can access information about
all of the GUI objects using the get function, the same way you would
access information about an axis or figure. For example:

get(handles.nDataPairs)

get(handles.nDataPairs,'String')

The first command will return all of the properties of the nDataPairs
object. The data entered into the field is called the 'String' property of
the object (for other types of objects, the user-specified piece might be
called 'Value'). You can also use the set command here. Try, for example,
setting the property backgroundColor to have a value of [1 0 1].

When plotting inside a GUI, MATLAB has no idea which axis to use for
plotting (well, that’s not entirely true; MATLAB will always plot to the
active axis, but it is really unlikely that the active axis happens to be the one
in which you want to plot). You should always call a specific axis before any
plotting commands. For example:

cla(handles.orig_axis)

plot(handles.orig_axis,data)

Save often! It takes only a few seconds to save, and these few seconds can
save you minutes to hours of time spent recoding. GUIs can crash for vari-
ous reasons, and they will crash more often than MATLAB will. For exam-
ple, if you delete an object and a stale link to that object is called, the GUI
might crash. If the crash is particularly problematic, the .fig file itself might
become corrupted. Keep backup copies just in case or keep your files on a
system that preserves backups and old versions, like github or Dropbox.
One way to minimize the risk of crashes and corrupted GUIs is to avoid
changing low-level parameters like object names. And if you do change
object names or make other modifications, do these through GUIDE instead
of through modifying the associated m-file.

32 Graphical User Interfaces 529

32.4 Exercises

1. The msgbox does not pause MATLAB to wait for input. Read the help
file for this function to learn how to make MATLAB pause until the OK
button is pressed. Implement this in the first example of this chapter so
people are forced to profess their fondness for chocolate before con-
tinuing to use MATLAB.

2. Although my GUI is really awesome, it needs some help. Will you help
make the GUI better?

a. For one thing, the text fields on the top are misaligned. Visual clar-
ity is important in GUI design. Open the GUI in guide and adjust
these objects. Look for the Align button on the top to align and
distribute different objects. You might also consider changing the
colors of different objects.

b. The Save to file and Send to MATLAB workspace buttons in my GUI
do nothing. Write code in the GUI m-file to save the variables
data and pc (depending on what was checked). You will need
to find a way to access these variables from inside the save
subfunction.

c. Start the GUI, set the number of data pairs to zero, and then
run the analysis. It crashes. Implement a method to prevent this
from happening. There should be a minimum of 10 pairs of data
points.

d. Draw principal component vectors in the axis like in figure 17.2.

3. Write code in your own GUI so that it reproduces the functionality of
my GUI. You will need to write code to generate random data, compute
a PCA, perform linear least-squares fitting, and plot the results. You
should run my GUI to confirm that your version reproduces the core
functionality, but I’m trusting you not to copy my code.

4. A useful tool for inputting data or points on an axis is a function called
ginput. Read the help documents for this function to open a blank
figure, collect 10 points of user input, and store those input points in
two variables for the x and y coordinates. Update the plot after each
click so the dots appear and remain on the graph.

5. Use ginput to generate 30 points of data that are grouped into two
regions of space, and then run k-means clustering on those data. Put
the code into a function (perhaps called “test_kmeans”). The function
should take one input—the number of data points to generate using

530 VII User Interfaces and Movies

ginput—and it should produce a plot like figure 31.4. This will allow
you to test k-means clustering using an easy case (clearly separate
points), a “medium” case (sort-of separable points but some points in
the middle), and a hard case (inseparable clusters, or maybe just one
cluster).

6. Design a GUI that will import an MRI file and display three views, like
figure 25.1. Incorporate ginput into the GUI so that when a user clicks
on an MRI slice, the other two views update according to the xyz coor-
dinates that were clicked.

Everyone likes movies. They are fun to watch and can also be powerful
methods for illustrating time-varying data, multidimensional data, or com-
plicated methods. In this chapter, you will learn the basics of creating
animations in MATLAB. Much of this involves learning different ways to
update data inside axes. In this sense, this chapter is an extension of chap-
ter 9. If you enjoy programming simple animations and would like to com-
bine that with learning about the mathematical descriptions of physical
laws that govern motion and other interactions, you might consider the
book Nature of Code (Shiffman 2012; see http://natureofcode.com).

33.1 Waving Lines

To make a movie, we need to think like a director. Before filming, we need
the cast of characters, we need the set, and we need the story line. (A big
explosion somewhere would help, but unfortunately, we’re working on a
tight budget.)

One of the difficult concepts of time-frequency decomposition is the
link between the complex representation of the analytic signal in a polar
plane and the power and phase values that are extracted from that analytic
signal. Let’s see if we can make a movie that will help clarify this link.

The characters in our movie are an analytic signal (variable as), a power
time series, and the projection of the analytic signal onto the real axis (the
band-pass filtered signal). The set will be a figure with three panels: top
panel for the polar representation, middle panel for the power time series,
and bottom panel for the band-pass filtered result. And the story line is:
analytic signal meets Pythagorean theorem, analytic signal then calls out
longingly to the real axis, things change over time, and they all live happily
ever after. (Okay, maybe not an Academy Award winner, but don’t tell me
you haven’t seen movies with worse plots.)

33 Movies

532 VII User Interfaces and Movies

You already know much of the important parts of the code (time-
frequency analysis, plot handles, for-loops); we just need to put them
together in a new way. The characters are simulated from cosine and sine
waves with randomly varying amplitudes (see the online MATLAB code).

Let’s set up the scenery.

subplot(311)

as_h = plot(as,'k','linew',2);

set(gca,'xlim',[min(real(as)) max(real(as))],...

 'ylim',[min(imag(as)) max(imag(as))])

subplot(312)

bp_h = plot(timevec,real(as),'k','linew',2);

set(gca,'xlim',timevec([1 end]),...

 'ylim',[min(real(as)) max(real(as))])

subplot(313)

pw_h = plot(timevec,abs(as).^2,'k','linew',2);

set(gca,'xlim',timevec([1 end]),...

 'ylim',[min(abs(as)) max(abs(as))])

The most important thing to notice here is the plot handles; one for the
complex analytic signal (variable as_h), one for the band-pass filtered sig-
nal (projection onto the real axis; variable bp_h), and one for the power
(squared distance from the analytic signal to the origin; variable pw_h).
Recall that when you plot a complex vector, MATLAB will plot it as the real
part by the imaginary part (see also chapter 19).

Now it’s time for the movie. We want to loop over time points and
update the plots at each time point. You can see below a skipping variable
(variable vidspeed) that controls the update rate. If your computer is
graphics card challenged or if you like movies involving high-speed car
chases, you can set the skipping variable higher to speed up the animation
by plotting fewer frames.

vidspeed = 2;

for ti=1:vidspeed:length(timevec)

Inside the for-loop we want to update the axes. Here is the important
part, and the difference between making animations and normal plotting:
We do not replot the data; instead, we use the set function to update the
data inside the axis. This is much faster and looks much nicer than when
drawing a new figure. This is why having handles is necessary.

set(bp_h,'xdata',timevec(max(1,ti-timelag):ti))

set(bp_h,'YData',abs(as(max(1,ti-timelag):ti)).^2)

33 Movies 533

This is the same set command that you use to change the x-axis ticks,
the color axis limits, and so on. The only difference is that we’re setting the
data, rather than an aesthetic property of the axis. Because these two lines
both call the same handle, they could have been combined into one line.
The properties are not case-sensitive, as you can see from calling xdata but
YData. Notice that we’re not plotting the entire time series from the begin-
ning; we’re trailing the time series by timelag points. This is not necessary
but (1) shows you how to plot a limited amount of data and (2) facilitates
interpretation when comparing with the complex data shown in the polar
plot. Question: What is the purpose of max(1,ti-timelag), and what
would happen without the max function?

The power time series data are updated in the same way.

set(pw_h,'XData',timevec(max(1,ti-timelag):ti),...

 'YData',abs(as(max(1,ti-timelag):ti)).^2)

So far, the band-pass filtered signal and the power time series plots were
updated in the same way: The x axis is the time vector, and the y axis is the
data vector. The complex vector needs to be updated a bit differently. Before
reading the solution in the next paragraph, inspect figure 33.1 and try to
figure out how the polar plot should be updated. (Hint: Think about how
MATLAB plots complex numbers in the complex number plane.)

The solution is to update the XData property using the real part of
the data and the YData property using the imaginary part of the data.
Time is not explicitly incorporated here; time is spinning around the polar
axis. If this were a 3D plot, we could also update time using the ZData
property.

set(as_h,'XData',real(as(max(1,ti-timelag):ti)),...

 'YData',imag(as(max(1,ti-timelag):ti)))

Now the code is set. Run the loop. How does the movie look? I guess you
are pretty disappointed, because nothing happened. Actually, MATLAB was
dutifully updating the plots in the background, but the figure was not
updated until after the loop ended. You need to instruct MATLAB to refresh
the figure, and—depending on your computer speed and graphics card—
you might want to slow things down a bit so you can see the refreshes. Use
the function drawnow to force MATLAB to update the figure or use the
function pause to have MATLAB wait 100 milliseconds between each
iteration of the loop.

Now you should see the plot updating. If you were a bit confused
when going through chapter 19, hopefully this movie helps clarify the

534 VII User Interfaces and Movies

relationship between the analytic signal and the power and filtered time
series. And if you are totally confused about what this plot means, try
reading chapter 19.

By the way, one of the advantages of setting up the axis and then updat-
ing only the handle rather than redrawing the axis is that other axis param-
eters need to be set only once, before the loop starts. That is, without setting
up plot handles the way we did it here, you would need to re-run axis
off, axis square, set(...) and so on at each iteration inside the loop.
This makes the code slow and messy, which in turn increases the risk of
careless mistakes or forgotten hard-coded parameters.

33.2 Moving Gabor Patches

Let’s extend the line movie to an image movie. The concept is the same—
define new parameters on each frame of the movie and use handles to
update the data in the images. There will be three learning objectives here:
learning how to make a 2D Gabor patch, extending the line handles to

Figure 33.1

One frame of a movie that shows a complex analytic signal (top panel), the band-

pass filtered signal (the projection of the analytic signal onto the real axis; middle

panel), and the power time series (the distance on the complex plane from the origin;

bottom panel).

Time (s)
0 1 2 3 4 5

Po
w

er
A

m
p

lit
u

d
e

20

60

100

10

0

–10

0 10–10

0

–10

10

Real

Im
ag

in
ar

y

33 Movies 535

image handles, and learning how to use MATLAB’s movie and frame func-
tions to create a movie file that is independent of MATLAB. Let’s first learn
about a Gabor patch.

A Gabor patch (also sometimes called a 2D Gabor filter because it is used
to decompose images into different spatial frequencies) is very similar to a
Morlet wavelet, but is 2D. To create a Gabor patch, we need a 2D Gaussian
and a 2D sine wave, and then we simply point-wise multiply them together.
In the 1D case, we used a vector of points to define the Gaussian and the
sine wave. Now we’re in 2D, so we need a grid of points, which we can
obtain using the ndgrid function that was introduced in chapter 13.

lims = [-31 31];

[x,y] = ndgrid(lims(1):lims(2),lims(1):lims(2));

The variable lims (limits) defines the size of the image in pixels. With-
out looking at the size of variables x and y, what do you think will be the
size of our Gabor patch? After guessing, confirm your hypothesis by typing
whos x y. To remind yourself of what x and y look like, type imagesc(x)
and imagesc(y). Next, we create the Gaussian, the sine wave, and their
point-wise multiplication.

width = 10;

gaus2d = exp(-(x.^2 + y.^2) / (2*width^2));

sine2d = sin(2*pi*.05*x);

gabor2d = sine2d .* gaus2d;

The 2D Gaussian formula should look similar to the 1D Gaussian for-
mula, except that we have two dimensions. The three functions are shown
in figure 33.2.

That’s the basic Gabor patch. There are several parameters that define
how the Gabor patch looks. The Gaussian part has one parameter: the
width. Recalling the discussion of the width of the Gaussian in chapter 12
and looking at figure 33.2, what do you think will happen to the Gabor
patch when the width of the Gaussian is increased or decreased? After
you’ve generated your hypothesis, test it by changing the width parameter
and re-creating the plot. Was your intuition correct?

The 2D sine wave has several parameters.

• The frequency of the sine wave, which in the code above is hard-coded to
0.05. This is an arbitrary number, but it could be converted to degrees visual
angle (dva) if you would measure the size of the Gabor patch on the moni-
tor and the distance between the monitor and your eye. Try changing this

536 VII User Interfaces and Movies

parameter. With the size of the image we’ve chosen (variable lims), what
are reasonable lower and upper frequency bounds?
• The phase of the sine wave, which in the code above is implicitly set to 0.
What is the range of parameters that you should test (i.e., what is the small-
est and largest value that makes sense to use)? Try some different values. If
you don’t know how to set the phase in the code above, consult chapter 11,
where you learned about 1D sine waves.
• The amplitude of the sine wave, which is set to 1. We won’t change the
amplitude here. Technically, the Gaussian also has an amplitude parameter
implicitly set to 1. Let’s also not worry about that one.
• The rotation of the sine wave, which in the code above is also implicitly set
to 0. Imagine that the 2D sine wave were on the face of an analog clock.
As time ticks on and your life slips by, the 2D sine wave spins around its
center. The trick to rotating a 2D sine wave is to rotate the x and y grid
points. This we do by scaling the x and y grid points by the standard 2D
rotation matrix. If the angle of rotation in radians is variable th, the code
would look like this:

Figure 33.2

A Gaussian and a sine meet to form a Gabor patch.

Gaussian

Gabor

Sine

33 Movies 537

xp = x*cos(th) + y*sin(th);

yp = y*cos(th) - x*sin(th);

I called the new variables xp and yp because the typical math terms
would be x′ and y′ (x-prime and y-prime; I’ll let you guess what to call the
rotated variable optimus). To get a feel for the effect of this rotation, make
an image of x and xp.

I included yp here just for your personal edification. You can see in
the code above that we define the sine wave only from the grid points x.
Try to create a new Gabor patch by defining the variable th in radians
between 0 and 2π. You need to change x to xp when creating the sine
wave; do you need to change x to xp in the Gaussian? Why or why not?
(Hint: The answer is no, but it’s up to you to come up with the reason for
that answer.)

Gabor patches (even without animations) are often used in neurosci-
ence, particularly as stimuli in visual psychophysics experiments. For
example, many vision experiments involve having research participants
discriminate the rotation or the spatial frequency of various Gabor patches.
Gabor patches are also used as filters when modeling how neurons in the
early visual cortex respond to different spatial frequencies in retinal inputs.
Plus Gabors look really cool. You can print them out on T-shirts to impress
people at neuroscience conferences.

Anyway, let’s breathe some life into our Gabor patch. We begin, as
always, by setting the scenery. Notice that we are extending the concept
of defining and updating plot handles to defining and updating image
handles.

subplot(221)

gaus_h = imagesc(randn(size(x)));

subplot(222)

sine_h = imagesc(randn(size(x)));

subplot(212)

gabr_h = imagesc(randn(size(x)));

Notice that I set all of these images to be random noise. Does this mean
our movie will display random noise? Maybe just in the first frame? Prob-
ably you are guessing that the answer is no. Inside the loop over movie
frames, we will update the data using the image handles created above. We
just need to initialize the axes and handles; it doesn’t matter what we put
in those images during this initialization.

What shall we animate in the movie? There are three key parameters of
the Gabor patch; let’s animate all of them. We will have 20 frames, and we

538 VII User Interfaces and Movies

first need to specify the ranges of parameters to change at each frame (the
phase of the Gabor, the rotation of the sine wave, and the width of the
Gaussian).

nFrames = 20;

phases = linspace(0,pi,nFrames);

rotates = linspace(0,pi/2,nFrames);

widths = [linspace(5,12,nFrames/2) ...

 linspace(12,5,nFrames/2)];

Notice how I set the widths. Figure 33.3 shows one frame of this movie.
But before watching the entire movie on your computer, try to guess what
the Gabor patch will do over time based on inspecting the code.

Now we’re ready to loop over frames and update the Gabor patch and
the image data. In the previous example with the line movie, we modified
the properties XData and YData. With image handles, the main field that
we want to update is called CData, which refers to the color data. The

Figure 33.3

One frame of the Gabor patch movie.

Gaussian Sine

Gabor

33 Movies 539

following code takes place inside the loop (variable framei is the looping
index).

width = widths(framei);

rotphase = rotates(framei);

xp = x*cos(rotphase) + y*sin(rotphase);

yp = y*cos(rotphase) - x*sin(rotphase);

Notice we redefine xp and yp from the original x and y. This is a good
example of a situation in which overwriting original variables can cause
confusion or at least the need for redundant code. More generally, we want
to have as little code inside the loop as possible. Especially code that can be
time-consuming or that involves command statements should, whenever
possible, be precomputed outside the loop. Perhaps it is not so critical in
this toy example, but if you are programming a psychophysics experiment
in which precise hardware timing is crucial, delays or uncertainties of even
a few milliseconds might be unacceptable. Next, we recompute the three
functions (sine wave, Gaussian, Gabor) and update the axis data.

% define and display the Gaussian

gaus2d = exp(-(xp.^2 + yp.^2) / (2*width^2));

set(gaus_h,'CData',gaus2d);

% define and display the sine wave

sine2d = sin(2*pi*.05*xp + phases(framei));

set(sine_h,'CData',sine2d);

% define and display the gabor patch

set(gabr_h,'CData',sine2d .* gaus2d);

Don’t forget to include either drawnow or pause before the end of the
loop. Now we have a movie in MATLAB. Before moving forward, try chang-
ing the sine and Gaussian parameters, the number of frames, the movie
update speed, and other features. The purpose of this movie is to help you
gain an intuitive feel for Gabor patches and how they are parameterized,
and intuition is built on understanding effects of parameter selections.

What if you want to send this movie to Hollywood for a screening? Or
show it to your grandmother? Not everyone has the time to master 33
chapters of MATLAB programming; it would be easier to export the movie
to a file that anyone can view. For this, we use the MATLAB writeVideo
function. (Users of older MATLAB versions might be familiar with the func-
tion-combo getframe and movie, but these are being phased out for the
new-and-improved writeVideo.)

540 VII User Interfaces and Movies

Using writeVideo is very easy and involves three steps: initialize the
video object and file name, capture each frame of the movie while inside
the loop, and write the object to disk as an .avi file. Step 1 happens before
the loop and involves two lines of code, one to create a video object, and a
second to open that object.

vidObj = VideoWriter('gaborFilm.avi');

open(vidObj);

Then, inside the loop, the following line of code will grab the entire
figure and place it as a frame inside the video object.

writeVideo(vidObj,getframe(gcf));

The gcf input to the getframe function can be replaced with a handle
to a specified figure or axis. For example, if you were to replace gcf with
gca, what would be shown in the movie, and would it depend on where in
the loop that line appears? Guess the answer, then confirm in MATLAB.

Last but certainly not least: After the loop is finished, you need to close
the object. Without running the next line, MATLAB will not complete the
file, and your grandmother will be disappointed. You don’t want to disap-
point Gram-Gram.

close(vidObj);

Now you can open the movie outside of MATLAB using your video
player of choice, such as Windows Media Player or VLC.

33.3 Spinning Heads

Let’s make one more movie that incorporates some more advanced plotting
tools. I had a dream once about two disembodied heads that were spinning
around in an empty space, with fluctuating colors that illustrated changes
in frequency-band-specific power in the theta and alpha bands (6 Hz and
10 Hz). Let’s see if we can reconstruct this dream. The first step of making
this movie is to create an electrode-by-time-by-frequencies matrix using
wavelet convolution, as you learned in chapter 19. The online code does
most of the work but leaves out a few key lines so you can test your
knowledge.

Time acts funny in dreams, so let’s have our movie play forward and
then backward. The movie will span 100 frames between 0 and 800 milli-
seconds and then play those same 100 frames backward. Unlike with the
previous movies, here we are making images from existing data. We’ll have

33 Movies 541

to figure out which time points in the data best coincide with our requested
time points, which is exactly the kind of problem for which dsearchn or
min-abs is designed.

nFrames = 100;

tbnd = [0 800]; % time boundaries

tidx = dsearchn(EEG.times’, ...

 linspace(tbnd(1),tbnd(2),nFrames)');

To make time go forward and then backward, we just need to concate-
nate a backward version of the time vector tidx after the forward version.

tidx = [tidx(1:end-1); tidx(end:-1:1)]; % use this

tidx = [tidx; tidx(end:-1:1)]; % don’t use this one

Why is the first line of code better than the second? What happens in
the middle of the second vector?

Now we have time going forward and backward; next we need to figure
out how to make the heads spin. You’ll see below that we are going to make
3D renderings; we can make them spin by changing the azimuth value of
the axes on each frame of the movie. In other words, the heads themselves
won’t rotate; our viewpoint will rotate.

azs = round(linspace(0,360,length(tidx)))+90;

I added 90° here to make the heads initially facing each other. You can
try changing that starting value offset. Now we’re ready to set up the plot.
We want two axes, one for each rotating head. Usually, we use the function
subplot to access parts of a figure, but in this case we want to have more
control over the locations and sizes of the axes. Thus, we will place axes on
the figure and use the set function to specify their size and position.

ax1_h = axes;

a1pos = [.1 .1 .3 .8];

set(ax1_h,'Position',a1pos,'CameraViewAngle',6)

ax2_h = axes;

a2pos = [.5 .1 .3 .8];

set(ax2_h,'Position',a2pos,'CameraViewAngle',6)

The parameter CameraViewAngle needs to be initially fixed to a specific
value, otherwise it will be recomputed automatically on each frame.
After completing this video, you can try testing what happens when the
CameraViewAngle is not specified.

And now we’re ready to begin filming the movie. At each step inside the
loop, we specify the axis we want to use, call a function to create the head

542 VII User Interfaces and Movies

plot, and then adjust the azimuth component of the viewing angle. The
online code includes a function called headplotIndie, which is modified
from a function called headplot that comes with the eeglab toolbox. As
with the topoplotIndie function that you saw in earlier chapters, I made
a few modifications to the eeglab code so it works independent of the tool-
box. All credit for the creative work building this function goes to eeglab.

The following code is inside the loop over time points (variable ti is the
looping variable).

axes(ax1_h);

headplotIndie(squeeze(tf(:,1,tidx(ti))),...

 '3dSpline.spl',[-3 3]);

view(ax1_h,[-azs(ti) 20])

This code says that we want the axis indicated with handle ax1_h to be
active, then we call the headplotIndie function using the time-frequency
matrix at a single time point as the first input, a spline matrix as the second
input, and the color limits as the third input. This spline matrix defines the
points of the head surface. It must be uniquely defined for each EEG elec-
trode montage, meaning that this spline file is valid only for these EEG
data; you cannot apply this spline matrix to your EEG data. If you are work-
ing with EEG data, you can create a unique spline matrix in eeglab. The last
line of code specifies the viewing angle.

There is another set of three lines to produce the other head plot. The
differences are that (1) the other axis is specified, (2) frequency “2” is used
(second dimension of the tf matrix), and (3) the viewing angle azimuth
(variable azs) is positive instead of negative.

And that’s about it for our film (see figure 33.4 for one frame of the
movie). The online MATLAB code contains a few extra lines to grab each
figure as a frame in a movie and write it to disk in .avi format (the same
code as used previously in this chapter). I encourage you to play around
with the code to get a feel for the effects of different parameter settings on
the resulting plots.

A quick note about the head plot: It is simply a patch, just like the
patches you learned about in chapter 9. Rather than calling the function
headplotIndie on each iteration of the loop, it would be possible to
update the CData property of the patch, similar to how we updated the
CDdata property in the Gabor movie (using the handle p1 on line 85 of
headplotIndie.m). But this would require moving a lot of overhead code
into our script, and I decided against it.

33 Movies 543

33.4 Exercises

1. In the movie in section 33.1, add another subpanel to plot the time
series of phase values.

2. Create another movie in section 33.1 that shows only the complex
signal in three dimensions (the three dimensions are real part, imagi-
nary part, and time). Make sure all axes limits remain the same through-
out the movie. Have the axis slowly rotating in three dimensions as the
function “snakes” through time.

3. Rewrite the following line of code using the cat function. Make sure
the output is identical.

tidx = [tidx(1:end-1); tidx(end:-1:1)];

4. What is the effect of changing the sine wave phases in the Gabor
movie? It’s a bit tricky to see when there is also rotation. Turn off the
rotation so you can see the effect of the phase changes. This is a general
principle in science: When possible, it’s best to isolate a single feature
of a system in order to understand what that feature does. However, the
very valid counterargument is that biology typically involves so many
complex interactions that isolating a single feature might be so unnat-
ural as to produce misleading findings that have nothing to do with

Figure 33.4

One frame of the spinning-heads movie, which shows time-varying changes in time-

frequency power at two different frequencies.

544 VII User Interfaces and Movies

the real world. Fortunately for this exercise, Gabors are not biological
phenomena.

5. You can make the Gabor movie more efficient by precomputing more
matrices. It might involve two loops, but the important loop that dis-
plays the movie should contain only four lines of code (six including
the for and end).

6. The online code for this chapter includes a file called LangtonsAnt.m.
Open and run the file. This program involves simulating an ant crawl-
ing on a grid. There are two rules that govern the ant’s behavior, and
one rule for updating the color of each grid location. Just from inspect-
ing the code, see if you can figure out those rules (it might help to go
through the loop one iteration at a time). When you’ve figured out
the rules (or have given up), search the Internet for “Langton’s Ant.”
Finally, open a new MATLAB m-file and reprogram this simulation
from scratch. I’ll close this exercise, this chapter, and this book with the
most important piece of advice for scientific programming: There are
many correct solutions to a problem. It doesn’t matter if your solution
looks different from someone else’s solution; what matters is that your
code works and is accurate.

Adams, D. (1989). The More Than Complete Hitchhiker’s Guide: Complete & Unabridged.

New York: Bonanza Books. https://books.google.com/books/about/The_More_Than

_Complete_Hitchhiker_s_Guid.html?id=jItwNQAACAAJ&pgis=1.

Bruns, A. (2004). Fourier-, Hilbert- and Wavelet-Based Signal Analysis: Are They

Really Different Approaches? Journal of Neuroscience Methods, 137(2), 321–332.

doi:10.1016/j.jneumeth.2004.03.002.

Burkitt, A. N. (2006). A Review of the Integrate-and-Fire Neuron Model:

I. Homogeneous Synaptic Input. Biological Cybernetics, 95(1), 1–19. doi:10.1007/

s00422-006-0068-6.

Buzsáki, G., & Moser, El. (2013). Memory, Navigation, and Theta Rhythm in the

Hippocampal-Entorhinal System. Nature Neuroscience, 16(2), 130–138. doi:10.1038/

nn.3304.

Cardoso, J. F. (1999). High-Order Contrasts for Independent Component Analysis.

Neural Computation, 11(1), 157–192. http://www.ncbi.nlm.nih.gov/pubmed/?term

=cardoso+high-order+contrasts+for+independent.

Carp, J. (2012). On the Plurality of (Methodological) Worlds: Estimating the

Analytic Flexibility of FMRI Experiments. Frontiers in Neuroscience, 6(January), 149.

doi:10.3389/fnins.2012.00149.

Chang, C.-C., and Lin, C.-J. (2011). LIBSVM. ACM Transactions on Intelligent Systems

and Technology, 2(3), 1–27. doi:10.1145/1961189.1961199.

Chu, C. C. J., Chien, P. F., and Hung, C. P. (2014). Tuning Dissimilarity Explains

Short Distance Decline of Spontaneous Spike Correlation in Macaque V1. Vision

Research, 96(March), 113–132. doi:10.1016/j.visres.2014.01.008.

Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice.

Cambridge, MA: MIT Press.

Cohen, M. X. (2015). Comparison of Different Spatial Transformations Applied to

EEG Data: A Case Study of Error Processing. International Journal of Psychophysiology:

References

546 References

Official Journal of the International Organization of Psychophysiology, 97(3), 245–257.

doi:10.1016/j.ijpsycho.2014.09.013.

Cohen, M. X. (2016). Midfrontal theta tracks action monitoring over multiple

interactive time scales. NeuroImage, 141, 262–272. doi:10.1016/j.neuroimage

.2016.07.054.

Cohen, M. X., & van Gaal, S. (2013). Dynamic Interactions between Large-Scale

Brain Networks Predict Behavioral Adaptation after Perceptual Errors. Cerebral

Cortex, 23(5), 1061–1072. doi:10.1093/cercor/bhs069.

Delorme, A., and Makeig, S. (2004). EEGLAB: An Open Source Toolbox for Analysis

of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal

of Neuroscience Methods, 134(1), 9–21. doi:10.1016/j.jneumeth.2003.10.009.

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., and Makeig, S. (2012). Indepen-

dent EEG Sources Are Dipolar. PLoS One, 7(2), e30135. doi:10.1371/journal.pone

.0030135.

Ericsson, K. A., Krampe, R. T., and Tesch-Römer, C. (1993). The Role of Deliberate

Practice in the Acquisition of Expert Performance. Psychological Review, 100(3),

363–406.

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G*Power 3: A Flexible

Statistical Power Analysis Program for the Social, Behavioral, and Biomedical

Sciences. Behavior Research Methods, 39(2), 175–191. http://www.ncbi.nlm.nih.gov/

pubmed/17695343.

Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J., and Nobre, A. C. (2014). Inter-

and Intra-Individual Variability in Alpha Peak Frequency. NeuroImage, 92, 46–55.

doi:10.1016/j.neuroimage.2014.01.049.

Izhikevich, E. M. (2003). Simple Model of Spiking Neurons. IEEE Transactions on

Neural Networks, 14(6), 1569–1572. doi:10.1109/TNN.2003.820440.

Jaeger, D., and Jung, R. (Eds.). (2015). Encyclopedia of Computational Neuroscience.

New York: Springer.

King, J.-R., and Dehaene, S. (2014). Characterizing the Dynamics of Mental Repre-

sentations: The Temporal Generalization Method. Trends in Cognitive Sciences, 18(4),

203–210. doi:10.1016/j.tics.2014.01.002.

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., and Baker, C. I. (2009).

Circular Analysis in Systems Neuroscience: The Dangers of Double Dipping. Nature

Neuroscience, 12(5), 535–540. doi:10.1038/nn.2303.

Le Van Quyen, M. (2011). The Brainweb of Cross-Scale Interactions. New Ideas in

Psychology, 29, 57–63.

References 547

Lehmann, D., Pascual-Marqui, R., and Michel, C. (2009). EEG Microstates. Scholarpe-

dia, 4(3), 7632. doi:10.4249/scholarpedia.7632.

Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R., and Svoboda, K. (2015). A Motor

Cortex Circuit for Motor Planning and Movement. Nature, 519(7541), 51–56.

doi:10.1038/nature14178.

Luce, R. D. (1963). Detection and Recognition. In E. Galanter, R. D. Luce, and R. R.

Bush (Eds.), Handbook of Mathematical Psychology (1st ed., pp. 103–189). New York:

Wiley.

Macmillan, N. A., and Douglas Creelman, C. (2004). Detection Theory: A User’s

Guide. Hove, England: Psychology Press. https://books.google.com/books?id=2

_V5AgAAQBAJ&pgis=1.

Makeig, S., Debener, J., Onton, J., & Delorme, A. (2004). Mining Event-Related Brain

Dynamics. Trends in Cognitive Sciences, 8(5), 204–210. doi:10.1016/j.tics.2004.03.008.

Mandelbrot, B. (1967). How Long Is the Coast of Britain? Statistical Self-Similarity

and Fractional Dimension. Science, 156(3775), 636–638. doi:10.1126/science.156

.3775.636.

Maris, E., and Oostenveld, R. (2007). Nonparametric Statistical Testing of EEG- and

MEG-Data. Journal of Neuroscience Methods, 164(1), 177–190. doi:10.1016/j.jneumeth

.2007.03.024.

Mizuseki, K., Sirota, A., Pastalkova, E., and Buzsáki, G. (2009). Theta Oscillations

Provide Temporal Windows for Local Circuit Computation in the Entorhinal-

Hippocampal Loop. Neuron, 64(2), 267–280. doi:10.1016/j.neuron.2009.08.037.

Muir, D. R., and Kampa, B. M. (2014). FocusStack and StimServer: A New Open

Source MATLAB Toolchain for Visual Stimulation and Analysis of Two-Photon

Calcium Neuronal Imaging Data. Frontiers in Neuroinformatics, 8(January), 85.

doi:10.3389/fninf.2014.00085.

Nichols, T. E., and Holmes, A. P. 2002. Nonparametric Permutation Tests for

Functional Neuroimaging: A Primer with Examples. Human Brain Mapping, 15(1),

1–25. http://www.ncbi.nlm.nih.gov/pubmed/11747097.

Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., and Rossion, B. (2015).

The Steady-State Visual Evoked Potential in Vision Research : A Review. Journal of

Vision (Charlottesville, Va.), 15(6), 1–46. doi:10.1167/15.6.4.doi.

Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond Mind-

Reading: Multi-Voxel Pattern Analysis of fMRI Data. Trends in Cognitive Sciences,

10(9), 424–430. doi:10.1016/j.tics.2006.07.005.

Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging Human EEG

Dynamics Using Independent Component Analysis. Neuroscience and Biobehavioral

Reviews, 30(6), 808–822. doi:10.1016/j.neurobiorev.2006.06.007.

548 References

Palva, J. M., Zhigalov, A., Hirvonen, J., Korhonen, O., Linkenkaer-Hansen, K., and

Palva, S. 2013. Neuronal Long-Range Temporal Correlations and Avalanche Dynam-

ics Are Correlated with Behavioral Scaling Laws. Proceedings of the National Academy

of Sciences of the United States of America, 110(9), 3585–3590. doi:10.1073/pnas

.1216855110.

Rescorla, R. A., and Wagner, A. R. (1972). A Theory of Pavlovian Conditioning:

Variations in the Effectiveness of Reinforcement and Nonreinforcement. In A. H.

Black and W. F. Prokasy (Eds.), Classical Conditioning II: Current Research and Theory

(pp. 64–99). New York: Appleton-Century-Crofts.

Rey, H. G., Pedreira, C., and Quiroga, R. Q. 2015. Past, Present and Future of Spike

Sorting Techniques. Brain Research Bulletin, 119(Pt B), 106–117. doi:10.1016/

j.brainresbull.2015.04.007.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A Neural Substrate of Prediction

and Reward. Science, 275(5306), 1593–1599. http://www.ncbi.nlm.nih.gov/pubmed/

9054347.

Shao, Y.-H., Gu, G.-F., Jiang, Z.-Q., Zhou, W.-X., and Sornette, D. (2012). Comparing

the Performance of FA, DFA and DMA Using Different Synthetic Long-Range Corre-

lated Time Series. Scientific Reports, 2(January), 835. doi:10.1038/srep00835.

Shiffman, D. 2012. The Nature of Code: Simulating Natural Systems with Processing

(1st ed.). New York: The Nature of Code.

Singh, K. D. (2012). Which ‘Neural Activity’ Do You Mean? fMRI, MEG, Oscillations

and Neurotransmitters. NeuroImage, 62(2), 1121–1130. doi:10.1016/j.neuroimage

.2012.01.028.

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J.,

Johansen-Berg, H., Bannister, P. R., et al. (2004). Advances in Functional and

Structural MR Image Analysis and Implementation as FSL. NeuroImage, 23(January;

Suppl 1), S208–S219. doi:10.1016/j.neuroimage.2004.07.051.

Thorndike, E. L. (1898). Animal Intelligence: An Experimental Study of the Associa-

tive Processes in Animals. Psychological Monographs, 2(4), i–109.

van Drongelen, W. (2006). Signal Processing for Neuroscientists. Cambridge, MA:

Academic Press.

Wells, H. G. (1895). The Time Machine. London, England: William Heinemann.

abs (magnitude), 172

Activation function, 506

addpath, 40, 437

Aliasing, 179, 214

AND, 87, 100

angle, 174

Anscobe’s quartet, 259

Array, 52

assignin, 78

atan, 174

Autocorrelation, 380, 381

axis, 119, 130, 541

axis xy/ij, 142, 408

Backing up, 46, 427

Backpropagation, 503

Bar plots, 121

Baseline normalization, 328

Blind source separation, 266, 278

Bonferroni correction, 244

Boolean, 54

Brackets, 105

break, 96

Breakpoint, 77

bsxfun, 225, 252, 253, 256, 292,

328

bwconncomp, 414, 419

bwlabel, 425

cat, 236, 512

cd, 38

Index

ceil, 203, 228, 230, 288, 431

Cell

code, 41

variables, 56, 104

cellfun, 110, 111, 414, 420

Characters, 55

Chirp, 301, 303, 315, 331

Cholesky decomposition, 263

Circular inference, 22

cla, 119, 528

clear, 50, 79, 251

clf, 119

close (figure), 119

Coherence, 302

Colon, 58, 155

Color, 35

colormap, 139

colorbar, 318

Comma, 88

Command window, 32

Comments, 40

Compiled code, 37

Complex conjugate, 174, 383

Complex Morlet wavelet, 312

Complex numbers, 169, 170,

189

Complex plane, 169

Complex sine, 171

Conditional accuracy, 227

Continue, 93, 108, 373

contour, 244, 418

550 Index

contourf, 130, 243, 418

conv, 201

conv2, 448

Convolution, 195, 314, 337, 362, 382,

445

Convolution theorem, 196

Copy files, 114

corr, 257

corrcoef, 261

Correlation, 256, 464

Cosine similarity, 262, 268

cov, 250

csvread, 115

cumsum, 360

d′ (d-prime), 222

Data cursor tool, 137

DC (direct current), 178, 182

deal, 237

Debugging, 8

Delete files, 114

Delete plot objects, 137

Dependencies, 79

detrend, 360

Detrended fluctuation analysis, 358

diag, 166, 254, 269

diff, 309, 395

dir, 104, 274

Directories, 38

Discrete-time Fourier transform,

177

Discretization, 230, 377, 480

Discrimination, 222

disp, 73

Division (/ and ./), 158

dlmwrite, 112

Docked windows, 33

Dot product, 151, 172, 195, 250, 266,

302

Double, 53

Down sampling, 214, 435

drawnow, 533

dsearchn, 181, 299, 342, 541

Edge artifacts, 289, 323, 339

Editor window, 32, 35

eig, 268, 397

Eigendecomposition, 265

Ellipsis, 95

else, 86

English, 7

Epoching, 293

errorbar, 121

Euler’s formula, 171

evalin, 78

Event-related potential, 385

Excel, 113

Exclusive or (XOR), 504

Exercises, 10

exist, 108

Exponential (exp), 171, 177, 324,

497

Export figures, 140

Extrapolation, 208

Extreme-value statistic, 244

eye (identity), 155

fclose, 111

feof, 110, 373

FFT, 180, 292

padding, 184

fft2, 187, 190, 201

fftshift, 188, 382, 445

fgetl, 110, 373

Fibonacci, 143

figure, 117

File naming, 109

filesep, 106

filtfilt, 348

Finding indices, 298

FIR filters, 345

firls, 347

Fisher-Z, 465

fitcsvm, 512

floor, 180, 203, 293

fminbnd, 473

fminsearch, 472

Index 551

fMRI, 409

fopen, 110, 272, 372

for-loops, 91, 92

avoiding, 94, 100, 319

Fourier coefficient, 176, 181

fprintf, 73, 112

Fractal, 433

fread, 110, 272

Frequencies in hertz, 177

Frequency domain, 175

Frequency indices, 297

Frequency resolution, 288

Full matrix, 164, 434

Full width at half maximum (FWHM),

341

Functions, 67, 71

Gabor patch, 535

Gaussian, 200, 312, 341, 477

2D, 443, 535

gausswin, 219

gca, 133

gcf, 134

get, 133, 528

getframe, 540

ginput, 529

Global variables, 75

Greek characters, 136

Grid, 431

griddedInterpolant, 206, 460

GUIDE, 522

Handle

function, 471

plotting, 134, 135, 532

Hann window, 290

Help, 44, 70

Hermitian transpose, 191, 302

Hertz, 177, 288

Hilbert transform, 350

histogram (hist), 123, 239, 421, 474,

481

hold, 119, 122, 244

Identify matrix (eye), 154

if, 86, 92

imagesc, 128, 132, 156, 425, 537

Imaginary operator, 169

imread, 128, 187, 447

imshow, 130

In-sample testing, 512

ind2sub, 226

Indenting code, 42

Independent components analysis, 278,

400

Index, 10

Initializing, 60, 62, 110, 274, 410,

489

Inner product, 151

Input (GUI), 522

Integrate and fire, 487

Inter-trial phase clustering, 319,

388

interp1, 212, 335

Interpolation, 208

Inverse, 160

Inverse Fourier transform, 186, 199,

213

isa, 89

isfinite, 353

Isosensitivity curve, 224

isprime, 338

Izhikevich neurons, 492

jader, 400

Keyboard shortcuts, 41

kmeans, 402, 509

Law of effect, 495

Layout, 32

Least squares, 161, 361, 454

legend, 121

line, 141, 270

Line color, 120

Linear independence, 159

Linear indexing, 155

552 Index

linspace, 122, 180, 228, 318, 454,

538

load, 103, 109

Local minima/maxima, 363, 479

Local variables, 75

log, 121, 235

Logical, 54, 274

Logical indexing, 59

Logical toggle, 96, 351, 505

logspace, 318, 359

ls, 38

lsline, 264

Magnitude (abs), 172

Mandelbrot, 433

Markers, 121

Masking, 274, 418

.mat files, 37, 107

Matrices, 153

Matrix, 52

Matrix multiplication, 156

Matrix sizes, 149

max, 69, 533

mean, 357

Mean squared error, 100

median, 338, 441

meshgrid, 210, 219

Meta-permutation, 246

min-abs, 298, 476

mod, 93, 99, 350, 363

Morlet wavelet, 312

Move files, 114

Moving average filter, 335, 439

msgbox, 521

Multi-trial FFT, 291

Multiple comparisons correction,

244

Multiplication (* and .*), 158, 335

Narrowband filtering, 341

ndgrid, 210, 219, 431, 535

Nested code, 89

NIFTI, 410

Noise, 21

Nonstationarities, 301, 311

nonzeros, 421

normcdf, 240

norminv, 223, 240, 243

Null hypothesis distribution, 238

Nyquist, 178

Octave, 4

Online code, 11

Online data, mikexcohen.com/book

OR, 87, 100

Orthogonal, 153, 159

Out-of-sample testing, 512

Outputs, 68

Overfitting, 19, 513

pan, 137

Pan tool, 137

Parameters, 28

Parentheses, 53, 69, 105

patch, 127, 143

path, 39, 103, 437

pause, 99, 143, 316, 533

pca, 282

pcolor, 142

Pearson correlation, 259

Permutation-derived distribution,

239

Phase angle, 174, 388

Phase clustering, 388

Piece-wise regression, 473

plot, 119

plot3, 165, 281

pol2cart, 210

Polar plot, 182

polyfit, polyval, 459

Polynomials, 459

Power (time-frequency), 314, 318

prctile, 245, 247

Pre-whitening, 309

Precision, 53

predict, 513

Index 553

Prediction error, 499

Principal components, 265, 396

princomp, 282

print, 141

Profiler, 80

Programming errors, 26, 89

Programming steps, 7

R2, 458

rand, 96

randn, 67, 86, 251, 294

randperm, 82, 236

randsample, 441

rank, 159, 401

Rank correlation, 259

rat, 218

Reaction time, 462

real, 175

Reflection, 324

regexp, 111

repmat, 166

resample, 218

Rescorla-Wagner, 494

Researcher overfitting, 20

reshape, 272, 278, 294, 319, 360, 421,

462

ROC curves, 224

Root mean square, 355

rotate3d, 132, 138

Rotation, 268, 537, 541

round, 69

Sanity check, 295, 316, 342, 403, 410,

457, 477, 491, 515

Save

data, 107, 115

figures, 140

Scalar, 151

Scale-free, 358

scatter, 122

scatteredInterpolant, 210

Scores, 271

Scripts, 35

Semicolon, 49, 52, 88

set, 133, 247, 415, 532, 541

shading, 132

Short-time Fourier transform, 325

Sierpinski, 433

Sigmoid, 484, 506

Simplicity, 15, 62

Simulate correlated data, 249, 263, 267,

282, 303

Simulated data, 17, 473

Sinc function, 328, 365

Sine wave, 168, 301, 328

size, 67

Skill acquisition, 6

Smoothing, 317, 335, 439

Soft-coding, 61

Softmax function, 498

sort, 81, 228, 338, 476

sortrows, 228

Spaces, 53

Sparse matrix, 163, 433

Spearman correlation, 261

Sphering, 283

Spike-field coherence, 385, 387

Spline interpolation, 208

sqrt, 257, 355

Square matrices, 154

squeeze, 243, 357, 411, 512

sscanf, 111, 373, 411

Statistical significance, 240

Steady-state evoked potential,

305

Stepping in, 77

Stop on errors, 79

str2double, 111

strcmpi, 373

strfind, 411

Strings, 55

strncmp, 83

Structure, 57, 104

Sturges’s rule, 230

sub2ind, 166, 435

Subfunctions, 74

554 Index

Subplot, 124, 463, 541

Support vector machines, 511

surf, 131, 190

switch, 98

Symmetric matrices, 154, 162

T-test, 246, 413

Taper, 290

text (in plots), 135

Text files, 109

Thresholding, 245, 418

tic, toc, 115

tiedrank, 229, 261, 482

Tilde, 89

Time domain, 175

Time-frequency analysis, 311

title (in figure), 130

Transformations, 465

Transition zones, 346

transpose, 150, 155, 158, 162, 191,

253, 455

Triangular distribution, 473

try, 97

Two-dimensional FFT, 187

uigetfile, 107, 522

Underline, 88

Unix, 114

Variable naming, 51

Vector graphics, 141

Vector length, 152

Vector operations, 150

Vectors, 148

view (plotting), 138

Warnings, 45

Weibull, 484

what, 106

which, 51, 250

while loops, 94, 110, 372

whos, 50

why, 106

writeVideo, 540

xlsread, 113

You, 12

Z transform, 240

Zero padding, convolution, 195, 343

Zero padding, FFT, 184, 198

Zero padding, interpolation, 213

zoom, 137, 142

	Front Cover
	Contents
	Preface
	Part I: Introductions
	1 What Is MATLAB and Why Use It?
	1.1 “I Want to Be a Scientist; Do I Also Need to Be a Good Programmer?”
	1.2 Octave
	1.3 Python, Julia, C, R, SPSS, HTML, and So Forth
	1.4 How Long Does It Take to Become a Good Programmer?
	1.5 How to Learn How to Program
	1.6 The Three Steps of Programming
	1.7 How Best to Learn from This Book
	1.8 Exercises and Their Solutions
	1.9 Written Interviews
	1.10 Where Is All the Code?
	1.11 Can I Use the Code in This Book for Real Data Analyses?
	1.12 Is This Book Right for You?
	1.13 Are You Excited?
	2 The Philosophy of Data Analysis
	2.1 Keep It Simple
	2.2 Stay Close to the Data
	2.3 Understand Your Analyses
	2.4 Use Simulations, but Trust Real Data
	2.5 Beware the Paralysis of Analysis
	2.6 Be Careful of Overfitting
	2.7 Noise in Neuroscience Data
	2.8 Avoid Circular Inference
	2.9 Get Free Data
	3 Do Replicable Research
	3.1 Avoid Mistakes in Data Analysis
	3.2 Have a “Large Enough” N
	3.3 Maximize Level 1 Data Count
	3.4 Try Different Analysis Parameters, and Trust Analytic Convergence
	3.5 Don’t Be Afraid to Report Small or Null Effects, but Be Honest About Them
	3.6 Do Split-Half Replication
	3.7 Independent Replications
	3.8 Write a Clear Methods Section
	3.9 Make Your Analysis Code or Data Available
	4 The MATLAB Program
	4.1 The MATLAB Program Graphical User Interface
	4.2 Layouts and Visual Preferences
	4.3 Color-Coordinating MATLAB
	4.4 Where Does the Code Go?
	4.5 MATLAB Files and Formats
	4.6 Changing Directories inside MATLAB
	4.7 The MATLAB Path
	4.8 Comments
	4.9 Cells
	4.10 Keyboard Shortcuts
	4.11 Help Box and Reporting Variable Content
	4.12 The Code Analyzer
	4.13 Back Up Your Scripts, and Use Only One Version
	4.14 MATLAB Etiquette
	5 Variables
	5.1 Creating and Destroying Variables
	5.2 Whos Are My Variables?
	5.3 Variable Naming Conventions and Tips
	5.4 Variables for Numbers
	5.5 Variables for Truth
	5.6 Variables for Strings
	5.7 Variables for Cells
	5.8 Variables for Structures
	5.9 The Colon Operator
	5.10 Accessing Parts of Variables via Indexing
	5.11 Initializing Variables
	5.12 Soft-coding versus Hard-coding
	5.13 Keep It Simple
	5.14 Exercises
	6 Functions
	6.1 Introduction to Functions
	6.2 Outputs as Inputs
	6.3 Multiple Inputs, Multiple Outputs
	6.4 Help
	6.5 Functions Are Files
	6.6 Writing Your Own Function
	6.7 Functions in Functions
	6.8 Arguments In
	6.9 Think Global, Act Local
	6.10 Stepping into Functions
	6.11 When to Use Your Own Functions
	6.12 When to Modify Existing Functions
	6.13 Timing Functions Using the Profiler
	6.14 Exercises
	7 Control Statements
	7.1 The Anatomy of a Control Statement
	7.2 If-then
	7.3 For-loop
	7.4 Skipping Forward
	7.5 While-loop
	7.6 Try-catch
	7.7 Switch-case
	7.8 Pause
	7.9 Exercises
	8 Input-Output
	8.1 Copy-Paste
	8.2 Loading .mat Files
	8.3 Saving .mat Files
	8.4 Importing Text Files
	8.5 Exporting Text Files
	8.6 Importing and Exporting Microsoft Excel Files
	8.7 Importing and Exporting Hardware-Specific Data Files
	8.8 Interacting with Your Operating System via MATLAB
	8.9 Exercises
	9 Plotting
	9.1 What You Need to Know Before You Know Anything Else
	9.2 Plotting Lines
	9.3 Bars
	9.4 Scatter Plots
	9.5 Histograms
	9.6 Subplots
	9.7 Patch
	9.8 Images
	9.9 Get, Set, and Handle
	9.10 Text in Plots
	9.11 Interacting with MATLAB Plots
	9.12 Creating a Color Axis
	9.13 Saving Figures as Picture Files
	9.14 Exercises
	Part II: Foundations
	10 Matrix Algebra
	10.1 Vectors
	10.2 Vector Addition and Multiplication
	10.3 Matrices
	10.4 Finding Your Way around a Matrix
	10.5 Matrix Multiplication
	10.6 When to Use .* and ./ versus * and / ?
	10.7 Linear Independence and Rank
	10.8 The Matrix Inverse
	10.9 Solving Ax = b
	10.10 Making Symmetric Squares from Rectangles
	10.11 Full and Sparse Matrices
	10.12 Exercises
	11 The Fourier Transform
	11.1 Sine Waves
	11.2 The Imaginary Operator and Complex Numbers
	11.3 The Complex Dot Product
	11.4 Time Domain and Frequency Domain
	11.5 The Slow Fourier Transform
	11.6 Frequencies from the Fourier Transform
	11.7 The Fast Fourier Transform
	11.8 Fourier Coefficients as Complex Numbers
	11.9 DC Offsets in the Fourier Transform
	11.10 Zero-Padding the Fourier Transform
	11.11 The Inverse Fourier Transform
	11.12 The 2D Fourier Transform
	11.13 Exercises
	12 Convolution
	12.1 Time-Domain Convolution
	12.2 The Convolution Theorem
	12.3 Convolution Implemented in the Frequency Domain
	12.4 Convolution in Two Dimensions
	12.5 Exercises
	13 Interpolation and Extrapolation
	13.1 The MATLAB Functions griddedInterpolant and scatteredInterpolant
	13.2 Interpolation in Two Dimensions Using scatteredInterpolant
	13.3 Using interp* Functions
	13.4 Zero-Padding Theorem and Zero-Padding
	13.5 Down-sampling
	13.6 Exercises
	14 Signal Detection Theory
	14.1 The Four Categories of Correspondence
	14.2 Discrimination
	14.3 Isosensitivity Curves (a.k.a. ROC Curves)
	14.4 Response Bias
	14.5 Conditional Accuracy Functions
	14.6 Exercises
	15 Nonparametric Statistics
	15.1 The Idea of Permutation-Based Statistics
	15.2 Creating an Empirical Null Hypothesis Test
	15.3 Creating a Null Hypothesis Distribution
	15.4 Evaluating Significance
	15.5 Example with Real Data
	15.6 Extreme Value–Based Correction for Multiple Comparisons
	15.7 Meta-permutation Tests
	15.8 Exercises
	16 Covariance and Correlation
	16.1 Simulating and Measuring Bivariate Covariance
	16.2 Multivariate Covariance
	16.3 From Covariance to Correlation
	16.4 Pearson and Spearman Correlations
	16.5 Statistical Significance of Correlation Coefficients
	16.6 Geometric Interpretation of Correlation
	16.7 Exercises
	17 Principal Components Analysis
	17.1 Eigendecomposition
	17.2 Simple Example with 2D Random Data
	17.3 PCA and Coordinate Transformation
	17.4 Eigenfaces
	17.5 Independent Components Analysis
	17.6 Exercises
	Part III: Analyses of Time Series
	18 Frequency Analyses
	18.1 Blitz Review of the Fourier Transform
	18.2 Frequency Resolution
	18.3 Edge Artifacts and Data Tapering
	18.4 Many FFTs for Many Trials
	18.5 Defining and Extracting Frequency Ranges
	18.6 Effects of Nonstationarities
	18.7 Spectral Coherence
	18.8 Steady-State Evoked Potentials
	18.9 Exercises
	19 Time-Frequency Analysis
	19.1 Complex Morlet Wavelets
	19.2 Morlet Wavelet Convolution
	19.3 From Line to Plane
	19.4 From Single Trial to Super-trial
	19.5 Edge Artifacts
	19.6 STFFT
	19.7 Baseline Normalization
	19.8 Time-Frequency Analysis in Real EEG Data
	19.9 Exercises
	20 Time Series Filtering
	20.1 Running-Mean Filter
	20.2 Running-Median Filter
	20.3 Edges in the Frequency Domain
	20.4 Gaussian Narrow-Band Filtering
	20.5 Finite Impulse Response Filter
	20.6 The Hilbert Transform
	20.7 Exercises
	21 Fluctuation Analysis
	21.1 Root Mean Square to Measure Fluctuations
	21.2 Fluctuations in Time Series
	21.3 Multichannel RMS
	21.4 Detrended Fluctuation Analysis
	21.5 Demeaned Fluctuation Analysis
	21.6 Local and Global Minima and Maxima
	21.7 Exercises
	Part IV: Analyses of Action Potentials
	22 Spikes in Full and Sparse Matrices
	22.1 Spike Times as Full Matrices and as Sparse Vectors
	22.2 Mean Spike Count in Spikes per Second
	22.3 Peri-event Time Spike Histogram
	22.4 Exercises
	23 Spike Timing
	23.1 Spike Rhythmicity
	23.2 Spike Rhythmicity via the Frequency Domain
	23.3 Cross-Neuron Spike-Time Correlations
	23.4 Spike-Field Coherence
	23.5 Frequency-Specific Spike-Field Coherence
	23.6 Exercises
	24 Spike Sorting
	24.1 Spike Amplitude and Width
	24.2 Spike Features via Principal Components Analysis
	24.3 Spike Features via Independent Components Analysis
	24.4 Clustering Spikes into Discrete Groups
	24.5 Exercises
	Part V: Analyses of Images
	25 Magnetic Resonance Images
	25.1 Importing and Plotting MRI Data
	25.2 fMRI Data as a Four-Dimensional Volume
	25.3 fMRI Statistics and Thresholding
	25.4 Exercises
	26 Image Segmentation
	26.1 Threshold-Based Segmentation
	26.2 Intensity-Based Segmentation
	26.3 Once More, with Calcium
	26.4 Defining Grids in Images
	26.5 Fractals and Boxes
	26.6 Exercises
	27 Image Smoothing and Sharpening
	27.1 Two-Dimensional Mean Filtering
	27.2 Two-Dimensional Median Filter
	27.3 Gaussian Kernel Smoothing
	27.4 Image Filtering in the Frequency Domain
	27.5 Exercises
	Part VI: Modeling and Model Fitting
	28 Linear Methods to Fit Models to Data
	28.1 Least-Squares Fitting
	28.2 Evaluating Model Fits
	28.3 Polynomial Fitting Using polyfit and polyval
	28.4 Example: Reaction Time and EEG Activity
	28.5 Data Transformations Adjust Distributions
	28.6 Exercises
	29 Nonlinear Methods to Fit Models to Data
	29.1 Nonlinear Model Fitting with fminsearch
	29.2 Nonlinear Model Fitting: Piece-wise Regression
	29.3 Nonlinear Model Fitting: Gaussian Function
	29.4 Nonlinear Model Fitting: Caught in Local Minima
	29.5 Discretizing and Binning Data
	29.6 Exercises
	30 Neural and Cognitive Simulations
	30.1 Integrate-and-Fire Neurons
	30.2 From Neuron to Networks
	30.3 Izhikevich Neurons
	30.4 Rescorla-Wagner
	30.5 Exercises
	31 Classification and Clustering
	31.1 Neural Networks with Backpropagation Learning
	31.2 K-means Clustering
	31.3 Support Vector Machines
	31.4 Exercises
	Part VII: User Interfaces and Movies
	32 Graphical User Interfaces
	32.1 Basic GUIs
	32.2 Getting to Know GUIDE
	32.3 Writing Code in GUI Functions
	32.4 Exercises
	33 Movies
	33.1 Waving Lines
	33.2 Moving Gabor Patches
	33.3 Spinning Heads
	33.4 Exercises
	References
	Index

